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Abstract— Vehicles with autonomous driving capabilities are
present on public streets. However, edge cases remain that
still require a human in-vehicle driver. Assuming the vehicle
manages to come to a safe state in an automated fashion,
teleoperated driving technology enables a human to resolve
the situation remotely by a control interface connected via
a mobile network. While this is a promising solution, it also
introduces technical challenges, one of them being the necessity
to transmit video data of multiple cameras from the vehicle to
the human operator. In this paper, an adaptive video streaming
framework specifically designed for teleoperated vehicles is
proposed and demonstrated. The framework enables automatic
reconfiguration of the video streams of the multi-camera system
at runtime. Predictions of variable transmission service quality
are taken into account. With the objective to improve visual
quality, the framework uses so-called rate-quality models to dy-
namically allocate bitrates and select resolution scaling factors.
Results from deploying the proposed framework on an actual
teleoperated driving system are presented.

I. INTRODUCTION

Great effort has been put towards the development of
fully automated and driverless vehicles. In particular, im-
provements have been made in perception systems, planning,
and control algorithms. Currently, automated vehicles are
already being tested with safety drivers on public streets.
Assuming the automation detects that a traffic situation
cannot be resolved independently, teleoperated driving offers
a solution.

A. Teleoperated Driving

With teleoperated driving (ToD) technology, a vehicle can
be controlled remotely. Sensor and vehicle data, e.g., video
feeds, are transmitted via mobile networks from the vehicle
to a remote control center. There, the data are displayed to
a human operator, who generates control commands. These
are then transmitted back to the vehicle for execution.
ToD comes with a number of challenges. First of all, the
teleoperation is subject to latency due to delays in system
components and transmission of the data via a mobile
network. However, with advances in computational power,
sensor and actuator technologies, delays can be reduced
significantly [1]. In addition, novel mobile network standards
promise even greater reduction [2]. Situational awareness
of the operator poses another great challenge to ToD. Not
being physically located in the vehicle, the perception of
the operator is primarily based on multiple video streams of
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the cameras on the vehicle. A display based on a spherical
video canvas is proposed in [3]. It is applied in a long-term
study [4], reporting an increase in the operator immersion.
The study also indicates an influence of different video
quality settings. With the objective to maximize the visual
quality of the video streams, this paper addresses the task of
automated dynamic adaptation of video stream parameters,
in dependence on predictions of bitrate availability.

B. Predictive Quality of Service

Through predictive Quality of Service (pQoS), an applica-
tion can receive predictions of the communication quality of
a mobile network, e.g., available bitrate. It enables proactive
adaptation of the data transmission, instead of reacting to
occurrences of increasing network latencies or packet loss.
Predicting communication quality is affected by multiple
parameters [5]. If pQoS is not provided by the mobile
network operator, data- and machine learning-based models
can be used to generate predictions [6]. Coupled with 5G,
the topic attracts a lot of interest in industry, especially for
automotive applications [2, 7]. With demand for low latency
and high data rates on the mobile network link, ToD is an
application that can greatly benefit of pQoS. The framework
in this paper assumes that predictions of the allocatable
uplink bitrate are available and will be used to perform video
stream adaptations of the ToD system.

C. Adaptive Multi-Camera Video Streaming

While video streaming is well-established in many do-
mains, teleoperation, and therein especially ToD, is a video
streaming application with special demands. As the operator
controls the vehicle remotely in real time, the video streams
must be delivered with the lowest possible delay. Therefore,
it is not possible to make use of the full compression
capabilities of nowadays codecs. Also, the bandwidth of
the mobile network is limited and varies. These factors
compromise the achievable visual quality and make adaptive
video streaming necessary. Over the years, adaptive video
streaming was primarily investigated for the purpose of
entertainment services. For instance, the approach in [8]
optimizes playback bitrates using pre-generated rate-quality
models and other statistics. Other rate control methods, such
as look-ahead approaches [9, 10] enable variable allocation
of a constant total bitrate for multiple videos.
In the field of teleoperation, the work presented in [11] per-
forms variable bitrate allocation for a multi-camera system
at varying radio conditions. This is related to some of the
objectives in this paper. However, the camera weighting was
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Fig. 1. Architecture of Adaptive Video Streaming Framework

based more on an intuition for the priorities of the camera.
The resulting visual quality of the videos was not taken into
account. A thorough assessment of visual quality in the ToD
simulation setup TELECARLA [12] is presented in [13].
Therein, the video streams are parametrized in dependence
of their orientation and the driving scenario. Dynamic ad-
justment of the video parameters is not considered.

D. Contributions

In this paper, a video streaming framework is proposed
that aims at providing the flexibility as required by ToD.
This includes variable prioritization of cameras and dy-
namic adjustment of video parameters. The videos can be
parametrized in different ways. The framework either takes in
manual input from the operator or predictions of the currently
available bitrate. In the latter case, bitrates are allocated and
resolution scaling factors are selected automatically. This
is performed based on so-called rate-quality models, which
were generated for each camera of the system. Insights into
the deployment of the proposed framework on an actual ToD
system with eight cameras are given. The generated rate-
quality models are discussed and the functionality of the
framework during operation is demonstrated in an experi-
mental test drive. The source code of the framework is open-
source and available as a Robot Operating System (ROS)
package on GitHub1.

II. ADAPTIVE VIDEO STREAMING FRAMEWORK

To control and adapt multiple video streams, the archi-
tecture, shown in Fig. 1, is proposed. For each camera on
the vehicle, the raw pixel data of the videos are compressed
by an encoder. The compressed data are transmitted via a
mobile network to the operator side, where they are decoded
and displayed. A scene manager user interface offers options
for the operator to switch between three video rate control
modes: Single (S), Automatic (A) and Collective (C). In
mode S, the videos can be turned on and off, or reconfigured
individually. This means that the region of interest (ROI),
characterized by width, height, horizontal and vertical offset
in pixel, can be set for each video. Furthermore, the video
resolution scaling factor and the target bitrate of the encoder
can be set. In mode A, the ROIs are kept constant, i.e., as
the operator has set them in mode S. Based on predictions of
the (total) bitrate available from the pQoS client, the bitrate

1https://github.com/TUMFTM/tod perception

allocation and resolution scaling factor selection for the
individual video streams are performed and applied by the
bandwidth manager automatically. Video rate control mode C
is similar to mode A, with the difference that the total
bitrate is not given by the pQoS client, but by the operator
through the scene manager. In the following, the procedures
of bitrate allocation and resolution scaling factor selection,
as performed by the bandwidth manager, are described in
detail.

A. Bitrate Allocation

Given the operator’s selected regions of interest and a
prediction of the current available bitrate, each camera of
the multi-view video system is allocated a bitrate. At first,
from the ROI for each camera i, the bitrate demand bdem,i is
computed by

bdem,i =
pset,i

pfull,i
bfull,i, (1)

where p(·) = w(·) h(·), with image width w(·) and height h(·),
are the amount of pixels of the ROI, set by the operator,
and the full image of the camera, respectively. For a camera
that is turned off, pset,i is set to zero. The maximum bitrate
that should be allocated to the camera for the full image is
denoted by bfull,i. This parameter, implicitly formulating a
weight of the respective camera, is set manually and will be
discussed in more detail in Sec. V-A. In addition, the bitrate
allocation can be complemented by a set of explicit camera
weights.
From the bitrate demand, the allocated bitrate balloc,i is
calculated as

balloc,i =
bdem,i∑N
j=1 bdem,j

bpred, (2)

whereby N and bpred denote the total number of cameras and
the prediction of the bitrate available from the pQoS client,
respectively.

B. Resolution Scaling Selection

From the set ROI and allocated bitrate for each camera, the
resolution scaling factor that maximizes the average visual
quality is selected for each camera. This selection is based
on rate-quality models. Their generation and metrics for the
visual quality are described in more detail in the next section.
For better readability, the camera index i is omitted in this
section.
Generally speaking, for each camera, the rate-quality model
yields a set S of resolution scaling factors

S = {s1, s2 ... sR}. (3)

Within S, the resolution scaling factors sr are R real numbers
in the range ] 0, 1 ]. Each factor maximizes the average visual
quality in a range Br of encoder target bitrates.
Given the allocated bitrate for a camera from (2), the
procedure selects the factor sr for which

balloc
pfull

pset
∈ Br =

{
[ bmin,r, bmin,r+1 [ , if r < R

[ bmin,R, bfull ] , if r = R
(4)

https://github.com/TUMFTM/tod_perception
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Fig. 2. Conceptual Illustration of the Rate-Quality Model

holds. This aims at incorporating the selection of a greater
resolution scaling factor in case the operator has set an ROI
smaller than the full image of the camera.

III. GENERATION OF RATE-QUALITY MODELS

To perform the previously described resolution scaling
factor selection, rate-quality models are generated before-
hand. This follows a concept presented in [8], which splits a
video in five second, non-overlapping chunks. Each chunk is
encoded at different resolutions, and compression rates. The
average visual quality of each chunk is stored in a database.
These data then enable the selection of parameters that
maximize the visual quality of each chunk during playback.
Fig. 2 conceptually illustrates the rate-quality model for three
resolutions, i.e., scaling factors sr. Each curve represents
the visual quality of the video at a certain scaling factor
over varying bitrate. Each scaling factor achieves the highest
visual quality in a certain bitrate range. From the points of
intersection of the rate-quality curves, the values bmin,r are
determined.
In ToD, the streamed videos are not recordings, but live
feeds. In consequence, the described concept is adapted
to the problem at hand. For the presented adaptive video
streaming framework, rate-quality models are not obtained
for short video chunks, but for each camera of the ToD
system. Therefor, a representative driving sequence with
straight sections and turns is recorded with each camera
in a raw, non-compressed format. This is then downscaled
and encoded with a constant encoder target bitrate. After-
wards, the compressed video is decoded and scaled up to
its original resolution. From this, the visual quality of the
video frame is assessed through a full-reference metric. Well
known metrics are the Peak Signal-to-Noise Ratio (PSNR)
or the Mean Structural Similarity (MSSIM) [14]. Alterna-
tively, a no-reference image quality assessment method, such
as the Blind/Referenceless Image Spatial Quality Evalua-
tor (BRISQUE) [15], may be used. Recently, also Netflix’
Video Multi-Method Assessment Fusion (VMAF) [16] has
gained in popularity. The visual quality is computed for each
video frame of the driving sequence. Finally, the average
over all frames represents one data point of the rate-quality
model. The procedure is repeated for multiple resolution
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Fig. 3. Camera Setup and Fields of View on Experimental Vehicle

scaling factors and encoder target bitrates. This yields the
full camera rate-quality model, which is used in the adaptive
video streaming framework, as described in the previous
section.

IV. EXPERIMENTAL SYSTEM SETUP

The video streaming framework presented in this paper has
been deployed on the experimental vehicle for ToD described
in [3]. Since then, the camera setup has been complemented
by two front-mounted cameras. As illustrated in Fig. 3, the
setup now consists of a total of eight cameras. These are

• three front-mounted and one rear-mounted camera op-
erating at 40 Hz,

• and four top view cameras operating at 30 Hz, with an
opening angle of 180 deg, each for monitoring the close
surroundings of the vehicle.

The vehicle camera parameters are summarized in Tab. I. The
reported resolution values partially do not correspond to the
native camera resolutions, but already incorporate cropping
of the videos due to overlap or regions, such as the sky,
which certainly do not contain valuable information, and thus
do not need to be transmitted to the operator. The obtained
values of rate-quality models are discussed in more detail in
the next section.
The adaptive video streaming framework is implemented
within ROS [17]. The video compression and transmission
is handled using GStreamer [18]. The GStreamer Real-
Time Streaming Protocol (RTSP) Server Library [19], im-
plementing an RTSP-based client-server model, is used for
establishing and controlling the video streaming sessions
between the operator and the vehicle. GStreamer is a modular
framework based on so-called plugins, each providing a cer-
tain functionality. By putting plugins together in a pipeline,
different multimedia streaming applications can be created.
Within the presented video streaming framework, the
pipeline for each camera on the vehicle side consists of the
following plugins:

appsrc → videocrop



→ videoscale → capsfilter → x264enc
→ rtph264pay → rtsp server.

From the ROS image callback, the raw video frames are
pushed to the appsrc. The x264enc compresses the
raw video using the H.264 codec [20]. For the transmis-
sion via the rtsp server, the compressed data is split
into Real-Time Transport Protocol (RTP) packets by the
rtph264pay. Adapting the configuration and control of
the video stream at runtime happens through parametrization
of certain plugins. These are the videocrop element to
adapt the ROI, the capsfilter element to force the
videoscale to perform a certain resolution scaling, and
the x264enc to encode the video stream at the (target)
bitrate.
On the operator side, each video is received with the follow-
ing pipeline:

rtspsrc → rtph264depay → avdec h264
→ appsink,

where the rtspsrc creates the RTSP client that connects
to the server to receive the RTP packets. These are passed
on to the rtph264depay to reassemble the H.264 com-
pressed data. The avdec h264 decodes these into raw
video frames, which are retrieved from the appsink and
published to ROS for the operator display.
Several hardware and software design choices for the ToD
system were driven by the goal to minimize the age of
the information that is being displayed to the operator. An
extensive and thorough analysis of hardware components
and their latencies is presented in [1]. The design choices
include high camera frame rates and, despite lower com-
pression rates, the use of the faster H.264 over H.265 [21].
With H.264, a low latency is achieved by parametrizing
the encoder to use the speed-preset=superfast and
the tune=zero-latency property. Also, to take advan-
tage of the continuous, cut-free videos during ToD, the
intra-refresh property is used to periodically distribute
the refresh of the video key frames.
With the described parameter settings and other hardware
component choices, such as gaming monitors with minimal
input lag and high refresh rates, the latency of the video
streaming system can be reduced effectively. With a wired
connection, the end-to-end latency, measured from an event
happening in front of the camera until it is being displayed
on the operator monitor, is below 120ms for the three front-
mounted cameras [1]. Although this paper does not explicitly
aim at optimizing latency, these characteristics of the given
ToD system are described here, as they significantly influence
the obtained rate-quality models that are presented in the
following section.

V. RESULTS

In this section, rate-quality models generated for the
experimental vehicle are presented. Furthermore, results of
an experimental drive give insights into the operation of the
framework at runtime.
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Fig. 4. Rate-Quality Models for Front-Mounted Cameras

A. Rate-Quality Models

For the described camera setup, rate-quality models were
generated with the methodology described in Sec. III. Se-
quences of approximately 40 seconds during regular driving
at moderate speeds were recorded in raw image format. The
recordings were then run through the described compression-
decompression pipeline at eight resolution scaling factors
S = {0.125, 0.25, 0.375, ... 1.0} and encoder target bitrates
between 50 and 4000 kbit/s. From the average MSSIMs for
all parameter settings, resolution scaling factors that yield
the highest quality in a certain bitrate range are selected.
The rate-quality models of the front-mounted center camera
and the average of the front-mounted left and right cameras
are shown in Fig. 4. All three cameras are of the same
type. For better clarity, selected resolution scaling factors are
displayed, only. It can be observed that each factor yields a
bitrate range in which it maximizes the MSSIM, motivating
dynamic scaling in the first place. Another observation is
the major impact of the camera orientations on the quality
model. For instance, as the motion in the videos of the side-
facing cameras is greater, the bitrate ranges of the respective
resolution scaling factors are different from the center-
facing camera. Furthermore, overall lower quality scores are
achieved. In consequence, this should be compensated for in
the rate-quality model by assigning greater bfull to the side-
facing cameras. Plots of the quality models for the other
cameras can be found in Fig. 8 in the Appendix.
From the rate-quality models, it is concluded that not all
scaling factors are worthwhile to be applied. For instance,
it turned out that some scaling factors are the best choice
in a comparably narrow bitrate range, only. Also, resolution
scaling factors close to 1.0, requiring greater computational
power and encoding time, are only reasonable if the related
camera bitrates are maintainable in the 4G/LTE network that
is shared with multiple users.
The rate-quality model parameters used for the experimental
vehicle are reported in Tab. I. Different resolution scaling
factors turned out to be preferred for the different types
of cameras. Also, scaling factors up to 0.5 came into use,
only. However, with further advancements of mobile network
standards and computing technologies, this is expected to
change.



TABLE I
CAMERA AND RATE-QUALITY MODEL PARAMETERS OF EXPERIMENTAL VEHICLE

Front Left / Right Front Center Rear Center Top View Front Top View Left / Right Top View Rear
pfull (MPx) 2.0 2.3 1.02

wfull (Px), hfull (Px) 1920, 1040 1920, 1200 1280, 800
S {0.125, 0.25, 0.5} {0.25, 0.375, 0.5}

bfull (Mbit/s) 6.0 5.0 4.0 3.0 3.0 3.0
bmin,r (Mbit/s) {0, 0.3, 0.95} {0, 0.2, 0.45} {0, 0.4, 1.8} {0, 0.15, 0.4} {0, 0.15, 0.4} {0, 0.2, 0.4}
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Fig. 5. Actual Total Camera Bitrates over GPS Location of Vehicle

B. Driving Test

After the generation of the rate-quality models for all
cameras on the vehicle, the framework is put into operation.
In the following, insights into the function of mode A
are given for a driving test of approximately 100 s. The
predictions of the available bitrate are artificial, being read
from a pre-recorded bandwidth map. As stated in Sec. I-
B, the development and deployment of more sophisticated
regression and prediction models is beyond the scope of this
paper.
Fig. 5 shows the total bitrate of all cameras, plotted on the
GPS location of the vehicle during the driving test. Great
variance of the bitrate can be observed, ranging from 3000
to 8000 kbit/s. The actual camera bitrates over time are
plotted in Fig. 6. The front-mounted cameras used for
the left and right views have greater bfull, and are always
allocated higher bitrates. This is the consequence of the
lower visual quality levels achieved for these cameras, due
to their orientation, as described in the previous section. The
bitrates of the top view cameras are controlled equally at
overall lower bitrate levels, compared to the front- and rear-
mounted cameras. Given the variation in allocated bitrates,
the framework also varies the resolution of the videos. The
resolution scaling factors are plotted over time in Fig. 7. In
two occasions, around 15 and 55 s, only lower bitrates are
available for several seconds. This results in the selection of
lower resolutions for all cameras, except the front-mounted
center camera. Between 70 and 90 s, a lower bitrate is pre-
dicted as well. However, with the given rate-quality models,
the resolutions of the videos are not changed.
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VI. DISCUSSION AND OUTLOOK

The rate-quality models form a good basis to adequately
parametrize the videos of the ToD system. However, the
rate-quality models were generated from one driving se-
quence, only. To account for deviations from the models,
an assessment of the actual image complexity at runtime
is required. This could be done through a pre-processor or
feedback, available from the encoder. In addition, extended
parameter models could be generated, in dependence on the
longitudinal and lateral motion of the vehicle. Alternatively,
the generation of rate-quality models for specific driving sce-
narios is also conceivable. For instance, unprotected left turns
yield a greater importance for the front-mounted camera
facing to the left. In parking scenarios, the top view cameras,
capturing the close surroundings of the vehicle, should be
allocated higher priority.
Another aspect that can be addressed in future work is the
selection of the visual quality metric for generating the rate-
quality models. For instance, the PSNR, which estimates
absolute errors, corresponds to the perceived quality to some
extent, only. The MSSIM, which was used in this paper, aims
improve this by capturing the similarity of images regarding
structural information. In future work, the open question of
which metric is the right choice to improve on for the task
of ToD will be addressed.



VII. CONCLUSION

This paper presented a flexible video streaming framework
for teleoperated driving. It offers the ability to dynamically
configure individual video streams of the system. Given the
total available uplink bitrate, the framework is capable of
automatically handling bitrate allocation and optimization of
the video resolution scaling factors. This is based on rate-
quality models that were generated for each camera of the
system. The operation of the framework is demonstrated on
an experimental vehicle with eight cameras. A discussion on
the proposed methodology points out several directions for
future work and enhancements of the framework. Ultimately,
this research aims to explore these possibilities with the
goal to further improve the video streaming quality for the
application of teleoperated driving.

VIII. APPENDIX
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