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ABSTRACT

We propose a method of head-related transfer function (HRTF)
interpolation from sparsely measured HRTFs using an autoencoder
with source position conditioning. The proposed method is drawn
from an analogy between an HRTF interpolation method based on
regularized linear regression (RLR) and an autoencoder. Through
this analogy, we found the key feature of the RLR-based method that
HRTFs are decomposed into source-position-dependent and source-
position-independent factors. On the basis of this finding, we de-
sign the encoder and decoder so that their weights and biases are
generated from source positions. Furthermore, we introduce an ag-
gregation module that reduces the dependence of latent variables on
source position for obtaining a source-position-independent repre-
sentation of each subject. Numerical experiments show that the pro-
posed method can work well for unseen subjects and achieve an in-
terpolation performance with only one-eighth measurements compa-
rable to that of the RLR-based method.

Index Terms— head-related transfer functions, deep neural net-
works, autoencoder, hypernetworks, spatial audio

1. INTRODUCTION

Recently, demand for high-quality spatial audio technology has in-
creased with the spread of virtual/augmented reality technology. One
of the spatial audio methods is the binaural method, which is based
on listening with headphones. Binaural signals are synthesized by
convolving the head-related transfer function (HRTF), which repre-
sents the transfer characteristics from the sound source to both ears,
into a sound source signal. HRTFs depend on the anatomy of a sub-
ject (e.g., pinna shape), which vary greatly from subject to subject.
Hence, using somone else’s HRTF leads to poor localization of a
sound image [1]. Therefore, the ideal binaural synthesis requires
the subject’s own HRTFs. However, measuring HRTFs takes a long
time because HRTFs are measured by sequentially recording im-
pulse responses from hundreds of source positions in a dense grid
on a sphere. This measurement typically takes 60 to 90 minutes per
subject [2]. Long-time measurements are burdensome for subjects,
making it difficult to measure their own HRTFs nonrigorously.

One way to reduce this long measurement time is HRTF interpo-
lation, which refers to spatial upsampling from sparsely measured
HRTFs to dense HRTFs. The fewer the number of observation
positions, i.e., source positions, the shorter the measurement time.
Typical HRTF interpolation methods use bases in the spatial do-
main, such as spherical harmonic functions [3–5], spherical wave-
functions [6], and spatial principal components [7]. As shown in
Sect. 3, these methods amount to solving regularized linear regres-
sion (RLR) problems. Thus, when the measured HRTFs are spatially
very sparse, we are forced to solve underdetermined problems or to

use a small number of bases, which degrades interpolation accuracy,
as we will show later in Sect. 5. Therefore, these methods require
somewhat dense HRTFs for high-precision interpolation and thus do
not contribute to a significant reduction in measurement time.

One approach to overcome this difficulty is a training-based ap-
proach. The use of deep neural networks (DNNs) has shown promis-
ing results for HRTF-related tasks such as real-time binaural synthe-
sis [8,9], HRTF range extrapolation [10], and HRTF regression from
anthropometric features [11–15] or ear images [16]. An HRTF in-
terpolation method using a shallow neural network (NN) has been
proposed [17]. The network estimates an HRTF magnitude at a tar-
get source position from an HRTF magnitude measured at the nearest
source position. These successes led us to use a DNN.

We propose a method of interpolating dense HRTF magnitudes
from sparse measurements based on an autoencoder conditioned on
source positions. The proposed method is drawn from our finding
that the RLR-based method can be interpreted as an autoencoder,
which we will show in Sect. 4. This finding reveals that the key fea-
ture of the RLR-based method is to convert measured HRTFs into
a subject representation independent of source positions by using
source-position-dependent basis expansions. Inspired by this fea-
ture, we design our network architecture such that only the encoder
and decoder, not the latent variables, depend on source positions.
We also construct a loss function based on cosine distances between
the latent variables of each subject at different source positions. The
proposed model architecture and loss function promote the latent
variables to capture the HRTF individuality of each subject.

2. PROBLEM STATEMENT

As in [6], we define HRTF as an acoustic transfer function from the
sound source to both ears. HRTFs for each ear depend on the phys-
ical features of the subject and the position of the sound source. Let
ps,b,ch,l ∈ C denote the HRTF for subject s ∈ {1, . . . , S}, source
position b ∈ {1, . . . , B} =: B, channel ch ∈ {left, right}, and fre-
quency bin l ∈ {1, . . . , L}, where S is the number of subjects, B
is the number of source positions, and L is the number of frequency
bins. The HRTF interpolation problem of our interest is formulated
as the problem of estimating spatially dense HRTFs {ps,b,ch,l}b∈B
from spatially sparse HRTFs {ps,b,ch,l}b∈B′ , where B′ ⊂ B. Let
B′ := |B′|. To distinguish b ∈ B′ from b ∈ B, we call the former
measurement position and the latter target position.

To describe sound source positions, we use three-dimensional
Cartesian xb := (xb, yb, zb) or spherical coordinates (rb, θb, φb)
with the origin fixed at the center of the subject’s head, where
rb, θb, and φb denote the radius, azimuth angle, and zenith an-
gle, respectively. The +x and +z directions of the Cartesian
coordinate system are set to the direction of the subject’s view
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Fig. 1. (a) Overview of the proposed model. (b) Structure of the encoder. The weight/bias generators output the weights and biases for the
linear layers enclosed by dashed lines. (c) Structure of the decoder. (d) Structure of the weight/bias generators.

and the top of the head, respectively. Cartesian coordinates
xb and spherical coordinates (rb, θb, φb) are related by xb =
(rb sin θb cosφb, rb sin θb sinφb, rb cos θb).

3. REGULARIZED-LINEAR-REGRESSION-BASED
METHOD

We briefly review the HRTF interpolation method based on spherical
wavefunction expansions proposed in [6]. For simplicity, we drop
the subscripts s and ch from ps,b,ch,l; thus, we use pb,l in the follow-
ing. On the basis of the reciprocity [18], an HRTF can be regarded
as an acoustic transfer function from a sound source placed at the ear
to a microphone placed at an original source position. Therefore, the
HRTFs can be regarded as the exterior sound field satisfying the ho-
mogeneous Helmholtz equation. Such a sound field is approximately
represented by the spherical wavefunction expansion as

pb,l '
N∑

n=0

n∑
m=−n

Cn,m,lh
(1)
n (klrb)Y

m
n (θb, φb), (1)

where h(1)
n (·) is the nth-order spherical Hankel function of the first

kind , Y m
n (·) is the spherical harmonic function of order n and de-

gree m, and (rb, θb, φb) is the original source position in the spher-
ical coordinates [19]. kl = 2πfl/v is the lth wave number, where
fl and v are the lth frequency and speed of sound in the air, re-
spectively. Φn,m,b,l := h

(1)
n (klrb)Y

m
n (θb, φb) and Cn,m,l are the

spherical wavefunction and its expansion coefficient, respectively.
N is the truncation order and both sides of (1) are equal asN →∞.

This interpolation method consists of two steps: In the first step,
the expansion coefficients Cn,m,l are estimated, and in the second
step, HRTF pb,l is obtained by substituting the expansion coefficients

Cn,m,l and the target position (rb, θb, φb) into (1). The estimation
of Cn,m,l from HRTFs at B′ is as follows. We can write (1) in a
matrix–vector product form:

pl ' Φlcl, (2)

where pl ∈ CB′
and cl ∈ C(N+1)2 are vectors consisting of pb,l and

Cn,m,l, respectively, and Φl ∈ CB′×(N+1)2 is a matrix consisting
of Φn,m,b,l. For an overdetermined case, i.e., B′ > (N + 1)2, the
estimation problem of cl amounts to the following RLR problem:

minimize
cl∈C(N+1)2

LRLR = ‖pl −Φlcl‖22 + λ
∥∥∥D1/2cl

∥∥∥2
2
, (3)

where λ > 0 is a regularization parameter and D ∈
R(N+1)2×(N+1)2 is a diagonal matrix whose diagonal components
are 1 + n(n+ 1). The minimizer of LRLR is given as

ĉl =
(
ΦH

l Φl + λD
)−1

ΦH
l pl. (4)

Although only overdetermined cases are discussed in [6], (4) is a
reasonable solution for a balanced or an underdetermined case, i.e.,
B′ ≤ (N + 1)2.

4. PROPOSED METHOD

4.1. Motivation and strategy

The RLR-based method described in Sect. 3 works well when a
sufficient amount of measured HRTFs of each subject are avail-
able. However, when measurement positions are spatially sparse,
the RLR-based method can be less accurate. In fact, as we will



show in Sect. 5, the estimated HRTFs from a small number of mea-
sured HRTFs differed from the ground truths in notches and peaks.
Although decreasing the truncation order N stabilizes the estima-
tion performance, it restricts the expressive power of the spherical
wavefunction expansion, which makes it difficult to represent the
fine structure of HRTFs.

To overcome this problem, we focus on our finding that the
RLR-based method can be reinterpreted from a DNN perspective.
As described in Sect. 3, for given B′ with B, the RLR-based
method consists of two linear transformations given by (4) and
(2). Hence, we can interpret the RLR-based method as a linear
autoencoder, where the encoder is a linear layer with weights of(
ΦH

l Φl + λD
)−1

ΦH
l , the decoder is a linear layer with weights

of Φl, and the latent variables are the expansion coefficients. This
analogy reveals the key feature of the RLR-based method. That is,
it decomposes HRTFs into source-position-dependent and source-
position-independent factors, i.e., the spherical wavefunction expan-
sion and expansion coefficients, respectively.

On the basis of this key feature, we propose an HRTF interpo-
lation method using an autoencoder whose encoder and decoder
are conditioned on source positions (see Fig. 1(a)). To obtain a
source-position-independent representation, we introduce an aggre-
gation module between the encoder and decoder, which aggregates
latent variables of measurement points. The proposed autoencoder
operates the estimation in the HRTF magnitude domain, similarly
to DNN-based methods for HRTF-related tasks [13, 15]. To ob-
tain the head-related impulse responses (HRIRs) of the estimated
HRTF magnitudes, we can use a method of assigning a phase to the
HRTF magnitude. For example, a method based on minimum phase
restoration provides the phase similar to that of the original HRTFs
in sound image localization [20].

4.2. Model

Encoder: The encoder converts the logarithmic magnitudes of
measured HRTFs

{
log10

∣∣ps,b,:,:

∣∣}
b∈B′ into the latent variables

{zs,b}b∈B′ , referring to the measurement positions B′ . Here, | · |
denotes an element-wise absolute value. The measured HRTF is pro-
cessed independently for each measurement position, which enables
us to use the proposed method for various numbers of measurement
positions without retraining.

The encoder consists of linear layers conditioned on B′ , layer
normalization (LN) layers, and rectified linear unit (ReLU) layers.
Fig. 1(b) shows the encoder architecture, where Linear, LN, and
ReLU denote the linear layer, LN layer, and ReLU nonlinearity, re-
spectively. The two values in the parenthesis after Linear denote
input and output feature sizes, respectively, and the value in the
parenthesis after LN denotes a feature size. The dimension of la-
tent variables was set to 64. For the conditioning on B′ , we use the
hypernetwork idea [21]. Unlike usual layers, it generates weights
and biases of the linear layers from auxiliary information by a DNN,
which we call a weight/bias generator. Fig. 1(d) shows the archi-
tecture of the weight/bias generator, where d(in) and d(out) denote the
input and output feature sizes of the corresponding linear layer, re-
spectively. As an auxiliary information, we can use measurement
positions in Cartesian coordinates.

Aggregation Module: The aggregation module yields a source-
position-independent representation z̄s, which we call a prototype.
First, this module normalizes zs,b so that its `2 norm is one:

zs,b ← zs,b/‖zs,b‖2. (5)

Second, to reduce the dependence of zs,b on the source position, the
module averages zs,b as

z̄s =
1

B′

∑
b∈B′

zs,b. (6)

Note that the averaging operation is inspired by a few-shot learning
method presented in [22]. Finally, the prototype is normalized as

z̄s ← z̄s/‖z̄s‖2. (7)

Since the prototype no longer depends on b, we can use it as a repre-
sentation of a subject.
Decoder: The decoder converts the prototype into a logarithmic
magnitude of the HRTFs log10

∣∣p̂s,b,:,:

∣∣ at each target position b ∈
B. Fig. 1(c) shows the architecture of the decoder. Similarly to the
encoder, it consists of two linear layers whose weights and biases
are generated from the weight/bias generators, LN layers, and ReLU
nonlinearities. The inputs of the weight/bias generators are target
positions in Cartesian coordinates.

4.3. Loss function

To train the proposed model, we use a loss function L defined as

L = LSD + α CosDist, (8)

where α ≥ 0 is a hyperparameter that controls the importance of
the second term. The first term on the right-hand side of (8) is a
reconstruction error of HRTFs. The second term is expected to make
the latent variable zs,b less dependent on the source positions xb and
instead better represent the characteristics of each subject s. The first
term is the log-spectral distortion (LSD) of HRTFs and is defined as

LSD :=
1

2SB

∑
s,b,ch

√√√√ 1

L

∑
l

(
20 log10

|p̂s,b,ch,l|
|ps,b,ch,l|

)2

, (9)

where p̂s,b,ch,l and ps,b,ch,l denote an estimated and a true element of
HRTFs, respectively. The second term on the right-hand side of (8)
is a measure of nonuniformity of the latent variables zs,b for each
subject s and is given as

CosDist :=

√√√√ 1

SB′

∑
s,b

(
1−

zT
s,bz̄s

‖zs,b‖2‖z̄s‖2

)2

. (10)

5. EXPERIMENTAL EVALUATION

5.1. Experiment condition

5.1.1. Preparation of training, validation, and test data

We conducted numerical experiments of HRTF interpolation to
quantitatively and qualitatively evaluate the effectiveness of the pro-
posed method. To generate training, validation, and test data, we
used the HUTUBS dataset [23,24]. It includes HRIRs of 94 subjects,
excluding duplicates. The HRIRs of each subject were measured at
440 measurement positions on a sphere of radius r = 1.47 m. We
used 77, 10, and 7 subjects to generate training, validation, and test
data, respectively. The HRTFs were obtained from the HRIRs as
follows. First, the HRIRs were resampled at 32 kHz and the filter
length was set to 256 by zero padding. Second, FFT at 256 points
was performed, and after taking the complex conjugate, only the
positive frequency bins were extracted. Finally, HRTFs at 128 fre-
quency bins 125 Hz, 250 Hz, . . . , 16 kHz were obtained.



Table 1. Setting of the RLR-based method [6] used in the experi-
ment. Two regularization parameters and two maximum truncation
orders were used. U and B in the labels indicate that the system was
underdetermined and balanced, respectively.

Label λ N
RLR, RP6, U 10−6 19

RLR, RP6, B 10−6
√
B′ − 1

RLR, RP7, U 10−7 19

RLR, RP7, B 10−7
√
B′ − 1

Fig. 2. LSDs of the proposed and RLR-based methods at various
numbers of measurement positions. Proposed denotes the proposed
method and the remaining labels are summarized in Table 1.

5.1.2. Compared methods

We conducted a preliminary experiment and compared an HRTF in-
terpolation method based on a shallow NN [17] with the RLR-based
method. We found that the RLR-based method greatly outperformed
the shallow-NN-based method in LSD, and we chose the RLR-based
method for comparison. The expansion coefficients were obtained
up to the order of min{deklR/2e , N} for each of the cases where
B′ = 9, 16, . . . , 196 for the subjects in the test data. Here, e is
Napier’s constant and R = 0.45 m. The B′ measurement positions
were obtained by sampling the nearest neighbor points of the points
contained in the spherical t-design [25] with t =

√
B′ − 1 from

the total 440 measurement positions. The HRTFs at 440 target posi-
tions were obtained from the estimated expansion coefficients. As an
evaluation metric, LSD in (9) was calculated. For the regularization
parameter λ and the maximum truncation order N , the four settings
shown in Table 1 were used.

For the proposed method, the logarithmic magnitudes of mea-
sured HRTFs were standardized to have zero mean and a unit vari-
ance before fed into the encoder. The reverse operation of the above
standardization was applied to the decoder outputs. The mean and
variance were determined using the training data.

The proposed model was trained with an Adam optimizer for
1000 epochs. The learning rate was set at 10−3. The LSD for the
validation data was calculated for each epoch, and the model with
the lowest validation LSD was finally selected. During training and
validation, B′ and B were set to 440. For the test data, we varied B′

from 9 to 196. The hyperparameter α was set to one.

5.2. Results and discussion

Fig. 2 shows the LSD of HRTFs at 440 target positions obtained by
the proposed and RLR-based methods. We can see that the LSDs

Fig. 3. Example of magnitude frequency responses of ground truth
and estimated HRTFs with B′ = 9. Ground Truth and Proposed
denote the ground truth and the proposed method, respectively, and
RLR, RP6, B is defined in Table 1.

of the RLR-based methods increased as the number of measurement
positions B′ decreased, i.e., the accuracy decreased, regardless of
whether the system was underdetermined or balanced. On the other
hand, the LSDs of the proposed method were almost similar re-
gardless of B′. Furthermore, the proposed method can interpolate
HRTFs at only B′ = 25 with almost the same accuracy as the RLR-
based method at B′ = 196. Note that the proposed method does not
focus on the situation where HRTFs at a large number of measure-
ment positions are known, although it is expected that the accuracy
of the RLR-based method will exceed that of the proposed method
when the number of measurement positions B′ increases to more
than 196.

Fig. 3 shows magnitude frequency responses of HRTFs estimated
by the RLR-based method and the proposed method for B′ = 9.
The estimated HRTF by the RLR-based method had a greatly dif-
ferent spectral shape from the ground truth. For example, although
the ground truth had the peak in the frequency band between 10 to
12 kHz, the estimate of the RLR-based method did not have such a
peak. In contrast, it can be confirmed that the HRTF estimated by
the proposed method appropriately captured the peaks and notches
of the ground truth, even though the HRTF is from a subject not in-
cluded in the training data. This indicates that the proposed method
can interpolate HRTFs from a small number of measurement posi-
tions more accurately than the RLR-based method.

6. CONCLUSION

We proposed a method of HRTF interpolation from sparsely mea-
sured HRTFs using an autoencoder with source position condition-
ing. The proposed architecture was designed from an analogy be-
tween the RLR-based method and an autoencoder architecture. In-
spired by this analogy, we made the layers of the encoder and de-
coder dependent on source positions. To further reduce this depen-
dence, we introduced a loss function based on cosine distances be-
tween the latent variables at different measurement positions. Nu-
merical experiments showed that the proposed method can work well
for subjects not included in the training data and achieve an interpo-
lation performance with only one-eighth measurements comparable
to that of the RLR-based method.
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