
Hardware Reverse Engineering:
Overview and Open Challenges

Marc Fyrbiak∗, Sebastian Strauß†, Christian Kison∗, Sebastian Wallat‡, Malte Elson†,
Nikol Rummel†, Christof Paar∗‡,

∗Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
†Institute of Educational Research, Ruhr University Bochum, Germany

‡University of Massachusetts Amherst, USA
{prename.surname}@rub.de, {swallat}@umass.edu

Abstract—Hardware reverse engineering is a universal tool
for both legitimate and illegitimate purposes. On the one hand,
it supports confirmation of IP infringement and detection of
circuit malicious manipulations, on the other hand it provides
adversaries with crucial information to plagiarize designs, in-
fringe on IP, or implant hardware Trojans into a target circuit.
Although reverse engineering is commonplace in practice, the
quantification of its complexity is an unsolved problem to date
since both technical and human factors have to be accounted for.
A sophisticated understanding of this complexity is crucial in
order to provide a reasonable threat estimation and to develop
sound countermeasures, i.e. obfuscation transformations of the
target circuit, to mitigate risks for the modern IC landscape.

The contribution of our work is threefold: first, we systemati-
cally study the current research branches related to hardware
reverse engineering ranging from decapsulation to gate-level
netlist analysis. Based on our overview, we formulate several
open research questions to scientifically quantify reverse en-
gineering, including technical and human factors. Second, we
survey research on problem solving and on the acquisition of
expertise and discuss its potential to quantify human factors
in reverse engineering. Third, we propose novel directions for
future interdisciplinary research encompassing both technical and
psychological perspectives that hold the promise to holistically
capture the complexity of hardware reverse engineering.

Keywords—Hardware Reverse Engineering

I. INTRODUCTION

Reverse engineering refers to the process of information
retrieval from a product, ranging from aircrafts to modern
Integrated Circuits (ICs), in order to understand its composition
and inner workings [1]. In a security context, it is often
associated with analysis of proprietary binary programs [2],
[3] or proprietary hardware chips [4]. In particular, reverse
engineering of the latter is a many-faceted process involving var-
ious methods and techniques such as decapsulation, delayering,
imaging, and post-processing [5]. Typically, several difficulties
complicate the reverse engineering process in practice such as
(1) lack of meaningful descriptive information (e.g., names and
comments), (2) lack of module boundary information, and (3)
lack of hierarchy of modules [6].

Even though reverse engineering is a universal tool, in the
hardware context it is often associated with illegitimate actions
such as Intellectual Property (IP) infringement, weakening of
security functions, or disclosure of necessary information for
injecting hardware Trojans [5]. In fact, IP infringement is a

major concern for the industry. It is estimated that IC companies
face losses of several billion dollars in annual global revenue [7]
due to reverse engineering. In addition to commercial players,
reverse engineering is also a major concern for governmental
and military systems. Low-quality counterfeited hardware poses
a devastating safety consequence for mission-critical systems
such as airplanes, and weakened security systems result in the
disclosure of classified information with all of its consequences.
In contrast, there are also various reasons to utilize reverse
engineering for legitimate applications such as failure analysis,
detection of counterfeit products [7] or hardware Trojans [8].
Furthermore, reverse engineering is also legal in many countries
for competitive product analyses, education, and research, as
long as copyrights and patents are not violated.

Despite intensive research on hardware reverse engineer-
ing [5], [9] and companies that perform on-demand reverse
engineering [10], [11], reverse engineering is still an opaque
and poorly understood process. The question is not whether
analysts are able to reverse engineer a given design, since with
sufficient resources reverse engineering will always succeed.
Rather, the fundamental research question is:

“How time-consuming and, thus, costly is the reverse
engineering process of a proprietary design for successfully

extracting crucial information?”

A sound quantification lays the foundation for reasonable
threat estimates and development of sound countermeasures
to mitigate the risks. Possible countermeasures include novel
obfuscation strategies that hinder human analysts from reverse
engineering based on a scientific evidence of both technical
and human factors.

Goals and Contributions. In this paper, we focus on
hardware reverse engineering. Our goal is to discuss ap-
proaches to measure the complexity of reverse engineering
with respect to both technical and human efforts. To this end,
we first systematically survey reverse engineering methods
and techniques described in the open literature. Based on
our survey, we formulate several open research questions for
quantification of reverse engineering. We then survey problem
solving research and research on the acquisition of expertise,
and briefly summarize what these approaches can provide
to quantify the so-far neglected human factors in reverse
engineering. Finally, we discuss how interdisciplinary research
may be able to quantify the complexity of reverse engineering.

ar
X

iv
:1

91
0.

01
51

8v
1 

 [
cs

.C
R

] 
 1

 O
ct

 2
01

9



In summary, our main contributions are:

• Hardware Reverse Engineering Overview. We sys-
tematically study hardware reverse engineering meth-
ods and techniques and provide a concise overview of
the state of the art (Section II).

• Open Research Questions. Based on the overview, we
formulate several open research questions for reverse
engineering with a focus on its quantification and both
technical and human factors (Section II-E).

• Human Factors Quantification Overview. To the
best of our knowledge, we are the first to propose prob-
lem solving research and research on the acquisition
expertise to quantify human factors in hardware reverse
engineering (Section III). Finally, we discuss how
interdisciplinary research with technical and humanistic
perspectives may facilitate a sound quantification
(Section IV).

II. HARDWARE REVERSE ENGINEERING

In the following, we systematically survey hardware reverse
engineering. To this end, we first detail the system model
(Section II-A). We then present diverse state of the art methods
and techniques to analyze Application Specific Integrated
Circuits (ASICs) (Section II-B) and Field Programmable Gate
Arrays (FPGAs) (Section II-C) in order to retrieve the crucial
gate-level netlists of a hardware design. Subsequently, we survey
the state of the art in gate-level netlist reverse engineering
(Section II-D) which focusses on retrieval of high-level Register
Transfer Level (RTL) information (e.g. control unit or datapath
components). Finally, we formulate several open research
questions with a particular focus on quantification of the
complexity of reverse engineering (Section II-E).

Note that a survey for anti reverse engineering techniques
is out of the scope of this work, but the interested reader is
referred to [12].

A. System Model

We assume a reverse engineer with access to the flattened
(placed and routed) gate-level netlist without any a priori
knowledge of the design’s internal workings. More precisely,
the reverse engineer has no information of module hierarchies,
synthesis options, or names of gates and signals. The goal of the
reverse engineer is to understand (parts of) the design’s inner
workings in order to perform another high-level application, i.e.
to detect counterfeit products or to inject hardware Trojans.

The gate-level netlist can be obtained through several
means in multiple real-world scenarios, i.e. (1) chip-level
reverse engineering (see Section II-B), or (2) bitstream reverse
engineering in case of FPGAs (see Section II-C) or, (3) directly
from the layout in case of an untrusted (off-shore) foundry or
from an IP provider.

Note that this model is consistent with prior research on
hardware security [13], [14], [15], [8].

B. Chip-level Reverse Engineering

To access the gate-level netlist of an ASIC post-
manufacturing, chip-level reverse engineering has to be per-
formed. Here, the goal is to deprocess the IC which is embedded
in the protective package. To this end, various steps are involved:
(1) depackaging and mechanical preprocessing, (2) delayering
and imaging, and (3) software post-processing [5].

Depackaging and Mechanical Preprocessing. The first
goal of the chip-level reverse engineering step is to depackage
the chip by use of wet-chemical or mechanical means. This
is also called decapsulation. In particular, the die has to be
protected from any harm, therefore, typically wet-chemical
depackaging is chosen since the die is protected by a seal-layer
from the front side, i.e. often an SiO2 passivation. Note that the
backside usually offers enough silicon in the bulk to withstand
careful depackaging processes. Additionally, bonding wires are
of special interest during any semi-invasive attacks since they
connect the embedded die to the package pins.

Delayering and Imaging. Once the die is fully recovered,
the IC is delayered and digitized by optical means, i.e. a
Scanning Electron Microscope (SEM) or Focused Ion Beam
(FIB). The delayering process can involve a combination
of different wet-chemical, plasma-etching, and mechanical
polishing steps. Note that especially during these steps the
handling of the equipment results in improved quality of the
results. In particular, planarization of the current layer with a
large surface-to-thickness ratio is challenging in practice. Also
knowing the Region of Interest (ROI) is beneficial as the planar
surface can be reduced significantly. In such cases, the reverse
engineer can pinpoint his ROI while neglecting the rest of the
chip [16].

Furthermore, every chip has different chip manufacturing
processes due to cost optimizations or technology node re-
quirements. Therefore different conductors, semiconductors
and dielectrics have to be investigated and selectively removed
without destroying functional information of the IC [5]. For
modern, nanoscale technologies, it is essential to have the
necessary equipment to approximate or measure remaining
layer thickness and assess delayering quality.

In state of the art reverse engineering, digitalizing and
imaging is performed using a SEM or FIB. Since modern
technology sizes hit the diffraction limit of optical microscopes,
more advanced visualizing tools are mandatory. On the one
hand such modern equipment is costly, on the other hand it
results in smaller images. During image acquiring, a brightness
yield from the metals to the vias and a brightness difference to
the background is created due to different substance (electrical-)
properties. A clear brightness yield from the SEM/FIB images
is beneficial for the post-processing as it allows to distinguish
between vias, wires and spin-on dielectric (SOD), see Figure 1.

In summary, a good understanding of the physics of
the processes and the necessary equipment is mandatory to
achieve an adequate delayering quality, but also personal safety.
Handling of highly concentrated acids (e.g., hydrofluoric acid
HF), should only be done with the necessary knowledge
in chemistry. Sometimes a single scratch from dust in the
laboratory means the end of an IC sample.



Figure 1. Example of metal 1 layer is shown. Brightness allows to distinguish
between wires, vias, and the SOD. The brighter dots are vias between Metal 1
and Metal 2.

Software Post-processing. In order to generate a functional
chip representation from the digitized tile images of the previous
step, the tile images have to be stitched and vectorized. As
every IC is built from a standard-cell library, every cell in
this library has to be recognised manually and its functional
interpretation extracted once. Once the cell is identified, it can
be automatically detected in the whole ROI by means of image
processing. Finally, with the standard cell instances in the
back-end-of-line and the post-processed metal lines in vector
representation the functional interpretation of the a ROI can be
extracted as a netlist. Note this is a tedious and repetitive task
that can be (semi-) automated to support the reverse engineer.

C. FPGA Bitstream Reverse Engineering

In order to access gate-level netlists of FPGAs, a reverse
engineer has to analyze the configuration bitstream file that
defines its behavior. To this end, the reverse engineer has to (1)
access the bitstream, (2) decrypt the bitstream (in case bitstream
encryption is deployed), and (3) perform reverse engineering of
the proprietary bitstream file format to retrieve the netlist [5].
Note that the following description focuses on the market-
dominating Static Random Access Memory (SRAM)-based
FPGAs technology, for other technologies the interested reader
is referred to Wanderley et al. [17].

Bitstream Access. Due to the underlying SRAM technol-
ogy, SRAM-based FPGAs require external non-volatile memory
such as flash to store the bitstream. Hence, a reverse engineer
can either access the non-volatile memory and dump its content,
or wire-tap the communication between FPGA and non-volatile
memory upon boot-up, cf. [18]

Bitstream Decryption. In order to provide confidentiality
of the bitstream, FPGA manufacturers deployed a bitstream
encryption scheme for various device series using strong crypto-
graphic primitives. However, several works have demonstrated
that various series are vulnerable to side-channel attacks which
recover the secret encryption keys [19], [20]. Thus even if
bitstream encryption is deployed, the bitstream can be decrypted
for the majority of series. Note that most low-cost series do
not offer bitstream encryption at all.

Bitstream Reverse Engineering. Since the bitstream file
format is proprietary, a reverse engineer has to analyze the
file format in order to transform the (decrypted) bitstream into
its readable gate-level netlist description. To this end, several

works developed automated file format reverse engineering
strategies to recover (partial) netlist information, cf. [17].

D. Gate-level Netlist Reverse Engineering

After we specified how a reverse engineer can access
the gate-level netlist for ASICs and FPGAs designs, we
now provide an overview of publicly documented reverse
engineering techniques to retrieve high-level information (e.g.,
control units or hierarchy information of submodules).

Chisholm et al. [21] presented a workflow on how to reverse
engineer module-level descriptions from gate-level netlists,
addressing the synergy of the human analyst’s creativity and
the computer’s ability to solve repetitive tasks. In a case study,
Hansen et al. [22] described several best-practices for a human
analysts to reverse engineer gate-level netlists. Shi et al. [23]
evaluated a technique to automatically reverse engineer circuitry
that control units, i.e. Finite State Machine (FSM) from gate-
level netlists. Meade et al. [24] extended this technique in
order to retrieve the state transition function for the reverse
engineered FSMs. In further work, Meade et al. [25] developed
a technique to separate control unit registers from datapath
registers. In order to automatically reverse engineer functional
submodules in a larger hardware design, diverse techniques have
been developed based on Boolean function analysis [26], pattern
mining of simulation traces and model checking [27], module
boundary identification [28], [6], and word-level structure
identification [29]. Since functional identification of subcircuits
requires to find the correct matching between known subcircuits
and the subcircuit under inspection, a reverse engineer has to
find the correct input permutation. To avoid this computationally
expensive task, Gascón et al. [30] addressed this problem with
a template-based solution.

E. Open Challenges for Quantification

In the previous sections, we highlighted several scenarios in
which a reverse engineer can access gate-level netlists and we
provided a concise background on how these netlists are reverse
engineered. Even though several automated techniques and
best-practices for a human analyst have been described in the
literature so far, there are still open challenges with respect to
quantification of the reverse engineering process: (1) automation
of reverse engineering techniques, and (2) quantification of the
remaining non-automated sensemaking by human analysts.

Automated Reverse Engineering Techniques. Future re-
search in the field of hardware reverse engineering should focus
on further automated techniques to retrieve high-level informa-
tion from gate-level netlists. On the one hand novel automated
techniques investigate which information can be algorithmically
extracted, and on the other hand they simultaneously provide
a fine-grained quantification of the time complexity.

Quantification of Human Factors. Since reverse engi-
neering always involves human analysts, metrics for reverse
engineering and obfuscation which solely focus on technical
aspects are apparently not adequate. Thus a key challenge
for future research is to quantify the human factor in reverse
engineering.



III. PROBLEM SOLVING AND EXPERTISE RESEARCH

We now present problem solving and expertise research in
the context of hardware reverse engineering, in particular for
quantification of gate-level netlist reverse engineering. First, we
highlight why this reverse engineering task is a problem solving
process (Section III-A). We then provide a general introduction
to problem solving research and research on the acquisition of
expertise (Section III-B). Finally, we propose how the human
factor can be quantified using the aforementioned psychological
research fields (Section IV).

A. Setting-A Learning Perspective

As stated in Section II-A, we assume a reverse engineer
with access to a gate-level netlist and the goal to understand
parts of the design’s inner workings. To this end, the analyst
chooses actions which reduce the difference between the initial
state (no high-level information) and the goal state (design’s
inner workings successfully extracted). During this process the
person draws on prior knowledge (e.g., knowledge from past
instances of gate-level netlist reverse engineering or textbooks).
Thus, knowledge generated during reverse engineering can be
utilized in future attempts.

Perspectives on the Human Factor. This setting points
out two separate but intertwined mechanisms: (1) gate-level
netlist reverse engineering can be viewed as a problem solving
process, and (2) reverse engineers can acquire new knowledge
or skills and store them in long-term memory [31]. In
particular, reverse engineers gain expertise by performing
reverse engineering repeatedly in different contexts, i.e. formal
(e.g., school, university) and/or informal (e.g., learning or
training on-the-job, self-study, exchange with peers) educational
settings [32].

Both mechanisms, problem solving and acquisition of
expertise, also describe the arms race of reverse engineering
and obfuscation, since reverse engineers are able to break
obfuscation strategies and use their gained experience for future
reverse engineering attempts. Designers then have to implement
a new obfuscation, which presents a novel problem to reverse
engineers.

B. Problem Solving and Expertise Research

Based on the learning perspective in the previous section,
we survey problem solving and expertise research for a
general audience. While problem solving research focuses on
problem properties and adaptation of strategies to overcome
obstacles, expertise research conceptualizes the development of
knowledge required for successful reverse engineering, changes
in problem solving strategies with accumulating experience,
mental representations of problems and increasing automation
of complex and initially effortful behaviors (experts vs. novices)
[33], [34].

Problem Solving Research. Problem solving can be de-
fined as a sequence of directed cognitive operations that are
employed in a situation (the problem) where the individual
does not possess a suitable routine operation that allows a
transition from a given initial state to the desired goal state.
This situation is termed problem [35], [33]. During problem
solving, knowledge is manipulated in order to attain the desired

goal state. Due to different prior knowledge and problem solving
skills, a situation might pose a problem to one person, but not
to another. Further, as soon as a person has solved a problem
and is able to fully reproduce the solution schema, the situation
loses its problem character and simply represents a task to this
individual [36]. Thus, learning from problem solving as an
ongoing process should be taken into consideration as well.

Expertise Research. Ongoing experience within one field,
combined with deliberate practice [37] results in acquisition
of expertise. Deliberate practice refers to a specific practice
or training activity in which a person willingly and repeatedly
produces an action (often under supervision). The trainee
receives feedback on the quality of the production of the
action with the ultimate goal to improve performance [37],
[38]. After an extensive amount of practice a person is capable
of repeatedly exhibiting superior performance with minimal
variation. Note that this separates the acquisition of expertise
from the acquisition of (everyday) skills, which eventually
reaches an autonomous stage where performance will no
longer improve [39]. In contrast to novices, experts perform
superior due to their improved working memory, cf. [31], which
allows them to process great amount of information at a time.
For example, chess masters are able to quickly perceive and
evaluate complex configurations and choose promising options
for further moves [40]. Due to repeated problem solving, experts
also possess problem-schemas, which allow them to identify
the deep structure of a problem, retrieve multiple solutions and
select the best solution [41], [42].

IV. OPEN CHALLENGES: QUANTIFICATION OF HUMAN
FACTORS

As discussed in Section II-E, quantification of human factors
is an open challenge in hardware security research. For the
quantification using problem solving and expertise research
described in Section III, several aspects can be investigated
such as the reverse engineering process itself or how the human
experiment is arranged.

In the following, we provide novel interdisciplinary per-
spectives that systematically capture the different aspects of
human factor quantification for reverse engineering. First, we
propose two dichotomies which can guide quantification of
reverse engineering , namely (1) process vs. result, and (2)
human vs. task (Section IV-A). Second, we discuss possible
research designs and methods of data collection to investigate
the human factor (Section IV-B).

A. Dichotomies for Human Factor Quantification

We present a systematic overview of quantifiable aspects
arranged in two dichotomies. Note that both dichotomies are not
mutually exclusive, but rather represent different perspectives
of gate-level netlist reverse engineering.

1) Dichotomy: Process vs. Results Quantification: For the
quantification of human factors using problem solving and
expertise research as described in Section III, it appears
reasonable to distinguish between quantification of the process
itself and quantification of its results.

Process Quantification Dimension. The primary scope
of the process quantification dimension is not if analysts



are able to reverse engineer a netlist, but how they solve
problems they encounter. Usually, analysts identify high-level
steps and define a set of main goals to complete. These steps
represent meaningful units that guide analysts and pose specific
challenges to them. In order to complete these steps, analysts
might need to employ a number of different strategies.

The process dimension also focuses on learning gains and
the time required to complete a given task, i.e. how fast
can an analyst learn to master a task and how long does it
take to accomplish the task of a given complexity? These
processes change over time as individuals repeatedly encounter
problems of a similar topography and their actions become
automated [43]).

With regard to expertise and its acquisition, characterization
of expertise-specific problem solving strategies and problem
representations is expedient for quantification, since experts
have different ways of perceiving problems and employ
qualitatively different problem solving strategies due to their
superior knowledge organization compared to novices (this
has been shown in domains like chess [44], physics [42],
symbolic drawings in electrical engineering [45] or computer
programming [46]).

Result Quantification Dimension. The primary scope of
the result quantification dimension is to investigate whether
analysts were successful in reverse engineering and what they
have learned during problem solving, i.e. what new knowledge
or skills they acquired. Analysts acquire new (domain-specific)
problem solving strategies or reach an improved proficiency in
utilizing already learned strategies.

Considering the acquisition of expertise, it is also important
to assess whether analysts can reproduce their solution on
similar problems. This asserts whether or not a problem class
of challenges still poses a problem to the analysts. Moreover it
is necessary to investigate to what extend analysts can transfer
their knowledge about the solution of a problem solved to a
structurally similar problem.

2) Dichotomy: Quantification of Human vs. Task Properties:
Another dichotomy for the quantification is to distinguish
between properties of the analyst and properties of the task,
i.e. the hardware design.

Human Property Dimension. The primary scope of the
human property dimension is the analysis of characteristics
required for reverse engineering, e.g. domain knowledge, techni-
cal skills, and broader human traits, such as general intelligence.
These factors determine how and to what result an analyst is
able to solve a reverse engineering task. The comparison of such
capacities between subjects may yield a more sophisticated
understanding of characteristics to distinguish experts from
novices, and the identification of useful predictors (and less
relevant factors, or even obstacles) for successful reverse
engineering.

Task Property Dimension. The primary scope of the task
property dimension is to analyze the characteristics of the target
hardware design, i.e. the amount of gates and the complexity
of their interconnections.

Whereas the difficulty of so-called simple problems (e.g.
The Tower of Hanoi [47]) merely determines the amount

of time required to solve it (due to an increasing number
of incremental steps or iterations required), increasing the
difficulty of complex problems [48] (i.e. the amount of relevant
information to be considered or processed simultaneously) may
further diminish the problem solving performance, i.e. the
quality of the solution. Analyzing which components of a
netlist should be considered simple, and which complex, is key
to quantifying the human factor in reverse engineering.

Further, since analysts might use tools to transform the
original gate-level netlists into a graph-based representation
to conduct visual pattern matching search strategies, research
on insight problems [49] might indicate design characteris-
tics that facilitate or hinder reverse engineering when using
visualizations.

B. Research Designs, Data Collection, and Challenges

In addition to the quantifiable aspects in the previous section,
we now present (1) aspects for research designs, (2) methods
of data collection used to investigate the human factor, and
(3) challenges for future research. In order to quantify the
human factor, researchers collect data on the process and
outcome of reverse engineering attempts and which human
characteristics and task influence reverse engineering success.
By choosing between different research designs and methods
of data collection,the researcher selects which parts of reality
are under investigation and which are excluded. Therefore,
carefully choosing designs and methods of data collection with
regard to the research question and their respective advantages
and disadvantages is an important task.

1) Research Designs: Laboratory vs. Field: Research on the
human factor can be either carried out in laboratory studies or
in the field. Field studies are observations at the places where
analysts naturally perform hardware reverse engineering. This
allows gaining insight into the complexity of the processes in
their respective context. Conversely, in laboratory experiments
researchers control the context and observe single aspects in
great detail and with reduced external influences as compared to
observations in field. These studies take place at the researchers’
laboratories. Please note that the term laboratory refers to the
artificiality of the context and must not be confused with the
reverse engineer’s laboratory - which constitutes the site of
a field study. Here, reverse engineering is carried out under
artificial conditions. However, researchers may underestimate
or mischaracterize such processes as they impose unrealistic
boundary conditions, restrict access to resources analysts might
normally use, or fail to capture relevant strategies not available
in a laboratory setting. The strict control of context, however,
is key to investigate and isolate the effect or role of particular
variables. Research in the laboratory requires researchers to use
a formal description of the reverse engineering process (see
Section IV-B3.

2) Data Collection:

Behavioral Data. Behavior observations such as log-files
from human-computer-interaction, eye-tracking, screen captures,
or videographs allow a detailed analysis of actions and strategies
and their respective development over time. Behavioral data is
not affected by shortcomings concerning memory, introspection,
or response biases. Meaningfully reconstructing behavioral
sequences from logfiles, however, requires a sophisticated



system to be set up a priori. Behaviors not expected to occur
by the researcher may simply not be reconstructible from such
automated recordings, rendering them arguably incomplete or
even useless.

Verbal Data. Having analysts verbalize their thoughts while
they are problem solving (e.g., think-aloud) allows insights into
mental models, deliberations and intentions behind the strategies
employed (e.g., a sequence of goals) [50]. An alternative to
think-aloud is stimulated recall [50]. With this data collection
technique, the problem solving process itself is not verbalized
during its course, but the process is recorded. After problem
solving, the problem solvers are presented a section of their
problem solving behavior and are asked to explain their actions.
While information revealed that way is valuable to understand
a phenomenon, the quality of such self-report data may be
limited when respondents are unwilling or unable to provide
an accurate account [51], [52].

3) Challenges: Process Description. A major challenge
for research is the lack of a formal description of how
analysts carry out reverse engineering. Understanding the
structure of a problem is an important prerequisite in order
to investigate the cognitive processes involved in solving
the problem [33]. Applying a formalized description during
research on reverse engineering makes results of different
research groups comparable, facilitates an integration of findings
and allows meaningful research synthesis.

Sampling. Meaningful research on reverse engineering
requires sampling of subjects trained in reverse engineering
which is a highly domain-specific process which presumably
only relatively few people are capable of. This dramatically
reduces the population to draw samples from. Among those, a
substantial proportion will be unwilling to follow an invitation
to a university laboratory (as their reverse engineering usually
pursues illegitimate purposes), and some might be bound
by contracts or other agreements that prevents them from
participating. In addition, building contact to the remaining
potential participants and thus recruiting research participants
may be challenging, and researchers interested in studying the
human factor in reverse engineering are advised to pool their
resources.

V. CONCLUSION

Both industry and academia have been dealing with
hardware reverse engineering for several decades. Although
reverse engineering serves various legitimate and illegitimate
applications, quantification of its complexity is an unsolved
problem so far. However, this quantification is crucial in order
to provide reasonable threat estimation and to develop sound
countermeasures to mitigate risks posed by reverse engineering.

In this work, we first systematically analyzed the state
of the art in hardware reverse engineering and identified two
major open research directions: (1) automation of technical
factors, and (2) quantification of the remaining non-automated
sensemaking conducted by human analysts. We then surveyed
problem solving research and research on the acquisition of
expertise for a general audience which facilitates quantification
of decisive human factors. Finally, by broadening the scope
of reverse engineering through combination of technical and
human-centered perspectives, we provide suggestions for future

research directions to holistically capture the complexity of
hardware reverse engineering.

We believe that our insights on hardware reverse engineering
and its open challenges will help other researchers in finding
new ways to move the state of the art in this area forward.

ACKNOWLEDGMENTS

This work is partially supported by ERC grant No. 695022.

REFERENCES

[1] M. G. Rekoff, “On Reverse Engineering,” IEEE Transactions on Systems,
Man, and Cybernetics, no. 2, pp. 244–252, 1985.

[2] C. Willems and F. C. Freiling, “Reverse code engineering - state of the
art and countermeasures,” it - Information Technology, vol. 54, no. 2,
pp. 53–63, 2012.

[3] P. C. V. Oorschot, “Revisiting Software Protection,” in ISC 2003. LNCS.
Springer, 2003, pp. 1–13.

[4] B. Shakya et al., “Introduction to Hardware Obfuscation: Motivation,
Methods and Evaluation,” in Hardware Protection through Obfuscation.
Springer, 2017, ch. 1, pp. 3–32.

[5] S. E. Quadir et al., “A survey on chip to system reverse engineering,”
JETC, vol. 13, no. 1, pp. 6:1–6:34, 2016.

[6] P. Subramanyan et al., “Reverse Engineering Digital Circuits Using
Structural and Functional Analyses,” IEEE Trans. Emerging Topics
Comput., vol. 2, no. 1, pp. 63–80, 2014.

[7] U. Guin et al., “Counterfeit Integrated Circuits: A Rising Threat in the
Global Semiconductor Supply Chain,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1207–1228, 2014.

[8] S. Bhunia et al., “Hardware Trojan Attacks: Threat Analysis and
Countermeasures,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1229–
1247, 2014.

[9] A. Vijayakumar et al., “Physical Design Obfuscation of Hardware: A
Comprehensive Investigation of Device and Logic-Level Techniques,”
IEEE Trans. Information Forensics and Security, vol. 12, no. 1, pp.
64–77, 2017.

[10] J. Kumagai, “Chip detectives,” IEEE Spectrum, vol. 37, no. 11, pp.
43–48, 2000.

[11] R. Torrance and D. James, “The State-of-the-Art in IC Reverse
Engineering,” in CHES. Springer, 2009, pp. 363–381.

[12] D Forte et al., Hardware Protection through Obfuscation, 1st ed.
Springer, 2017.

[13] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intellec-
tual Property Protection and Security,” in USENIX Security Symposium,
2007.

[14] R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502,
2009.

[15] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[16] C. Kison, J. Frinken, and C. Paar, “Finding the aes bits in the haystack:
Reverse engineering and sca using voltage contrast,” in CHES. Springer,
2015, pp. 641–660.

[17] E. Wanderley et al., Security FPGA Analysis. Springer, 2011, pp. 7–46.
[18] P. Swierczynski et al., “Interdiction in Practice—Hardware Trojan

Against a High-Security USB Flash Drive,” Journal of Cryptographic
Engineering, pp. 1–13, 2016.

[19] A. Moradi et al., “On the Vulnerability of FPGA Bitstream Encryption
against Power Analysis Attacks: Extracting Keys from Xilinx Virtex-II
FPGAs,” in CCS, 2011, pp. 111–124.

[20] ——, “Side-channel Attacks on the Bitstream Encryption Mechanism
of Altera Stratix II: Facilitating Black-box Analysis Using Software
Reverse-engineering,” in FPGA, 2013, pp. 91–100.

[21] G. H. Chisholm et al., “Understanding Integrated Circuits,” IEEE Design
& Test of Computers, vol. 16, no. 2, pp. 26–37, 1999.



[22] M. C. Hansen et al., “Unveiling the ISCAS-85 Benchmarks: A Case
Study in Reverse Engineering,” IEEE Design & Test of Computers,
vol. 16, no. 3, pp. 72–80, 1999.

[23] Y. Shi et al., “A highly efficient method for extracting fsms from flattened
gate-level netlist,” in ISCAS, 2010, pp. 2610–2613.

[24] T. Meade et al., “Netlist Reverse Engineering for High-Level Function-
ality Reconstruction,” in ASP-DAC, 2016, pp. 655–660.

[25] ——, “Gate-level Netlist Reverse Engineering for Hardware Security:
Control Logic Register Identification,” in ISCAS, 2016, pp. 1334–1337.

[26] Y. Shi et al., “Extracting functional modules from flattened gate-level
netlist,” in ISCIT, 2012, pp. 538–543.

[27] W. Li et al., “Reverse engineering circuits using behavioral pattern
mining,” in HOST, 2012, pp. 83–88.

[28] P. Subramanyan et al., “Reverse Engineering Digital Circuits Using
Functional Analysis,” in DATE, 2013, pp. 1277–1280.

[29] W. Li et al., “Wordrev: Finding word-level structures in a sea of bit-level
gates,” in HOST, 2013, pp. 67–74.

[30] A. Gascón et al., “Template-based circuit understanding,” in FMCAD,
2014, pp. 83–90.

[31] R. C. Atkinson and R. M. Shiffrin, “Human memory: A proposed system
and its control processes1,” in The psychology of learning and motivation,
K. W. Spence, J. Taylor Spence, and J. T. Spence, Eds. New York:
Academic Press, 1968, vol. 2, pp. 89–195.

[32] P. Werquin, “Terms, concepts and models for analysing the value of
recognition programmes: Rnfil - third meeting of national representatives
and international organisations,” Vienna, Austria.

[33] M. Öllinger, “Problemlösen,” in Allgemeine Psychologie, J. Müsseler
and M. Rieger, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2017, pp. 587–618.

[34] T. J. Nokes, C. D. Schunn, and M. Chi, “Problem solving and human
expertise,” in International Encyclopedia of Education (Third Edition),
P. Peterson, E. Baker, and B. McGaw, Eds. Oxford: Elsevier, 2010,
pp. 265–272.

[35] R. E. Mayer, “A taxonomy for computer-based assessment of problem
solving,” Computers in Human Behavior, vol. 18, no. 6, pp. 623–632,
2002.

[36] W. Hussy and H. Selg, Denken und Problemlösen, 2nd ed., ser. Urban-
Taschenbücher. Stuttgart: Kohlhammer, 1998, vol. 557.

[37] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer, “The role of delib-
erate practice in the acquisition of expert performance,” Psychological
Review, vol. 100, no. 3, pp. 363–406, 1993.

[38] K. A. Ericsson and T. J. Towne, “Expertise,” Wiley interdisciplinary
reviews. Cognitive science, vol. 1, no. 3, pp. 404–416, 2010.

[39] K. A. Ericsson, “The acquisition of expert performance as problem
solving: Construction and modification of mediating mechanisms through
deliberate practice,” in The psychology of problem solving, J. E. Davidson
and R. J. Sternberg, Eds. Cambridge, UK and New York: Cambridge
University Press, 2003, pp. 31–83.

[40] A. D. d. Groot, Thought and Choice in Chess, 2nd ed., ser. Psychological
Studies. Berlin/Boston: De Gruyter and De Gruyter Mouton, 1978,
vol. 4.

[41] D. H. Jonassen, “Toward a design theory of problem solving,” Educa-
tional Technology Research and Development, vol. 48, no. 4, pp. 63–85,
2000.

[42] M. T. H. Chi, P. J. Feltovich, and R. Glaser, “Categorization and
representation of physics problems by experts and novices,” Cognitive
Science, vol. 5, no. 2, pp. 121–152, 1981.

[43] K. A. Ericsson, “The influence of experience and deliberate practice on
the development of superior expert performance,” in The Cambridge
Handbook of Expertise and Expert Performance, K. A. Ericsson, Ed.
Cambridge University Press, 2006, pp. 683–704.

[44] S. G. Chase and H. Simon, “Perception in chess,” Cognitive Psychology,
no. 4, pp. 55–81, 1973.

[45] D. E. Egan and B. J. Schwartz, “Chunking in recall of symbolic drawings,”
Memory & Cognition, vol. 7, no. 2, pp. 149–158, 1979.

[46] K. B. McKeithen, J. S. Reitman, H. H. Rueter, and S. C. Hirtle,
“Knowledge organization and skill differences in computer programmers,”
Cognitive Psychology, vol. 13, no. 3, pp. 307–325, 1981.

[47] J. R. Anderson, “Problem solving and learning,” American Psychologist,
vol. 48, no. 1, pp. 35–44, 1993.

[48] J. Funke, “Complex problem solving,” in Encyclopedia of the Sciences
of Learning, N. M. Seel, Ed. Boston, MA: Springer US, 2012, pp.
682–685.

[49] J. E. Pretz, A. J. Naples, and R. J. Sternberg, “Recognizing, defining,
and representing problems,” in The psychology of problem solving, J. E.
Davidson and R. J. Sternberg, Eds. Cambridge, UK and New York:
Cambridge University Press, 2003, pp. 3–30.

[50] N. J. Cooke, “Varieties of knowledge elicitation techniques,” Interna-
tional Journal of Human-Computer Studies, vol. 41, no. 6, pp. 801 –
849, 1994.

[51] K. A. Ericsson and H. A. Simon, “Verbal reports as data,” Psychological
Review, vol. 87, no. 3, pp. 215–251, 1980.

[52] R. E. Nisbett and T. D. Wilson, “Telling more than we can know: Verbal
reports on mental processes,” Psychological Review, vol. 84, no. 3, pp.
231–259, 1977.


	I Introduction
	II Hardware Reverse Engineering
	II-A System Model
	II-B Chip-level Reverse Engineering
	II-C FPGA! Bitstream Reverse Engineering
	II-D Gate-level Netlist Reverse Engineering
	II-E Open Challenges for Quantification

	III Problem Solving and Expertise Research
	III-A Setting-A Learning Perspective
	III-B Problem Solving and Expertise Research

	IV Open Challenges: Quantification of Human Factors
	IV-A Dichotomies for Human Factor Quantification
	IV-A1 Dichotomy: Process vs. Results Quantification
	IV-A2 Dichotomy: Quantification of Human vs. Task Properties

	IV-B Research Designs, Data Collection, and Challenges
	IV-B1 Research Designs: Laboratory vs. Field
	IV-B2 Data Collection
	IV-B3 Challenges


	V Conclusion
	References

