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ABSTRACT

Here we propose FastFCA-AS, an accelerated algorithm for Full-

rank spatial Covariance Analysis (FCA), which is a robust audio

source separation method proposed by Duong et al. [“Under-

determined reverberant audio source separation using a full-rank

spatial covariance model,” IEEE Trans. ASLP, vol. 18, no. 7,

pp. 1830–1840, Sept. 2010]. In the conventional FCA, matrix inver-

sion and matrix multiplication are required at each time-frequency

point in each iteration of an iterative parameter estimation algorithm.

This causes a heavy computational load, thereby rendering the FCA

infeasible in many applications. To overcome this drawback, we

take a joint diagonalization approach, whereby matrix inversion and

matrix multiplication are reduced to mere inversion and multiplica-

tion of diagonal entries. This makes the FastFCA-AS significantly

faster than the FCA and even applicable to observed data of long

duration or a situation with restricted computational resources. Al-

though we have already proposed another acceleration of the FCA

for two sources, the proposed FastFCA-AS is applicable to an arbi-

trary number of sources. In an experiment with three sources and

three microphones, the FastFCA-AS was over 420 times faster than

the FCA with a slightly better source separation performance.

Index Terms— Microphone arrays, source separation, joint di-

agonalization.

1. INTRODUCTION

Duong et al. [1] have proposed a robust audio source separation

method, which is called Full-rank spatial Covariance Analysis

(FCA) in this paper. The FCA performs source separation by us-

ing the multichannel Wiener filter optimal in the Minimum Mean

Square Error (MMSE) sense. To design the multichannel Wiener

filter properly, it is crucial to accurately estimate the covariance ma-

trices of the source signals. In the FCA, these covariance matrices

are estimated from the observed signals by the maximum likelihood

method based on the Expectation-Maximization (EM) algorithm. A

major drawback of the FCA is expensive computation. Indeed, the

above EM algorithm involves inversion and multiplication of covari-

ance matrices at each time-frequency point in each iteration. Since

each of these matrix operations requires computation of complex-

ity O(I3) (I : the matrix order) and the number of time-frequency

points is normally huge, the FCA suffers from a heavy computa-

tional load. This may render the FCA inapplicable to observed

data of long duration or a situation with restricted computational re-

sources, such as hearing aids, distributed microphone arrays, online

speech enhancement, etc.

In the two-source case, the above issue is addressed by a re-

cently developed accelerated algorithm for the FCA based on joint

diagonalization by the generalized eigenvalue problem [2, 3]. This

method exploits the well-known property that, for diagonal matri-

ces, matrix inversion and matrix multiplication are reduced to mere

inversion and multiplication of diagonal entries. Owing to this prop-

erty, the joint diagonalization reduces the computational complexity

of matrix inversion and matrix multiplication from O(I3) to O(I).
Consequently, the computation time of the FCA is curtailed signif-

icantly. However, this method has a significant drawback of being

only applicable to two sources. Hence, we hereafter refer to this

method as FastFCA-TS (Fast FCA for Two Sources).

To accelerate the FCA even when the number of sources exceeds

two, here we propose FastFCA-AS (Fast FCA for an Arbitrary num-

ber of Sources). Since joint diagonalization based on the generalized

eigenvalue problem is inapplicable to such a case, we introduce an

alternative way of joint diagonalization. Specifically, joint diagonal-

ization of the covariance matrices of the source signals is realized

by maximum likelihood estimation of a basis-transform matrix for

joint diagonalization and the diagonalized covariance matrices. We

propose a hybrid algorithm combining the EM algorithm and the

fixed point iteration for the maximum likelihood parameter estima-

tion. Consequently, the proposed FastFCA-AS leads to significantly

accelerated source separation even when the number of sources ex-

ceeds two.

We follow the following conventions in this paper. Signals are

represented in the Short-Time Fourier Transform (STFT) domain,

where the time and the frequency indices are denoted by n and f

respectively. The number of frames is denoted by N , and the num-

ber of frequency bins up to the Nyquist frequency by F . 0 denotes

the column zero vector of an appropriate dimension, I the identity

matrix of an appropriate order, diag(α) the diagonal matrix whose

diagonal entries are given by the vector α, (·)T transposition, (·)H

Hermitian transposition, tr(·) the trace, and det(·) the determinant.

‘α , β’ means that α is defined by β.

The rest of this paper is organized as follows. Section 2 for-

mulates the source separation problem we deal with in this paper.

Section 3 reviews the conventional FCA. Section 4 describes the

proposed FastFCA-AS. Section 5 describes experimental evaluation,

and finally Section 6 concludes this paper.

2. PROBLEM FORMULATION

Suppose J source signals are observed by I microphones. Let

yi(n, f) ∈ C denote the observed signal at the ith microphone and

y(n, f) ,
[
y1(n, f) y2(n, f) . . . yI(n, f)

]T
the observed

signals at all I microphones. We model y(n, f) by the sum of

J components xj(n, f) (j = 1, 2, . . . , J) corresponding to the

J source signals: y(n, f) =
∑J

j=1
xj(n, f). The components

xj(n, f) (j = 1, 2, . . . , J) are called source images. The source
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separation problem we deal with in this paper is one of estimating

xj(n, f) (j = 1, 2, . . . , J) from y(n, f).

3. FCA: FULL-RANK SPATIAL COVARIANCE ANALYSIS

3.1. Full-Rank Spatial Covariance Model

The FCA assumes that xj(n, f) (j = 1, 2, . . . , J ;n = 1, 2, . . . , N ; f =
1, 2, . . . , F ) independently follow the zero-mean complex Gaussian

distribution:

p(xj(n, f)) = N (xj(n, f); 0,Rj(n, f)). (1)

Here, N (α;m,R) denotes the complex Gaussian distribution with

mean m and covariance matrix R for a random vector α, and

Rj(n, f) denotes the covariance matrix of xj(n, f). Importantly,

Rj(n, f) is assumed to be parametrized as

Rj(n, f) = vj(n, f)
︸ ︷︷ ︸

power spectrum

× Sj(f)
︸ ︷︷ ︸

spatial characteristics

, (2)

where Sj(f) models the spatial characteristics of the jth source sig-

nal, and vj(n, f) the power spectrum of the jth source signal. The

matrix Sj(f) is called a spatial covariance matrix, and assumed to

be Hermitian, positive definite (and thus full-rank). The parameter

vj(n, f) is assumed to be positive.

3.2. Maximum Likelihood Estimation of Model Parameters

Once the model parameters Sj(f) and vj(n, f) have been obtained,

the source image xj(n, f) can be estimated, e.g., by the MMSE es-

timator (also known as the multichannel Wiener filter):

x̂j(n, f) = Rj(n, f)

(
J∑

k=1

Rk(n, f)

)
−1

y(n, f), (3)

where Rj(n, f) is given by (2). Since the parameters Sj(f) and

vj(n, f) are not known a priori, they are estimated from the ob-

served signals by the maximum likelihood method. This amounts to

solving the following optimization problem:

max
Θ

L1(Θ) s.t. Sj(f) ≻ 0, vj(n, f) > 0. (4)

Here, Θ denotes the ensemble of the parameters Sj(f) (j =
1, 2, . . . , J ; f = 1, 2, . . . , F ) and vj(n, f) (j = 1, 2, . . . , J ;n =
1, 2, . . . , N ; f = 1, 2, . . . , F ) , and L1(Θ) the log-likelihood func-

tion:

L1(Θ) ,
N∑

n=1

F∑

f=1

lnN

(

y(n, f); 0,
J∑

j=1

vj(n, f)Sj(f)

)

. (5)

‘A ≻ 0’ means that A is a positive definite Hermitian matrix.

3.3. Expectation-Maximization Algorithm

The FCA realizes the maximum likelihood estimation by the EM

algorithm [4], in which an Expectation step (E-step) and an Maxi-

mization step (M-step) are iterated alternately.

In the E-step, the current estimates of the parameters Sj(f) and

vj(n, f) are used to update the posterior probability p(xj(n, f) |
y(n, f)) of xj(n, f), which turns out to be a complex Gaussian dis-

tribution again:

p(xj(n, f) | y(n, f)) = N (xj(n, f);µj(n, f),Φj(n, f)), (6)

where µj(n, f) denotes the mean and Φj(n, f) the covariance

matrix. Therefore, the E-step amounts to updating µj(n, f) and

Φj(n, f). This is done by the following update rules:

µj(n, f)← Rj(n, f)

(
J∑

k=1

Rk(n, f)

)
−1

y(n, f), (7)

Φj(n, f)← Rj(n, f)−Rj(n, f)

(
J∑

k=1

Rk(n, f)

)
−1

Rj(n, f),

(8)

where Rj(n, f) is given by (2). Note that (7) coincides with the

MMSE estimator in (3).

In the M-step, the estimates of the parameters Sj(f) and

vj(n, f) are updated using µj(n, f) and Φj(n, f) obtained in

the E-step. The update rules are as follows:

vj(n, f)←
1

I
tr
(

Sj(f)
−1(µj(n, f)µj(n, f)

H +Φj(n, f))
)

,

(9)

Sj(f)←
1

N

N∑

n=1

1

vj(n, f)
(µj(n, f)µj(n, f)

H +Φj(n, f)).

(10)

3.4. Drawback

A major drawback of the FCA is expensive computation. Indeed,

each iteration of the above EM algorithm requires matrix inversion

and matrix multiplication at each time-frequency point as seen from

(7) and (8). Indeed, each iteration requires (J + N)F matrix in-

versions and 2JNF matrix multiplications. For example, for the

experimental setting in Section 5: I = J = 3; N = 249; F = 512,

the number of matrix inversions is (J + N)F = 129024 per itera-

tion, and the number of matrix multiplications is 2JNF = 764928
per iteration.

4. FASTFCA-AS: ACCELERATED FCA FOR AN

ARBITRARY NUMBER OF SOURCES

4.1. Approach: Joint Diagonalization

This section describes the proposed FastFCA-AS, an accelerated

version of the FCA applicable to an arbitrary number of sources.

The FastFCA-AS exploits the well-known fact that, for diagonal

matrices, matrix inversion and matrix multiplication are reduced

to mere inversion and multiplication of diagonal entries, which are

both of complexity O(I) instead of O(I3). This implies that, if

Rj(n, f) (j = 1, 2, . . . , J) were all diagonal, matrix inversion and

matrix multiplication in (7) and (8) would be reduced to mere in-

version and multiplication of diagonal entries. However, elements

of xj(n, f) (that is, the jth source signal observed at different mi-

crophones) are normally mutually correlated, which implies that its

covariance matrix Rj(n, f) has non-zero off-diagonal entries.

This motivates us to consider joint diagonalization of the spatial

covariance matrices Sj(f) (j = 1, 2, . . . , J). That is, we consider

transforming Sj(f) (j = 1, 2, . . . , J) into some diagonal matrices

Λj(f) (j = 1, 2, . . . , J) by a single non-singular matrix P(f) as

follows:






P(f)HS1(f)P(f) = Λ1(f),

· · · · · ·

P(f)HSJ(f)P(f) = ΛJ (f).

(11)



For J = 2 sources, the generalized eigenvalue problem yields

P(f) and Λj(f) that satisfy (11) [5]. In the recently developed

FastFCA-TS [2,3], this approach is employed to accelerate the FCA

without degrading the source separation performance. However, the

FastFCA-TS is limited to the two-source case.

For more than two sources, the generalized eigenvalue problem

based approach is inapplicable. Instead, in the proposed FastFCA-

AS, Sj(f) is assumed to be parametrized as







S1(f) = (P(f)−1)HΛ1(f)P(f)−1,

· · · · · ·

SJ (f) = (P(f)−1)HΛJ(f)P(f)−1.

(12)

(12) is obtained by solving (11) for Sj(f). The parameters P(f),
Λj(f), and vj(n, f) are estimated from the observed signals by the

maximum likelihood method. This makes it possible to accelerate

the FCA even for more than two sources.

4.2. Objective Function

The maximum likelihood method amounts to solving the following

optimization problem:

max
Ψ

L2(Ψ)

s.t. P(f) ∈ GL(I,C),Λj(f) ≻ 0: diagonal, vj(n, f) > 0. (13)

Here, Ψ denotes the ensemble of the parameters P(f) (f =
1, 2, . . . , F ), Λj(f) (j = 1, 2, . . . , J ; f = 1, 2, . . . , F ), and

vj(n, f) (j = 1, 2, . . . , J ;n = 1, 2, . . . , N ; f = 1, 2, . . . , F ).
L2(Ψ) denotes the log-likelihood function:

L2(Ψ) ,
N∑

n=1

F∑

f=1

lnN

(

y(n, f); 0,

J∑

j=1

vj(n, f)(P(f)−1)H
Λj(f)P(f)−1

)

.

(14)

GL(I,C) denotes the set of the non-singular complex matrices of

order I .

4.3. Optimization Algorithm

The FastFCA-AS realizes the maximum likelihood estimation by a

hybrid algorithm combining the EM algorithm and the fixed point

iteration. In this algorithm, the following two steps are alternated:

1. Update Λj(f) (j = 1, 2, . . . , J ; f = 1, 2, . . . , F ) and

vj(n, f) (j = 1, 2, . . . , J ;n = 1, 2, . . . , N ; f = 1, 2, . . . , F )
by applying one iteration of the EM algorithm.

2. Update P(f) (f = 1, 2, . . . , F ) by the fixed point iteration.

4.3.1. EM-Based Λj(f) and vj(n, f) Update

The EM-based Λj(f) and vj(n, f) update consists of the E-step and

the M-step described in the following.

In the E-step, the posterior probability p(xj(n, f) | y(n, f)) of

xj(n, f) (j = 1, 2, . . . , J ;n = 1, 2, . . . , N ; f = 1, 2, . . . , F ) is

updated based on the current parameter estimates. As in the con-

ventional FCA, p(xj(n, f) | y(n, f)) turns out to be a complex

Gaussian distribution given by (6) with the mean µj(n, f) given by

(7) and the covariance matrix Φj(n, f) by (8). Unlike the FCA,

however, Rj(n, f) in (7) and (8) is given by

Rj(n, f) = vj(n, f)(P(f)−1)H
Λj(f)P(f)−1

. (15)

Substitution of (15) into (7) and (8) yields

P(f)H
µj(n, f)

︸ ︷︷ ︸

µ̃j(n, f)

= vj(n, f)Λj(f)

(
J∑

k=1

vk(n, f)Λk(f)

)
−1

P(f)H
y(n, f)

︸ ︷︷ ︸

ỹ(n, f)

, (16)

P(f)H
Φj(n, f)P(f)

︸ ︷︷ ︸

Φ̃j(n, f)

= vj(n, f)Λj(f)

− vj(n, f)Λj(f)

(
J∑

k=1

vk(n, f)Λk(f)

)
−1

(vj(n, f)Λj(f)).

(17)

Therefore, µ̃j(n, f) and Φ̃j(n, f), basis-transformed versions of

µj(n, f) and Φj(n, f), can be updated by (16) and (17), in which

matrix inversion and matrix multiplication are of complexity O(I)
instead of O(I3) owing to the joint diagonalization.

In the M-step, vj(n, f) (j = 1, 2, . . . , J ;n = 1, 2, . . . , N ; f =
1, 2, . . . , F ) and Λj(f) (j = 1, 2, . . . , J ; f = 1, 2, . . . , F ) are up-

dated based on maximization of the following Q-function:

Q(Ψ) = −
N∑

n=1

F∑

f=1

J∑

j=1

[

ln det
(
vj(n, f)(P(f)−1)H

Λj(f)P(f)−1
)

+ tr
(

(vj(n, f)Λj(f))
−1
(
Φ̃j(n, f) + µ̃j(n, f)µ̃j(n, f)

H
))
]

.

(18)

Partial differentiation with respect to vj(n, f) and Λj(f) leads to

the following update rules:

vj(n, f)←
1

I
tr
(

Λj(f)
−1(diag(|µ̃j(n, f)|

2) + Φ̃j(n, f))
)

,

(19)

Λj(f)←
1

N

N∑

n=1

1

vj(n, f)
(diag(|µ̃j(n, f)|

2) + Φ̃j(n, f)),

(20)

where | · |2 is computed in an entry-wise manner.

4.3.2. Fixed Point Iteration Based P(f) Update

The basis-transform matrix P(f) (f = 1, 2, . . . , F ) is updated

based on the fixed point iteration applied to the log-likelihood func-

tion (14). Partial differentiation (the matrix Wirtinger derivative [6])

of (14) with respect to the complex conjugate P(f)∗ of P(f) is

given by

∂L2(Ψ)

∂P(f)∗
= N(P(f)−1)H

−
N∑

n=1

y(n, f)y(n, f)H
P(f)

(
J∑

j=1

vj(n, f)Λj(f)

)
−1

.

(21)



Fig. 1. Experimental setting (bird’s eye view).

Setting (21) to zero and vectorizing both sides of the equation yields

vec(P(f)) =

[

1

N

N∑

n=1

(
J∑

j=1

vj(n, f)Λj(f)

)
−1

⊗
(
y(n, f)y(n, f)H

)

]
−1

vec
(
(P(f)−1)H

)
(22)

owing to the formula vec(AXB) = (BT ⊗ A)vec(X). Here, vec

denotes the operator that stacks the column vectors of the input ma-

trix, and ⊗ the Kronecker product. Noting the block diagonal struc-

ture, we can rewrite (22) as follows:

[P(f)]i ←

[

1

N

N∑

n=1

1
∑J

j=1
vj(n, f)[Λj(f)]ii

y(n, f)y(n, f)H

]
−1

×
[
(P(f)−1)H

]

i
. (23)

Here, [A]i denotes the ith column of the matrix A, and [A]il the

(i, l)-entry of the matrix A. The fixed point iteration consists in

iterating (23).

4.4. Advantage

The proposed FastFCA includes only (I + 1)FK matrix inversions

per iteration of the hybrid algorithm and no matrix multiplications,

where K denotes the number of iterations in the fixed point iteration.

Note that, unlike the FCA, the number of matrix inversions does

not depend on N , which is typically large. Here, matrix inversions

and matrix multiplications for diagonal matrices were not counted,

because their computational complexity is O(I) instead of O(I3).
For the experimental setting in Section 5 where K = 1, the number

of matrix inversions is only (I + 1)FK = 2048 per iteration of the

hybrid algorithm.

4.5. Discussion

Here we described the hybrid algorithm combining the EM algo-

rithm and the fixed point iteration. Other optimization techniques

could also be employed. For example, the fixed point iteration for

updating P(f) could be replaced by the gradient method, the natural

gradient method, Newton’s method, etc. We could also employ the

normal EM algorithm, in which P(f) is also updated in the M-step.

Table 1. Experimental conditions.

sampling frequency 16 kHz

frame length 1024 (64 ms)

frame shift 512 (32 ms)

window square root of Hann

number of iterations 20

Fig. 2. Real Time Factor (RTF).

5. EXPERIMENTAL EVALUATION

We conducted a source separation experiment to compare the pro-

posed FastFCA-AS with the FCA [1] (see Section 3). These meth-

ods were implemented in MATLAB (R2013a) and run on an Intel

i7-2600 3.4-GHz octal-core CPU. Observed signals were generated

by convolving 8 s-long English speech signals with room impulse

responses [7] measured in an experiment room. The locations of the

sources and the microphones are depicted in Fig. 1. The reverbera-

tion time RT60 was 130, 200, 250, 300, 370, or 440 ms, and for each

reverberation time, ten trials were conducted with different combi-

nations of speech signals. The parameters were initialized based on

mask-based covariance matrix estimation [8, 9] with the masks ob-

tained by the method in [7]. The source images were estimated using

the multichannel Wiener filter in all algorithms. Some other condi-

tions are found in Table 1.

Figure 2 shows the Real Time Factor (RTF) of the parameter es-

timation averaged over all ten trials and all six reverberation times,

and Figure 3 shows the Signal-to-Distortion Ratio (SDR) [10] aver-

aged over all three sources and all ten trials. The proposed FastFCA-

AS was over 420 times faster than the FCA with its source separation

performance slightly better than the FCA.

6. CONCLUSIONS

In this paper, we have proposed the FastFCA-AS, an accelerated al-

gorithm for the FCA. Compared to the conventional FastFCA-TS,

the FastFCA-AS has a major advantage of being applicable to not

only two sources but also more than two sources.

Fig. 3. Signal-to-Distortion Ratio (SDR).
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