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AN INTELLIGIBILITY METRIC BASED ON A SIMPLE MODEL OF
SPEECH COMMUNICATION

Steven Van Kuyk1, W. Bastiaan Kleijn1,2 and Richard C. Hendriks2

1Victoria University of Wellington, New Zealand
2 Delft University of Technology, The Netherlands

ABSTRACT
Instrumental measures of speech intelligibility typically produce an
index between 0 and 1 that is monotonically related to listening test
scores. As such, these measures are dimensionless and do not repre-
sent physical quantities. In this paper, we propose a new instrumen-
tal intelligibility metric that describes speech intelligibility using bits
per second. The proposed metric builds upon an existing intelligibil-
ity metric that was motivated by information theory. Our main con-
tribution is that we use a statistical model of speech communication
that accounts for noise inherent in the speech production process.
Experiments show that the proposed metric performs at least as well
as existing state-of-the-art intelligibility metrics.

Index Terms— Intelligibility, mutual information.

1. INTRODUCTION

When designing a speech-based communication system (e.g., a hear-
ing aid or telecommunication device), it is important to understand
how the system will affect speech intelligibility. Although listen-
ing tests provide the most reliable data, in many cases, instrumental
measures of intelligibility are preferred as they provide a quicker and
cheaper assessment.

Most instrumental intelligibility measures can be divided into
two classes: those based on articulation index theory (e.g., the
articulation index (AI) [1], speech intelligibility index (SII) [2],
extended SII (eSII) [3], and coherence SII (CSII) [4]), and those
based on spectral-temporal modulations (e.g., the speech transmis-
sion index (STI) [5], speech-based envelope power spectrum model
(sEPSM) [6], short-time objective intelligibility measure (STOI) [7],
and speech-based STI methods (sSTI) [8]). Additionally, there are
some predictors that do not fall into either class (e.g., the glimpse
proportion metric (GP) [9], and a measure based on the Dau audi-
tory model (DAU) [10]). As a group, the above algorithms have
been successful at predicting the intelligibility of speech subjected
to speech-enhancement strategies such as spectral subtraction [11]
and ideal time-frequency segregation (ITFS) [12] in a wide range
of environments including additive noise, filtering, and reverbera-
tion. Though the algorithms are successful as a group, individually
each algorithm tends to perform well for only a narrow subset of
conditions. This is because each algorithm is heuristically moti-
vated and designed for a specific purpose. Consequently, a unified
intelligibility predictor is yet to emerge.

Recently, information theory (IT) has been proposed as a new
paradigm for speech intelligibility prediction [13, 14, 15]. This is a
natural approach to take given that the fundamental goal of speech
communication is to transfer information from a talker to a listener.

There are two key advantages of IT. First, several studies have
suggested that IT could provide a unified point of view. In [16] and

[17] it was observed that the AI resembles the Shannon capacity of
a memoryless Gaussian channel, and in [14] it was shown that STOI
is related to the average amount of information shared between the
temporal envelopes of clean and distorted speech signals. Second,
IT provides a powerful theoretical framework. As an example, the
concept of mutual information offers a generalized measure of de-
pendency between two random variables that, unlike Pearson’s cor-
relation coefficient, can measure non-linear dependencies.

In the literature, two IT-based intelligibility metrics have been
proposed [14, 15]. Both metrics are based on the hypothesis that in-
telligibility is monotonically related to the mutual information of the
sub-band temporal envelope of a transmitted speech signal and the
corresponding received speech signal. The main difference between
the metrics is that [14] uses a lower bound on the information rate,
whereas [15] measures mutual information using non-parametric
techniques. Additionally, [14] estimates statistics over short-time
segments, whereas [15] uses complete utterances.

In [17] a simple but effective model of speech communication
was presented that includes variability inherent in the speech pro-
duction process. It was argued that this variability, called ‘produc-
tion noise’, causes the usefulness of a communication channel to
saturate. In this paper, we extend the statistical model used in [14] to
account for channel saturation. The outcome is a new intelligibility
metric.

The remainder of this paper is organized as follows. In the
following section we describe an information theoretical model of
speech communication. Section 3 uses the model to develop an in-
telligibility predictor. Section 4 describes a procedure for measuring
the statistics of production noise. Section 5 presents our evaluation,
and finally, Section 6 concludes the work.

2. THEORY

In the following, we present a theoretical framework for describ-
ing speech communication. We adopt the model presented in [17],
which considers the transmission of a message from a talker to a
listener and assumes a noisy speech production process.

2.1. Model of the communication chain

The model describes a speech signal X as a multi-dimensional er-
godic stationary discrete-time random process. The process is com-
posed of real scalar random variables X(j, t) where j is the dimen-
sion index and t is the time index. A common representation of
speech used for instrumental intelligibility measures, including this
work, is the sub-band temporal envelope. Let x(i) be a real-valued
random process that represents the samples of an acoustic speech
signal where i is the sample index. The sub-band temporal envelope
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of x(i) is

X(j, t) =

√∑
k

|hj(k)|2|x̃(k, t)|2, (1)

where j is the sub-band frequency index, t is the frame index, hj(k)
is the transfer function of the jth filter in an auditory filterbank, and
x̃(k, t) is the Short-Time Fourier Transform (STFT) of x(i) where k
is the frequency bin index.

The transmission of speech from talker to listener is modelled
by a Markov chain:

M→ X → Y, (2)

where X is the clean speech produced by a talker and Y is the signal
received by the listener. The model distinguishes between a hypo-
thetical messageM and a produced speech signal X to account for
‘production noise’ (e.g., inter-talker and intra-talker variability).

2.2. Information rate of the communication channel

The mutual information rate I(M;Y) betweenM and Y describes
the effectiveness of the communication channel. As a first approxi-
mation we assume that the time-frequency (TF) units that compose
M are statistically independent, and likewise for X and Y . For this
case, the mutual information rate decomposes into a summation of
mutual information terms

I(M;Y) =
1

T

∑
t

∑
j

I(M(j, t);Y (j, t)), (3)

where T is the sequence length. To enhance readability we drop the
time index and frequency index where possible.

By exploiting Markov chain properties, for each TF unit we have
the upper bound:

I(M ;Y ) ≤ min(I(M ;X), I(X;Y )). (4)

This equation shows that the communication model can be decom-
posed into two channels: the speech production channel,M → X ,
and the environmental channel X → Y . In the case of a distortion-
less environmental channel, I(X;Y ) is infinite and I(M ;Y ) satu-
rates at the information rate of the speech production channel.

2.2.1. Information rate of M and X

Let us consider the nature of speech production. It is obvious that
multiple speech signals can be produced for a given linguistic mes-
sage. This means that variability is inherent to the speech production
channel. We name this variability ‘production noise’.

The two main sources of variability can be attributed to learned
speech habits (i.e., accents), and physiological differences between
vocal-tracts [18]. Consequently, it is likely that the variability be-
tween speech signals manifests as differences in the vocal-tract char-
acteristics of different talkers. The effect of different vocal tracts
can be seen by modelling speech production as the convolution of a
vocal-tract filter impulse response and an excitation signal [19]. In
the time-frequency domain the convolution becomes a multiplica-
tion and we can write x̃(k, t) = v(k, t)g(k, t), where v(k, t) is the
time-varying vocal-tract filter transfer function and g(k, t) is the ex-
citation. Under this speech production model, it is natural to assume
that production noise has a multiplicative nature. Thus we define

P , log(X)− log(M), (5)

where P is production noise, such that X = ePM . Furthermore,
we assume that P is zero mean and that P and M are statistically

independent. The logarithm in (5) is applied so thatP has an additive
nature consistent with the model in [17]. Since the logarithm is an
invertible function, we can transform the signals without affecting
the information rate. That is,

I(M ;X) = I(log(M); log(X)). (6)

Our initial experiments have shown that log(X) and P are approxi-
mately Gaussian. Thus, the mutual information is given by [20]

I(log(M); log(X)) = −1

2
log(1− ρ2p), (7)

where ρp is the correlation coefficient between log(M) and log(X).
We call ρp the ‘speech production correlation coefficient’. Using (5)
it is easy to show that

ρ2p =
E[(logX)2]− E[logX]2 − E[P 2]

E[(logX)2]− E[log(X)]2
. (8)

We assume that the speech production correlation coefficient is an
inherent property of speech communication and does not depend on
a specific realization of X . We also assume that ρp does not de-
pend on the time index, but may depend on the frequency index. In
Section 4 we estimate ρp(j) using an appropriate speech corpus.

2.2.2. Information rate of X and Y

In [14] an algorithm was developed for estimating a lower bound
on I(X;Y ). It was argued that X follows a chi distribution with d
degrees of freedom. The resulting lower bound is given by:

I(X;Y ) ≤ log Γ(d/2) +
1

2

(
d− log 2− (d− 1)ψ(d/2)

)
− 1

2
log 2πe(d− 2

Γ2((d+ 1)/2)

Γ2(d/2)
)

− 1

2
log(1− ρ2XY )

, Ilow(X;Y ),

(9)

where Γ(.) and ψ(.) denote the gamma and the digamma function,
respectively, and ρXY is the correlation coefficient between X and
Y given by

ρXY =
E[XY ]− E[X]E[Y ]√

(E[X2]− E[X]2)(E[Y 2]− E[Y ]2)
. (10)

3. PROPOSED INTELLIGIBILITY METRIC

In this section we use the theory from Section 2 to develop a speech
intelligibility metric. The metric is a function of a clean acoustic
speech signal x(i) that is produced by a talker, and a distorted acous-
tic speech signal y(i) that is received by a listener. The output is an
upper bound on the amount of information shared between the talker
and listener in bits per second. The basic structure of the proposed
intelligibility metric shows strong similarities to [7, 14, 15, 21].

3.1. Implementation

First we derive an internal representation based on a simplified
model of the auditory system. To this end, x(i) and y(i) are resam-
pled to a sampling frequency of 10 kHz. Subsequently the signals
are transformed to the STFT domain using a 512-point Hann win-
dow with 50% overlap. This results in a frame rate of R ≈ 39



frames/second, which is sufficient for capturing the spectral modu-
lations necessary for speech intelligibility [22, 23]. The sub-band
temporal envelopes of x(i) and y(i) are then calculated according
to (1). We use an auditory filterbank that consists of J = 25 gam-
matone filters with center frequencies linearly spaced between 100
Hz and 4500 Hz on the ERB-rate scale [24].

The proposed intelligibility metric is computed by evaluating

I =
R

T

∑
t

∑
j

min(ÎMX(j), Ilow(X(j, t);Y (j, t))), (11)

where ÎMX(j) is an estimate of the information rate of the speech
production channel, which does not depend on a specific realization
of X(j, t) or Y (j, t), and I is in the units of bits per second.

The moments in (10) needed to compute Ilow(X(j, t);Y (j, t))
are estimated using a causal moving-average filter. For example,
E[X(j, t)] is estimated according to

µ̂X(j, t) =
1

α

t∑
τ=t−α+1

X(j, τ). (12)

We use α = 30 which corresponds to an analysis window of 768 ms.
Although a larger value ofα could be used to reduce the variance and
bias of µ̂X(j, t), α > 30 would also limit the ability of the algorithm
to account for non-stationary distortions.

Lastly, an energy-based voice activity detection algorithm with
a 40 dB threshold is applied to locate silent frames in x(i) and y(i).
For the silent frames, we set Ilow(X(j, t);Y (j, t)) = 0 before ap-
plying (11). This is reasonable because no information is transferred
when either x(i) or y(i) is silent.

4. PRODUCTION NOISE ESTIMATION

By definition it is impossible to generate a production noise signal
separately from a speech signal. This means that production noise
cannot be observed directly. However, it is possible to estimate pro-
duction noise using an ensemble of time-aligned speech signals.

Consider an ensemble of N acoustic speech signals where each
speech signal is produced by a different talker and where each signal
is composed of the same sequence of speech sounds where the du-
ration of each speech sound is the same for each talker. This means
that each speech signal contains the same linguistic information at
each unit of time. Consequently,M is the same for all signals in the
ensemble. Production noise can then be estimated by considering
the variability of each TF unit over the ensemble.

More concretely, (1) is applied to all signals in the ensemble to
recover their internal representations. We denote the resulting data
Xn(j, t), where n is the talker index. Using (5) and the fact that P
is zero mean, the production noise for each TF unit of each talker is
estimated according to

P̂n(j, t) = logXn(j, t)− 1

N − 1

∑
l, l6=n

logXl(j, t). (13)

The idea behind (13) is that becauseM is the same for each speech
signal, logM(j, t) can be estimated by taking the expectation
over the ensemble. The expectation can then be subtracted from
logXn(j, t) to obtain Pn(j, t). In practice, the sample mean is used
as an estimator of the expectation. Removing the n’th observation
from the sample mean results in an unbiased estimator of Pn(j, t).
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Fig. 1. The information rate of the speech production channel plotted
against the center frequencies of the J sub-bands.

Next, for each j we define the following 1× TN vectors:

X̃j(t
′) = [logX1(j, 1), . . . , logX1(j, T ), . . . ,

logXN (j, 1), . . . , logXN (j, T )]
(14)

and

P̃j(t
′) = [P̂1(j, 1), . . . , P̂1(j, T ), . . . , P̂N (j, 1), . . . , P̂N (j, T )],

(15)
which are obtained by stacking the TF units from each talker. The
moments in (8) are then estimated according to

σ̂2
logX(j) =

1

TN − 1

∑
t′

(
X̃j(t

′)− 1

TN

∑
s

X̃j(s)

)2

σ̂2
P (j) =

N − 1

N

1

TN

∑
t′

(
P̃j(t

′)

)2
(16)

where σ2
logX = E[(logX)2] − E[(logX)]2, σ2

P = E[P 2], and
ˆ denotes their estimates. Note that the (N − 1)/N factor in the
second equation is a bias reduction factor. The bias exists because
σ2
P is estimated using P̂n(j, t) rather than the true production noise
Pn(j, t).

For our experiment, we used data from the CHAINS speech
corpus [25]. This corpus includes easy reading material spoken by
N = 36 talkers consisting of 18 females, and 18 males. A dynamic
time warping algorithm [26] was applied to all signals to ensure that
M was constant over the ensemble. Figure 1 plots our measurement
of ÎMX(j) = − 1

2
log(1 − ρp(j)2), which was obtained using (8)

and (16). Note that ÎMX(j) can be interpreted as a band-importance
function [17].

5. EVALUATION

We now present our evaluation of the proposed intelligibility metric.
This includes a description of two listening tests and the correspond-
ing results.

5.1. Experimental procedures

The performance of the proposed intelligibility metric (I) was evalu-
ated by considering two listening experiments. The first experiment
involved ITFS processed speech (ITFSS), and the second involved
speech corrupted by additive noise (ANS).

Three competing intelligibility predictors were also evaluated as
reference: STOI [7], the lower-bound speech intelligibility mutual
information metric (SIMI) [14], and the k-nearest neighbour mutual
information metric (MI-KNN) [15]. For all intelligibility metrics,
the implementation was provided by the original authors with the
parameters described in the accompanying papers.
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Fig. 2. Scatter plots between listening test scores for ITFSS against
the proposed measurement of information (left) and STOI (right).
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Fig. 3. Scatter plots between listening test scores for ANS against
the proposed measurement of information (left) and STOI (right).

5.1.1. Listening test data

The intelligibility data for the ITFSS experiment was obtained from
a listening test conducted by Kjems et al. [27]. The speech signals
were selected from the Dantale II corpus [28] and degraded by four
types of additive noise: speech-shaped noise, cafeteria noise, noise
from a bottling factory hall, and car interior noise, at three different
speech-to-noise ratios (SNR): 20% and 50% of the speech reception
threshold and -60 dB. Two types of binary mask were applied to the
degraded signals: an ideal binary mask, and a target binary mask.
Fifteen normal-hearing listeners participated in the listening test. For
a full description of the listening test conditions and the binary mask
parameters, see [27].

The intelligibility data for the ANS experiment was also ob-
tained from [27]. Using the same speech signals and noise sources as
the ITFSS experiment, we generated noisy speech signals with SNRs
ranging from -20 dB to 0 dB in steps of 1.25 dB. The correspond-
ing listening test intelligibility scores were obtained by sampling the
psychometric functions derived in [27] for each noise source at the
appropriate SNR values. See [14], which used the same technique.

5.1.2. Performance measures

The performance of the intelligibility metrics was evaluated using
two figures of merit: the correlation coefficient, ρ, and Kendall’s tau
coefficient [29], τ . To use ρ effectively, the relationship between in-
strumental intelligibility scores and listening test scores needs to be
linear (see [7]). For the proposed intelligibility metric the relation-
ship was linearized using the function [30]

s = 100
(
1− 10−aI

)b
, (17)

where s is the predicted listening test score (percentage of words
correct), and a and b are free parameters. The free parameters are
functions of the speech corpus and reflect the difficulty of the speech
material. A non-linear least squares procedure was applied to es-
timate a and b from the data. For the other intelligibility metrics,

Table 1. The performance of the proposed intelligibility metric (I)
and three reference metrics. Left: ITFSS. Right: ANS.

I MI-
KNN

SIMI STOI I MI-
KNN

SIMI STOI

ρ 0.96 0.88 0.95 0.96 0.99 0.87 0.97 0.97
τ 0.82 0.72 0.82 0.83 0.91 0.70 0.86 0.83

denoted d, the mapping function of the original authors was used:

s =
100

1 + ead+b
. (18)

As pointed out in [15], linearizing the relationship can decrease
the transparency of the results. Thus, we also compute τ , which does
not require a linear relationship.

5.2. Results

Figure 2 and Figure 3 plot the listening test scores against the pro-
posed intelligibility metric and STOI for each experiment. The map-
ping functions (17) and (18) are also included. The plots show that
there is a strong relationship between listening test scores and the
proposed intelligibility metric. Observe that with the ANS exper-
iment, there are four distinguishable relationships for STOI. This
shows that STOI scores are sensitive to the noise source. This is also
true for the proposed metric, but to a lesser degree.

The performance results of the proposed intelligibility metric
and the reference metrics are summarized in Table 1. We see that
the proposed metric has good performance in all categories.

Note that like the proposed metric, SIMI also includes a satu-
ration threshold. However, the threshold in SIMI was heuristically
motivated whereas in our work channel saturation is a natural conse-
quence of production noise. A further difference is that the threshold
in SIMI is the same for each sub-band channel, but saturation for the
proposed metric depends on the sub-band j.

6. DISCUSSION & CONCLUSION

We have developed a new intelligibility metric motivated by a sim-
ple model of speech communication. The model consists of a speech
production channel and an environmental channel. We measured
the saturation level of the speech production channel and used this
knowledge to estimate the amount of information shared between a
talker and a listener. Our evaluation showed that the proposed mea-
sure of information has a strong monotonic relationship with listen-
ing test scores.

A limitation of this work is the assumption that the frequency
sub-bands are statistically independent. In practice we have found
that this is not the case. Our preliminary experiments suggest that
accounting for frequency dependencies could reduce the given in-
formation rate by as much as a factor of 4. This would give a max-
imum information rate of approximately 150 b/s, which is closer to
the linguistic information rate of speech than previous measures (see
[31]).

In Section 2.2.1 we assumed that log(X) follows a Gaussian
distribution and in Section 2.2.2 we assumed that X follows a chi
distribution. We adopted this parametric approach for the sake of
mathematical tractability. In practice, neither distribution fits the
data perfectly, but this does not pose a problem when the perfor-
mance of the proposed intelligibility metric is considered.
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