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Abstract—Inter-organizational business processes permit to
specify how different organizations can integrate to carry on busi-
ness activities together. In this context choreography specifica-
tions provide a particularly useful view permitting to define how
different organizations should interact and exchange messages in
order to fruitfully cooperate. Tools and mechanisms permitting to
check that a stakeholder, and its provided e-services, are able to
correctly cooperate according to the global specification become
an important and useful asset. This is particularly true when open
specifications are considered and services dynamically integrate
with each other at run-time.

This paper proposes a novel derivation strategy for test case
skeletons, which can be successively refined and concretized to
check the behaviour of parties willing to play a role within
a choreography enactment. The very basic idea is to derive
test cases from the possible interaction traces included in the
choreography specification handled as a workflow graph. The
selection of traces to use for test derivation purpose is driven
by a specifically conceived technique to work flow refactoring
which permits to reduce the number of interleavings to explore,
in particular when parallel statements are considered.

Index Terms—Service Testing, Service Choreography, Model
Based Testing

I. INTRODUCTION

The Internet was built to support interactions among com-

puting systems several years ago with low-level communica-

tion capabilities and few opportunities for business-oriented

applications. Today the scenario is different: the use of remote

software components (services) has became an indispensable

part of the application logic of business-oriented applications.

This scenario has been partially enabled by the Service Ori-

ented Architecture (SOA) vision, where services can integrate

and collaborate in a loosely coupled way to achieve a col-

lective business objective. Thus a service based application

is no more an isolated service but a complex integration

of remote functionalities provided by different services. This

integration can refer both to an inter-organizational setting,

as for a B2B scenario, and intra-organizational as for ser-

vices supporting internal processes of a single organization.

Orchestration and choreography are two different ways to

organize service integration and to specify the message traffic

among participants. Within a service orchestration scenario

there is a specification (possibly executable) which acts as a

central point of control and it directs the interactions with the

involved service partners. On the other side a choreography

can be considerated merely as a message exchange protocol

among different parties. A choreography does not define any

directly executable specification to coordinate the interactions

among the participants. It just tells a complete multi-party

story so that participants can determine their role by isolating

the parts in which they are involved. The overall objective

of a choreography is typically the provisioning of complex

inter-organizational service based applications which result

from the interoperation of many services provided by different

organizations. Through the participation to a choreography

execution (enactment) each participant aims at reaching a

“personal” objective obviously related to the mission of the

organization. The choreography specification permits to me-

diate among these, possibly diverging, interests and enables a

fruitful integration and cooperation of different parties.

The organizations interested in engaging in the composition

defined by a choreography specification should respect the

established rules as both in terms of business objectives (high

level description of a choreography), and from a technological

point of view (low level description in terms of messages

exchange). Partners are typically involved in choreography

enactments through provided services that are distributed both

physically and temporarily, with service participants entering

in and exiting from a choreography. Thus, it is easy to realize

that interoperability becomes a real challenge.

Testing can be a useful technique to reduce the risk of in-

teroperability issues. Considering that a service can participate

to choreographies possibly defined after service deployment, it

becomes evident that it is not possible to test a service as part

of a “traditional” development process where the source code

is often available. On the other side we are in urgent need

of testing techniques driven by choreography specifications.

As for any integration specification test cases which seem

able to identify possible issues are those related to interac-

tions spanning over many different elements (participants in

our case) of the composition. While using model checking

techniques to check the possible interactions can seem a good

solution, it easily suffers by the state-explosion problem. Our

objective has been to derive a testing strategy that, taking in

input a choreography specification, it is able to derive skeleton

test cases for the different participants, or subset of them, in



order to check if a given service would able to play a role

within a choreography enactment. The element of novelty of

our approach is considering dependencies we defined among

interleavings to select just traces we consider ”good” to create

tests, instead of generating all as a standard model-checking

approach would do.

We start our paper describing in Section VI some works

related to this strategy and in Section II some preliminar

notions about BPMN2 and message dependencies. Section

III shows the overall reduction strategy showing the main

algorithm that we refine in Section IV. In Section V we

complete the strategy adding testing consideration and Section

VII closes the work and discuss future improvements.

II. PRELIMINARIES

A. Choreography specification with BPMN2

The Business Process Modeling Notation (BPMN2) is the

de-facto standard for specifying processes at an high level of

abstraction and it can be used to provide a representation of

processes within a single organization or several cooperating

organizations. The notation includes diagrams to describe pro-

cesses and a diagram for choreography specification in which

the diagram elements describe the exchange of messages

among participants and their possible flow. A Process diagram

describes a sequence of Activities within an organization with

the objective of describing a workflow of a single subject,

while a Choreography diagram (and Collaboration diagrams

in general) models the interactions among processes activated

by different organizations. In this new setting Processes are

related to Participants that can be involved in a choreography

according also to their internal process. A Choreography

diagram formalizes the way in which different participants

coordinate the exchange of messages leading to the completion

of the overall workflow, respecting to the local workflows

of each individual participant. A single interaction between

two participants can be described by a ChoreographyTask

(”CT” for short). A choreography describes then the order

in which the ChoreographyTasks can be executed. CTs can

be arranged to be executed sequentially or in parallel and

following conditional statements through the use of gateways.

BPMN2 allows to define interactions without specifing data

related information. Conditional flows can be represented as

non-deterministic choices and external notations can be used

to add additional information. In this paper we provide a

strategy for deriving test skeletons starting from a BPMN2

specification. Skeletons structures highlight relevant interac-

tion sequences and can be refined to concrete tests adding

details about data to be used.

B. Handling message dependencies

In testing services involved in choreography enactments we

should focus on possible interaction sequences that can affect

the internal state of a participant and then the global behaviour

of the composition. A way to know how an interaction could

change the internal state of a service is to derive the flow

of messages exchanged with the other participants according

to the choreography specification. Assuming that in general

messages received from a sender can alter the internal behavior

of the receiver, we say that there is a potential message

dependency between them. Our approach intends to identify

those interaction traces which are foreseen by the choreogra-

phy specification, and that can lead to different behaviour of

the involved services. In this respect, the algorithm does not

explore those traces which can identify a different interleaving

of the exchanged messages but nevertheless does not lead to

a possible different behaviour for the involved services.

For instance in Figure 1, we consider a BPMN ParallelGate-

way with two CTs executed concurrently named a and b. Two

different execution traces are possible: one in which a follows

b, and the other in which b follows a. In subfigure (a) the two

possible execution traces of the CTs are not equivalent because

there is a potential message dependency in the participant

P2 that can be altered by the messages sent by P1. We are

interested in this situation to produce a suitable test skeleton

which can highlight a potential issue in the involved services.

Conversely, execution traces in subfigure (b) are equivalent

as the participants do not affect each other. In this case we

can select one of them as representative for the concurrent

execution and build a single skeleton accordingly.
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Fig. 1. Execution orders of a ParallelGateway (CT symbols shows the receiver
participant in gray)

In the following, we will use the notation sender(CT)

and receiver(CT) to indicate respectively the participant that

sends/receives a message in a given CT , and (a, b, . . . , n)
to describe the execution trace of CT a followed by CT b,

followed by other CTs and finally by CT n. We have identified

different patterns of how dependency between parallel CTs

may occur and lead to possible issues which we want to test.

Each pattern, taken individually, produces a different number

of execution traces:

• ”no dependency”. This case relates to a flow in which

there are no message dependencies, as shown in Figure

2(a). Here, respecting the flow which impose that CT b

must be executed after CT a and that CT d after CT

c, there are six possible execution traces. Nevertheless

our strategy returns just one of them that becomes the

representative one. The tasks order is considered not

relevant since the CTs do not affect each other.

• ”receiver-sender” pattern. This case relates to a flow in

which receiver(CT ) = sender(CT ′) with CT and CT ′

belonging to different branches of a parallel statement.

This situation is depicted in Figure 2(b). In this case

the two possible orders (a, b) and (b, a) will be both

considered to generate the test skeletons.



• ”same-receiver” pattern. This case relates to a flow

in which receiver(CTi) = receiver(CTj) =
sender(CT ′) where i 6= j ∧ i, j ∈ {1..n}. This situation

is depicted in Figure 2(c) where CTs orders (a, f, g), (f,

a, g), (f, g, a), (a, g, f) and (g, f, a) are different orders,

all considered relevant for testing derivation purpose.

Whereas the order (g, a, f) is equivalent to (g, f, a)(already

considered) and we can omit it.

• ”closed chain” pattern. This case relates to a flow in

which some participants are ”sender” and ”receiver”

in different CTs so to create a cycle of send-receive

relation. The strategy will consider in this case as many

orders as the number of tasks. This situation is depicted

in Figure 2(d) where sequences (a, b, e), (b, e, a) and (e,

a, b) are considered different traces. Whereas the order

(e, b, a) is equivalent to (e, a, b) (already considered) and

we can omit it.
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Fig. 2. a) Concurrency of CTs without dependencies; (b) ”receiver-sender”;
(c) ”same-receiver”; (d) ”chain” of dependency. Participant are labeled with
symbols to show dependencies they belong to.

III. THE PARTES STRATEGY

A service that intends to play a role should be tested

considering the possible integration scenarios foreseen by the

choreography definition. Taking as input a BPMN2 choreogra-

phy specification, the PARTES (PARticipant TESting) strategy

returns test case skeletons suitable to assess if a service can

correctly behave when integrated with others.

Our strategy, according to the message dependency defined

above, aims to reduce BPMN2 ParallelGateway statements

to BPMN2 ExclusiveGateway statements which include CTs

execution traces allowed by the original choreography respect-

ing all the dependencies above defiend. These orders will

be re-organized in a tree data structure (interaction tree) in

which each root-leaf path will represent a possible complete

choreography execution trace used to derive test skeletons.

This section explains how we reduce nested gateways to

simplify the wokflow structure while next section will provide

an overview of the reduction of a single ParallelGateway that

requires to handle message dependency.

Our reduction strategy considers the choreography speci-

fication in a formal and technologic-independent way as a

Workflow Graph [1]. A workflow graph G = (N,T ) is a

simple directed acyclic graph (DAG) where N is a finite set of

nodes and T is a finite set of transitions, representing directed

edges between two nodes. In this structure for each transition

t ∈ T we define the two mappings fromNode[t] and

toNode[t] which return the incoming node and the outgoing

node of the transition t respectively. Moreover, for each node

n ∈ N we have:

• nodeType[n] ∈ {TASK,OR,PARALLEL} repre-

sents the type of a node. TASK stands for a Choreogra-

phyTask, while OR and PARALLEL stand respectively

for ExclusiveGateways (decision point) and ParallelGate-

ways [2].

• OutTrans[n] = {t : t ∈ T ∧ fromNode[t] = n} and

InTrans[n] = {t : t ∈ T ∧ toNode[t] = n} are the sets

of outgoing and incoming transitions to/from n

• OutNodes[n] = {m : m ∈ N ∧ ∃t ∈ T

s.t. (fromNode[t] = n ∧ toNode[t] = m)} and

inNodes[n] = {m : m ∈ N ∧ ∃t ∈ T s.t. (toNode[t] =
n ∧ fromNode[t] = m)} are the sets of succeeding/pre-

ceding nodes that are adjacent to n.

• din[n] and dout[n] are respectively the number of incom-

ing and outgoing transitions to/from n

The workflow graphs we consider in this paper are well-

structured, i.e. there are matching pairs of nodes that splits and

joins the flow. Well-structured workflow graphs are often used

for the sake of comprehension [3] and for analysis purpose

[4]. Moreover, they do not contain cycles. Their presence in

the original choreography will be reduced exploring the cycle

for a bounded number of iteration. By default our approach

makes a single unfolding of each cycle, nevertheless the tester

could decide to unfold each cycle with higher values.

Given a workflow graph, we start a reduction procedure

to exert the CT execution traces that are allowed by the

relative choreography. To do this we need to isolate fragments

of the choreography characterized by a Single Entry and a

Single Exit (SESE) boundary nodes that can be easily replaced

with other equivalent fragments without parallel processes.

This decomposition in fragments can be performed building a

Refined Process Structure Tree (RPST) [5] that consists in

a hierarchy of sub-workflows. The hierarchy represents an

ordering in the fragments to be used in our reduction procedure

and we call reduction set the set of reducible fragments (that

are leaf in the hierarchy) that have as entry and exit point a

ParallelGateway.

The decomposition and the reduction are taken into account

by the REDUCE procedure, reported in the Algorithm 1. RE-

DUCE performs the reduction of ParallelGateways contained

in the reduction set (row 6) and the refactoring of the resulting

workflow (rows 7,8) according to a set of rules. After this, a

new reduction set is built and the procedure iterates until the

wokflow is represented by a single one ExclusiveGateway.

The rules used for refactoring are shown in Figure 3. For the

sake of comprehension we reported the rules using a BPMN2

notation.



Algorithm 1 REDUCE(G)

Input: G is a well-structured workflow graph from BPMN2

Output: a new G with one OR node and a set of sequences

1: procedure REDUCE(G)

2: Build a reduction set R using an RPST T of G

3: a fragment F ∈ R iff F is a leaf of T

4: while ∀i ∈ T, depth(i) = 1 ∨ child(child(i)) 6= ∅ do

5: for each F ∈ R do

6: REDUCE PARALLEL GATEWAY(F,G)

7: MERGE(F,G)

8: REFACTOR(F, G)

9: end for

10: Build a new reduction set R using a T of G

11: end while

12: end procedure

Fig. 3. Refactoring rules

In particular, subfigures (a) and (c) show a cascade of two

gateways where the inner one is a ParallelGateway. In this

kind of situations the internal gateway will be reduced by

REDUCE PARALLEL GATEWAY (Algorithm 2) to pro-

duce the situations depicted in (b) and (d) respectively, where

the inner gateway is an ExclusiveGateway. Such situations

can be reduced according to the proposed scheme that pushes

ParallelGateways to internal fragments (rule (b)) to perform

their reduction and decrease the number of ExclusiveGateways

through the application of the rule (d). The real reduction in

REDUCE PARALLEL GATEWAY is performed by pro-

cedures called at rows 2 and 3 of Algorithm 2. These will

be analyzed in Section IV. The situations (a) (b) (c) (d)

are handled by the REFACTOR procedure (not showed here

given the space constraints).

Algorithm 2 REDUCE PARALLEL GATEWAY(F)

Input: F is a fragment with entry node u and exit node v

Output: a new F with PARALLEL replaced by OR

1: procedure REDUCE PARALLEL GATEWAY(F )

2: AG← CREATE GRAPH(pn)
3: TN ← EXLORE GRAPH(AG)
4: build a fragment F ′ from TN

5: end procedure

Subfigures (e) and (g) show how sequences of Choreogra-

phy Tasks can be moved inside an Exclusive Gateway when

these are located immediately before the node that opens

the fragment or immediately after the node that closes it.

Situations depicted in (f) and (h) lead respectively to (e) and

(g) after the reduction of parallelism. The situations (e) (f) (g)

(h) are handled by the MERGE procedure (not showed here

given the space constraints).

IV. REDUCTION FROM PARALLELGATEWAY TO

EXCLUSIVEGATEWAY

A. The Affection Graph

The core of the PARTES strategy is the

REDUCE PARALLEL GATEWAY procedure. The

procedure takes into consideration the message dependencies

among participants handling the reduction of a single

ParallelGateway in an efficient way so to consider only those

execution traces that can be relevant for testing purpose. So

far we considered the result of the reduction in the form of

an ExclusiveGateway but technically the algorithms returns

execution traces organized as a tree structure (interleavings

tree) made of nodes labeled by the names of explored CTs.

To obtain this, we need to formalize dependencies as relations

and a new structure for them. We define:

Definition 1: A structural relation is a relation over CTs

that appear sequentially in a choreography. Two nodes a, b ∈
N with nodeType[a] == nodeType[b] == TASK are in

structural relation a ⇒ b if b ∈ OutTrans[a]. This relation

must be respected in all the execution traces.

Definition 2: An affect relation is a relation over CTs that

appear in different branches of a parallel statement. Two nodes

a, b ∈ N with nodeType[a] == nodeType[b] == TASK are

in affect relation a→ b if they appear in a ”receiver-sender”,

”same-receiver”, or ”chain” pattern as introduced previously.

We state that a affects b and b is affected by a. We call a the

affecter node, and b the affected node.

These relations are used to build a new structure from the

workflow graph, called affections graph, which contains all the

information to manage message dependencies. We will explore

it to found all the execution traces to store in the interleavings

tree. From now, we refer to the following definitions and

notations.

Definition 3: An affections graph AG = (CTset, RTset)
is characterized by:

• CTset which is a finite set of ChoreographyTasks that

are used as nodes of the graph;



• RTset = ST ∪ AT which is a finite set of transitions

where ST and AT respectively represent structural and

affect relations between two nodes;

Given the AG, for each node n ∈ CTset:

• StOut[n] = {m : m ∈ CTset ∧ ∃t ∈ ST s.t.

(fromNode[t] = n ∧ toNode[t] = m)} are the

nodes pointed by outgoing ST transitions from n and

StIn[n] = {m : m ∈ CTset ∧ ∃t ∈ ST s.t.

(fromNode[t] = m ∧ toNode[t] = n)} are the nodes

pointed by incoming ST transitions to n. Given that we

have max(|StOut[n]|) = max(|StIn[n]|) = 1, these sets

represent the preceding node and the successor node of

n considering only transitions in ST .

• StIn[n]∗ = StIn[n] ∪ StIn[m]∗ where m ∈ CTset ∧
∃t ∈ ST s.t. (fromNode[t] = m∧toNode[t] = n) is the

set of all the preceding node of n reached by structural

transitions.

• AtOut[n] = {m : m ∈ CTset ∧ ∃t ∈ AT

s.t. (fromNode[t] = n ∧ toNode[t] = m)} are

the nodes pointed by outgoing AT transitions from n

and AtIn[n] = {m : m ∈ CTset ∧ ∃t ∈ AT

s.t.(fromNode[t] = m∧ toNode[t] = n)} are the nodes

pointed by incoming AT transitions to n.

• AtIn[n]∗ = AtIn[n] ∪ AtIn[m]∗ where m ∈ CTset ∧
∃t ∈ AT s.t. (fromNode[t] = m ∧ toNode[t] = n) is

the set of all the preceding node of n reached by affect

transitions.

Definition 4: An interleavings tree IT = (TN, TE) is a

tree where TN is a finite set of nodes each one labeled with

one or more CTs and TE is a set of edges. For each node

n ∈ TN we will use the notations child[n], parent[n], with

the usual meaning over tree structures. Moreover, we use:

• ct[n] the list of all the CTs that forms the label of n;

• graph[n] used in the next algorithms to indicate a copy

of AG associated with n.

The procedure in Algorithm 3 builds the affection graph

AG. The construction considers as nodes of AG each CT

inside the branches of a ParallelGateway (row 2), adds the

corresponding structural transition (row 3) and builds an

adjacency map of the graph (row 5). We consider this map

as an hash table where we can store tuples in the form

〈sender, [(ct, receiver[ct]])〉 where sender is a key. The

value stored for a key = s is the list of pairs (ct, receiver[ct])
such that sender[ct] = s. The algorithm proceeds adding

the affect transitions according to the map. These are added

recalling that if two nodes are in the same branch they can not

affect each other. In particular, given a pair (ct, receiver[ct])
(row 7), the ct has affect transitions to all ct′i such that

sender(ct′i) = receiver(ct) (row 9). This construction is shown

in Figure 4.

B. The Affection Graph Exploration

Once we have AG, we need to explore the graph to derive

execution traces that replace parallelism. To this aim, the

affection graph is explored starting each time from a different

Algorithm 3 Creation of the affection graph

Input: pn ∈ N | nodeType[pn] = PARALLEL, pn ∈ F

Output: AG related to fragment F , a dependency map M

1: procedure CREATEGRAPH(pn)

2: CTset← CTset ∪ {n : n ∈ F}\{u, v}
3: ST ← ST ∪ {t : t ∈ T ∧ ∃n,m ∈ F |fromNode[t] =

n ∧ toNode[t] = m}\{OutTrans[u] ∪ InTrans[v]}
4: for gn ∈ CTset do

5: M ←M ∪ {〈sender[gn], (gn, receiver[gn])〉}
6: end for

7: for a set of 〈sender, (gn, receiver)〉 ∈ M with the

same sender do

8: for x, y ∈ CTset | ∃〈receiver, (x, y)〉 do

9: AT ← AT ∪ {t | fromNode[t] = gn ∧
toNode[t] = x}

10: end for

11: end for

12: end procedure

Fig. 4. (a) The structural transitions built in AG, (b) affect transitions in AG
and (c) the adjacency map.

node. In the exploration each visited node contributes to an

execution trace to be added to the interleavings tree.

This exploration is performed by the EXPLORE GRAPH

procedure showed by the Algorithm 4. In rows 3 and 4 we

have the start of the exploration and the creation of a copy of

graph[tn] for each node in the graph belonging to an affect

relation. In this way each iteration can use its copy of the

graph without side effects on the original structure. Each time

a graph node gn ∈ CTset has been explored following the

affect transitions, a corresponding tree node tn is created (row

5) and associated with the copy of graph[tn] (row 6). The tn

relative to the first gn of an exploration will be appended to

the tree’s root (row 7). When a gn has an incoming structural

transition, the sequence of all the StIn[gn]∗ preceding nodes

must be used as label of the relative tn node (row 9). After

that, gn itself is added to the execution trace appending its

name to the label of tn (row 12). This leads to the label

ct[tn] = StIn[gn]∗ ∪ gn. When a node is used to label a tn,

it is removed from its private copy of AG. (rows 11, 13). At

this point, the exploration proceeds towards AtOut[gn] nodes

calling the procedure EXPL AFFECTED (row 15). Indeed,

if gn is not the starting node and has many affecters, it could

receive messages from one, none, all or a subset of them. All

these cases should be analyzed to cover all the possibilities of



interleaving and the exploration should cover all the affecting

nodes of gn, i.e. AtIn[gn], in turn AtIn[AtIn[gn]] and so

on. A subprocedure in EXPL AFFECTED provides this

exploration of affecter nodes to build a piece of a tree to

contribute to the interleavings tree. Considering the explo-

ration of affecters starting from gn, it should provide a sub-

tree containing all the possible orders of that can be found in

AtIn[gn]∗. The procedure EXPL AFFECTED ends when

a gn has not outgoing affect transitions and its remaining

CTs can be just added to the execution trace. In this case

the sequence of these nodes is not important, since they don’t

affect other CTs. Figure 5 shows an affection graph and a full

exploration starting from one node.

Algorithm 4 Exploration of the Affection Graph

Input: an affections graph AG

Output: an interleavings tree

1: procedure EXPLORE GRAPH(AG)

2: build a tree root

3: for gn ∈ CTset do

4: build and use a copy C of AG

5: build a new node tn ∈ TN

6: graph[tn]← C

7: child[root]← tn

8: //copy structural transition form gn to tn

9: ct[tn]← ct[tn] ∪ StIn[gn]∗

10: //and remove nodes added to the tree

11: CTset← CTset \StIn[gn]∗

12: ct[tn]← ct[tn] ∪ {gn}
13: CTset← CTset \ {gn}
14: if AtOut[gn] 6= ∅ then

15: EXPL AFFECTED(tn, gn)
16: else

17: build a new node nn ∈ TN

18: child[tn]← nn

19: for y ∈ CTset do ct[nn]← ct[nn] ∪ {y}
20: end for

21: end if

22: end for

23: end procedure

Fig. 5. The full exploration of the node g. The grey CTs are those considered
looking at structure relation. The tree nodes are depicted with the sequence
of CTs they represent.

The interleavings tree provided by RE-

DUCE PARALLEL GATEWAY after the reduction

of a single ParallelGateway, constitutes a different view of

the ExclusiveGateway we expected. At this stage the whole

choreography is handled by the overall strategy as a tree data

structure, re-componing all the interleavings tree to build the

interaction tree, in which each root-leaf path represents a

complete possible execution trace which successively leads

to test skeletons.

C. An example of reduction

In Figure 6 we show an example of reduction from a

BPMN2 diagram containing two nested ParallelGateways.

The participants that may be affected by others, are marked

within the CT for the sake of clarity and the affection graphs

are showed near the fragments they represents. The RPST

decomposition (not shown due to space constraints) produces

a reduction set composed by the fragments surrounded with

dashed lines in the picture.
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Fig. 6. Example of reduction

Recalling the rules in Figure 3, we show some refactoring

steps using a simple example in Figure 6 that involve two

nested ParallelGateway. Starting from (A) the reduction of

the inner ParallelGateway is applied to obtain the workflow

in (B) where, for instance, the sequence (d, f, e) is discarded

since equivalent to (f, d, e). From (B) the rule (e) is applied

to merge CT b with the ExclusiveGateway and to get to the

diagram showed in (C). From (C) we apply the rule (b) to

split the ParallelGateway and we get to (D). Two different

ParallelGateways are now in the diagram and these will

be reduced by REDUCE PARALLEL GATEWAY until (E) is

obtained. Finally, using the (c) rule we obtain (F) as the final

result. The resulting sequences of CTs can now be used to

produce test skeletons for the various participants. We have

shown this simple example using the BPMN2 notation for

clarity. The flow showed in (A) can lead to around 5! different

interleavings. According to our objectives and considering two

message dependencies among the CTs f and e and between



a and f, our strategy returns an ExclusiveGateway with a

choice of only 4 sequences of CTs covering all the relevant

interleavings given the dependencies.

V. FROM REDUCTION TO TEST SKELETON

PARTES generates an interaction tree that contains all the

execution traces the tester can stress to identify ordering issues

about message exchange. Tests will be generated for services

willing to play a role within a choreography and we need to

isolate the local behavior of a single participant from the tree.

We call this operation projection in which we isolate local

traces of executions, related to a single participant, from the

global traces represented by the tree. The local traces are called

trace snippet. Combining the snippet we build a new tree data

structure called participant interaction tree where each root-

leaf path represents a valid sequence of invocations for a given

participant. These traces are the ones we consider relevant for

what concerns the detection of interoperability threats and are

used to generate test skeletons for each participant. A test

skeleton is built reorganizing a participant interaction tree to

dynamically reconstruct an execution trace which need to be

stressed during the test execution. The tester will implement

the missing pieces of the generated skeleton adding data

information, not available in the choreography diagram or in

other BPMN2 diagrams.

We applied the PARTES strategy on a BPMN2 choreography

named “Adaptive Customer Relationship Booster”, developed

within the EU project CHOReOS. It aims to maximize user

satisfaction in in-store scenarios inside retail companies, dy-

namically adapting their marketing strategies according to

client’s profile. Overall, the specification has 27 CTs, 2 Ex-

clusiveGateway and 6 parallel flows. A full exploration would

have generated about 10000 execution traces, whereas PARTES

provided 84 traces which have been refined into test cases for

the ten roles.

VI. RELATED WORKS

Service oriented computing generally makes difficult both

static and dynamic verification. A quite exaustive survey on

the topic has been published in [6]. Our work mainly relates

to approaches using model based testing strategies. In [7] the

authors propose an automatic test case generation for services

in a orchestration. The approach exploits the availability of a

runnable model and uses model checking to derive test cases

suitable to detect possible integration problems.

Graph reduction techniques are an excellent strategy for

the analysis of software systems based on processes. In [1] a

generic formalization in terms of graphs of a generic language

for workflows is given. Our work improve this concepts by

applying it to the specific case of choreography diagrams in

which each task defines the exchange of messages between

two entities. Moreover, we explore tasks looking at message

dependencies among them. Workflow graph are used for refac-

toring and completion of business process models in [8]. The

approach use refactoring on graphs to build well-structured

graphs, and SESE (Single Entry, Single Exit) fragments to

verify soundness and to improve the diagnosis information

and to fix control-flow errors. Our work exploits the concept

of SESE fragments and apply them to choreographies.

A data flow technique to generate tests from service chore-

ography specification has been proposed by [9]. Here a LTS

with actions annotated with XPath queries is used to describe

the manipulation of messages. A family of data flow testing

criteria based on def-use associations is proposed. The work

focuses on highlighting message manipulation errors and does

not intend to relate different message flow as specified by a

choreography definition.

VII. CONCLUSIONS AND FUTURE WORKS

The paper presented a novel approach to generate test

skeleton intended to check the behaviour of services willing

to paly a role within a choreography. The derivation strategy

takes into account specific dependencies among the communi-

cating tasks so to reduce the possible interleaving to consider.

The approach is based on the assumption that no hidden

interactions will happen at run-time between the choreography

participants. The algorithm is included in a testing tool chain

we are developing as part of the EU Project CHOReOS.

In such a context we carried on some initial experiments.

As future work we intend to extend the experimental part

and better elaborate on the characteristics of complexity of

the algorithms. At the same time we intend to investigate

the possibility of integrating data related information in the

exploration and definition of test cases.
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