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ABSTRACT

Law enforcement agencies all around the world are using bio-
metrics and especially fingerprints to solve and fight crime.
Often forensic experts are needed to record fingermarks at
crime scenes and to ensure that those captured are of foren-
sic value. In times of increased demand for forensic services,
this process needs to be automated and streamlined as much
as possible to improve efficiency and reduce workload.

Hence, we investigate if the forensic evidential value
(suitability for forensic analysis and/or examination) of fin-
germark images can be determined at an early stage automat-
ically without any expert involvement, especially when using
a mobile phone camera. We explore the interplay of different
factors such as the capture device and the constraints inferred,
image feature sets and classifiers used, and their interplay.

A database of 1,428 pseudo fingermarks has been col-
lected and its ground truth, whether a mark is of forensic value
or not, has been determined by 3 experts. The lowest equal
error rate achieved, when using a mobile phone to capture the
marks, is 13.62%.

These promising results suggest that it might be possible
to streamline forensic procedures by the application of an in-
dependent automated tool to assist with certain tasks.

Index Terms— Fingermark, Mobile phone capture, Qual-
ity estimation, Sufficient forensic evidential value

1. INTRODUCTION

Increases in the rate of reported crime are evident in Victoria.
Official recorded offences for the year 2012/13 have risen by
3.4% to 406,497, compared to 2011/12 [1]. Forensic experts
must travel in many cases to the crime scene and collect the
evidence themselves, spending a lot of time travelling to the
scene. Highly trained specialists such as fingerprint examin-
ers are valuable resources making streamlining of processes
and the search for tools to assist both experts and non-experts
in the field a priority. Therefore, we propose to determine
if fingermarks are of insufficient evidential value as early as
possible to ensure the marks collected are of sufficient evi-
dential value and to assist in cases’ evidence collection the
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Fig. 1. Diagram of the investigated problem. A fingermark
is captured with an imaging device and rescaled based on the
Capture Resolution Estimation (CRE) to 500 ppi, image fea-
tures are extracted and classified; resulting in the binary deci-
sion if this mark is of sufficient evidential value (EV) or not
(EV ).

specialists. This can be achieved by using mobile phones to
capture fingermarks, determine their binary evidential value
and transmit the valuable ones directly to the forensics unit;
all done automatically either at the scene or at the lab after
chemical mark development. This task can be performed by
regular police officers or professionals with a different area of
expertise thus allowing the fingerprint experts to focus on the
analysis of the fingermarks.

We investigate if the binary evidential value of a fin-
germark can be derived from its captured image in general,
and from its image taken with a mobile phone in particular.
Hence, we look into 4 factors and their interplay: different
imaging devices and their constraints (i), quality feature sets
for fingerprints and the necessity to rescale the image to a
fixed resolution (ii), algorithms for Capture Resolution Esti-
mation (CRE) (iii), and different classifiers to derive a binary
decision if a certain mark is of sufficient evidential value
(EV) or not (EV ) (iv). The proposed framework is shown in
Fig. 1.

1.1. Background

Fingermarks are of essential value in order to exclude or
to identify suspects. Nowadays, law enforcement agencies
rely heavily on the fingermark via automatic systems such as
IAFIS and forensic experts [2]. These examiners are expected
to follow the Analysis, Comparison, Evaluation, and Verifi-
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cation (ACE-V) protocol [3]. During the analysis phase, they
decide if the mark at hand is of value for individualisation
(VID), value for exclusion only (VEO) or no value (NV).

However, fingermarks suffer often from low quality due
to being smudged or partial, overlap with other marks [4], or
distorted by the surface pattern of the object they are found
on [5]. Their forensic value is difficult to grasp for non-
experts. Ulery et al. show that accuracy and repeatability
varies even for forensic experts and mostly depends on the
print quality [6, 7], especially for borderline decisions. Con-
sequently, Kellman et al. use image features to predict “expert
performance and subjective assessment of difficulty in finger-
print comparisons” [8].

Most quality measures are used to prevent low qual-
ity images from being automatically matched because they
tend to produce false minutiae and hence false matches [9].
Therefore, they are suited to operational law enforcement
agency setups and only optimised and tested for contact scan-
ners [10–13] but not fingermarks. This has resulted in various
algorithms tuned to a capture resolution of 500 ppi.

On the other hand, fingermarks require robust methods
to estimate their quality because all factors mentioned above
will vary and influence the quality and its estimate. Yoon
and Jain demonstrated in [14] that the current NIST quality
estimator reference implementation NFIQ1 is outdated be-
cause IAFIS was able to return the print’s mate although it has
been classified to have the lowest possible quality. Currently,
NFIQ2 [13] is under development and closing this gap; it is
scheduled to be released soon. However, it is still primarily
developed for fingerprints captured at a known resolution.

Unfortunately, in the proposed scenario, capturing finger-
marks with a mobile phone, the capture resolution isn’t either
fixed or known for two main reasons. Firstly, the phone is
hand-held by the operative, most likely at varying distances
for each capture. Secondly, the phone model and maker can
differ and so does the camera module and its resolution. In
order to ensure consistent results and more importantly to use
already existing quality features and algorithms, the approach
has to be capture resolution independent.

One way to achieve this independence is to measure im-
age characteristics, infer the capture resolution (cf. CRE) and
to rescale the image based on this estimate to a standard reso-
lution in order to use existing quality features and algorithms.

1.2. Outline

We investigate if the evidential value of a fingermark can be
determined from its image w.r.t. the capturing device (scan-
ner, high-quality camera, phone), CRE algorithm, image
quality feature set (NFIQ2, Neurotechnology Verifinger, their
fusion) and classifier used (cf. Fig.1).

In the following three sections we introduce our own CRE
algorithm RLAPS to rescale the fingermark images to 500 ppi
(Section 2), elaborate on the database collection, perform ex-

periments to demonstrate the interplay between CRE algo-
rithm, quality feature set and classifier used and discuss the
results obtained (Section 3). We conclude our findings and
present the direction of our future research (Section 4).

2. METHODOLOGY

The main idea behind our CRE algorithm is to measure the
inter-ridge spacing (IRS) and to rescale the image based on
the ratio of the measured value to a known reference. Hence,
we make two major assumption regarding the captured im-
age, its quality and fingermarks: first, we presume that an
adult fingerprint has been captured and infer an average IRS
of irs′ = 9px at c′ = 500 ppi; commercial products make
similar assumptions as a child’s fingerprint and hence its IRS
is much smaller [15]. Second, this implies also that there must
be visible ridge pattern present.

Our algorithm is very similar to other approaches using
the radially averaged power spectrum to either estimate a fin-
gerprint’ quality [13] or its inter-ridge spacing [2]. The dif-
ference is that it uses only a part of the spectrum, the Radially
Limited Averaged Power Spectrum (RLAPS). Furthermore,
it takes into account that the IRS varies depending on where
and how it is determined. The IRS increases around singu-
lar points [2] so it is often measured in areas where none are
present [16]. Hence, we choose the spectral peak correspond-
ing to the highest frequency but with an amplitude close to
the maximum.

Therefore, RLAPS features increase robustness against
fingerprint distortions, which lead to an uneven and non-
circular energy distribution or certain fingerprint characteris-
tics as singular points. This results in accurate estimates and
little variation (see Section 3.2.1).

The algorithm consists of three main stages: (i) the com-
putation of the power spectrum and its filtered version, (ii)
the computation of the radially averaged power spectrum for
a limited area according to the highest energy distribution and
(iii) finding the “last large peak” and converting the inter-
ridge spacing to a CRE.

Now, let’s assume that a gray-value image I has the hori-
zontal and vertical resolution ofM px andN px, respectively.
The pixel at the position (x, y) is denoted by I(x,y) and ac-
cesses its assigned (gray) value where I(x,y) ∈ {1, . . . , 255},
x ∈ {1, . . . ,M} and y ∈ {1, . . . , N}.

The image is 2 D-DF transformed into the frequency do-
main, maintaining the same size, and its quadrants are re-
arranged that the zero-frequency component is located at the
centre, resulting in F . The power spectrum A is computed
from the complex modulus of the re-arranged spectrum; A =
|F |2. There might be straight lines contained within the spec-
trum due to spectral distortions. The Hough transform is em-
ployed to find and mask those; additionally A is smoothed by
convolving it with a square matrix (w×w) consisting only of
ones, resulting in A′.
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(a) Scanner, irs = 17.92 (19.1) px
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(b) DSLR, irs = 7.05 (7.3) px
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(c) Phone, irs = 14.83 (14.5) px

Fig. 2. The radially limited averaged power spectrum (RLAPS, black curve) for the same mark captured by a scanner (a), a
high-quality camera (b) and a mobile phone (c) as well as the algorithm (and manual) inter-ridge spacing estimates. The ridge
pattern introduces a local increase in power, the last high peak (green circle) indicates the ridge frequency; other individual
peaks are highlighted by blue circles and the maximum by a red one. RLAPS is calculated from the spectral part enclosed by
the white borders. Lines contained within the spectrum have not been masked from the images for demonstration purposes but
during the calculation.

The values of A and A′ are accessed via their polar coor-
dinates ρ and θ rather than their Cartesian coordinates x and
y. Finally, the maximum energy peak in AF is located w.r.t.
to the constraints that θ ≥ 0 disregarding the third and fourth
quadrants due to duplicity and rmin ≤ ρ ≤ rmax limiting
the search range and ignoring the main energy located at the
centre. The corresponding angle is stored in α.

α = argmax
A′

(θ,ρ)

, θ > 0, rmax ≥ ρ ≥ rmin

rmax = b1/2min(N,M)c, rmin = bγ rmaxc (1)

The factor γ and the angle β need to be chosen roughly
depending on the expected frequency range and distortion
strength, respectively (cf. Section 3.2.1).

Next, the RLAPS is obtained from A by averaging w.r.t
the energy values over the angle θ = [α − β, α + β] for
ρ = {rmin, . . . , rmax} and results in the vector J contain-
ing l elements where l = rmax − rmin + 1.

We define that all high peaks have at least a certain frac-
tion of the global maximum:

λ argmax
J(i)

, with i = {1 . . . l}. (2)

The candidate with the highest frequency and hence the great-
est index (say r′) is chosen and adjusted to r = rmin−1+r′.
Therefore the dominant IRS contained in the image is irs =
2rmax

r .
Finally, the capture resolution c is obtained by rescaling

the fraction using the assumed values for adult IRS irs′ at a
given resolution c′ as previously discussed. This leads to the
equation

c =
c′

irs′
irs =

500

9

2rmax

r
. (3)

There are two kind of uncertainties involved. Firstly, the as-
sumed average IRS of 9 px doesn’t account for individual dif-
ferences due to e.g. gender, ethnicity or age (cf. 3) and sec-
ondly, measurement inaccuracies.

3. EXPERIMENTS AND DISCUSSION

In this section we evaluate how different image quality fea-
ture sets perform for estimating if a certain fingermark is of
sufficient evidential value and if mobile phone image captures
of those marks are a suitable source for evidential value esti-
mation compared to established capturing methods such as a
flatbed scanner or a high-quality camera and their interplay
with our CRE algorithm RLAPS (cf. Fig.1).

First, we introduce our new database (Section 3.1), then
we determine the fingermark value prediction performance
for NFIQ2 image features, the features of a commercial fin-
gerprint SDK (Neurotechnology Verifinger) and their fusion
w.r.t the use of different CREs and image capture devices
(Section 3.2). Finally we discuss our findings (Section 3.3).

3.1. Database

Two males (subjects 2 and 4) and two females (subjects 1 and
3) volunteered to create a large database of pseudo finger-
marks, including normal and deliberately distorted marks
(1, 428 in total). Six categories of deliberate distortion,
each containing 168 marks, were defined: (i) finger placed
“lightly” on the page, (ii) mark smeared, (iii) finger twisted
lightly, (iv) finger twisted strongly, (v) finger placed “heav-
ily” on the page, and (vi) part of the finger placed “heavily”
on the page (cf. Fig. 2).
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Fig. 3. The capture resolution estimate is plotted for each individual subject and capture device to highlight the intra-class
variation; the different distortion types are colour encoded and have been spread horizontally for visualisation purposes. We
have manually estimated the capture resolution for the different devices; scanner: 1200 ppi (a), high-quality camera: 460 ppi
(b), mobile phone: 890 ppi (c). As the algorithm uses a generalised scaling factor, the individual subject resolutions differ.

After leaving a fingermark on a paper sheet in predefined
marked areas according to the specified distortion, the sheets
were brushed using magnetic black powder to make the la-
tent mark visible and conserve it. Finally, each individual
sheet was laminated to ensure its permanent integrity. A Vic-
toria Police fingerprint expert supervised the whole process
and performed a closer visual inspection of the marks before
and after the lamination process to reassure that no major dis-
tortions had been added.

Subsequently, all sheets have been individually digitised
using 3 different capture devices: (i) a flatbed scanner (HP
Scanjet G4010, abbr: Scanner), (ii) a high-quality camera
(Nikon D3S with a Nikkor f/2.8 60 mm-macro lens attached,
abbr: DSLR) and (iii) a mobile phone (Apple iPhone 4S, abbr:
Phone). The scanner and camera captured the whole sheet at
once, whereas the mobile phone photographed each mark in-
dividually at an approximate distance of 10 cm. The phone
was held mostly parallel to the sheet to avoid light reflections
induced by the laminate. Additionally, a light source was
present at all times perpendicular to both the sheet and the
phone; and a remote control was used to release the shutter
to minimise any movement due to touching the phone during
capture.

Finally, three Victoria Police experts individually assessed
the laminated marks and decided for each if it is of sufficient
evidential value (to be more specific: VID at the analysis
stage of ACE-V). The overall agreement between the asses-
sors is high; they reached the same conclusion in 97.8% (as-
sessors 1&2), 95.7% (assessors 1&3) and 99.4% (assessors
2&3) of the marks.

The overall ground truth is obtained via a majority vote; a
certain mark is considered to be of sufficient evidential value
if and only if at least two assessors agreed that it is indeed
of evidential value. According to this methodology, 34.5% of
the 1,428 marks are of sufficient evidential value.

3.2. Fingermark evidential value prediction

The evidential value prediction is subject to two major vari-
ables: (i) the image quality feature set and subsequently the
CRE method used as it influences the feature extraction and
(ii) the image capture device. We employ the NFIQ2 features
specified in the preliminary definition guide, Neurotechnol-
ogy Verifinger 6.7 [17] and its quality value and the number
of found minutiae (Verifinger) and all features together (Fu-
sion). We have implemented the NFIQ2 features according to
their preliminary specification [13].

3.2.1. Capture resolution estimation

All feature sets are computed for all images of all capture de-
vices with three different CREs performed: none at all (None)
and either global (Global) or individual (RLAPS) estimates.

For this purpose, we have manually approximated a
Global capture resolution of 1200 ppi (scanner), 460 ppi
(high-quality camera) and 890 ppi (mobile phone). The esti-
mates are based on the average of samples randomly chosen
for which we compared the pixel size of the mark to the one
of the image scanned as it has been captured at the known
capture resolution of 1200 ppi.

RLAPS has been applied to all images using the following
parameters experimentally obtained: β = 15◦, w = 7, γ =
0.06 (scanner), γ = 0.17 (DSLR), γ = 0.8 (phone) and λ =
0.8. Its results are visualised in Fig. 3 w.r.t. the capture device,
individual subject and type of distortion.

Their CRE distribution shows a significant difference re-
lated to the different IRS between the sexes [16]. Therefore,
the consistency of the CRE or IRS ratio (cf. Equation 3) be-
tween males and females across different devices indicates
the algorithms stability on a wide range of different images:
1.21 (Scanner), 1.20 (DSLR), 1.22 (Phone).
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Fig. 4. The top left corner of the receiver operating characteristics (ROCs) for all capture devices and different CREs calculated
on the fused image quality feature set of NFIQ2 and Verifinger.

3.2.2. Database partition

The database creation and the ground truth acquisition have
been discussed in Section 3.1. In order to run unbiased exper-
iments, the database D needs to be partitioned into a training
set Tk, a validation set Vk and a test set Sk. We use a K-fold
with K = 5, k ∈ {1, . . . ,K}. We choose all sets randomly
but within two main constraints: firstly, the union of all test
sets must be the database and the pairwise intersection of the
test sets must be the empty set. Secondly, the number of sam-
ples per set is roughly 60% (training), 20% (validation) and
20% (test). All samples are used and there is no overlap be-
tween the sets during each fold.

3.2.3. Experiment

This experiment is performed for three image quality feature
sets (NFIQ2, Verifinger, Fusion) subject to different CREs
(None, Global, RLAPS) and three capture devices (Scan-
ner, DSLR, Phone). All images are rescaled by the factor
500/c (see Section 1.1 and cf. Equation 3) using the nearest-
neighbor interpolation, if applicable. The features obtained
are classified by a Support Vector Machine (SVM), the Dis-
criminant Analysis (DA) and the k-Nearest Neighbors algo-
rithm (kNN) trained according to the database partition and
different parameter sets (cf. Fig.1). For each k the classifier of
choice C ∈ {SVM, kNN,DA} is trained on Tk with different
sets of parameters Pi ∈ P and then applied to the validation
set Vk. Then the results are scored using the true positive rate
for a fixed false match rate of 0.01 (TPR@FMR100) and av-
eraged over k and the capture method (scanner, high-quality
camera, mobile phone) in order to find the parameter set Pi

that leads on average to the best performance.
Now each classifier, trained on Tk and using the parameter

set Pi, is applied to each test set Sk individually, resulting
in S′k. The final score is calculated on the concatenation of
all test set results {S′1, . . . , S′K}. The constraints ensure that
there is only one unique result for every mark captured. See

Capture device
Feature set CRE Scanner DSLR Phone

NFIQ2
None 15.65% 16.24% 16.56%

Global 11.75% 15.17% 14.23%
RLAPS 11.18% 16.13% 15.60%

Verifinger
None 32.10% 17.07% 30.75%

Global 13.25% 15.85% 14.43%
RLAPS 13.82% 16.56% 15.87%

Fusion
None 13.35% 13.01% 16.46%

Global 8.54% 12.20% 13.62%
RLAPS 9.29% 13.03% 14.21%

Table 1. EER w.r.t. capture device (Scanner, DSLR, Phone),
quality feature set (NFIQ2, Verifinger, their fusion) and CRE
algorithm (None, Global, RLAPS).

Fig. 4 and Table 1 for the corresponding receiver operating
characteristics (ROCs) and for their equal error rate (EER)
values, respectively.

There are two major remarks regarding the experimental
procedure to keep in mind. Firstly, we are basically evaluat-
ing K different classifiers instead of one as it is trained dif-
ferently during each fold, despite using the same set of pa-
rameters. Secondly, this methodology uses a relatively small
training set and large test set if compared to other approaches
(e.g. leave-one-out cross-validation). Therefore we are estab-
lishing a lower performance boundary.

3.3. Discussion

The experiments indicate that it is possible to determine if a
query mark is of sufficient evidential value based on its image
quality features as long as the capture resolution is normalised
to 500 ppi. In case this is unknown, it can be estimated by
the introduced algorithm without any significant performance
setback. Also, the algorithm’s accuracy isn’t overly important
but its consistency is. NFIQ2 performs surprisingly well for



unadjusted images; whereas this is only true for DSLR cap-
tures when using Verifinger because their capture resolution
is close to 500 ppi.

Furthermore, the mobile phone image quality is not a ma-
jor limitation as long as the capture process is done properly.
If so, the performance is on a par with a the high-quality cam-
era but shy of the flatbed scanner.

The NFIQ2 feature set performs better than the Verifin-
ger features but their fusion shows the most promising and
consistent results.

The reader has to keep in mind that firstly the fingermarks
vary in quality without any strong background patterns or sur-
face distortions and secondly that the image quality feature al-
gorithms used have all been developed for images acquired by
contact scanners. Furthermore, we are aware of the database’s
limited size and that inter-age and inter-racial cross validation
are needed to draw any further conclusions.

4. CONCLUSION AND FUTURE WORK

The experiments performed demonstrate that it is possible to
use images, captured with a mobile phone, to derive if a fin-
germark is of sufficient evidential value. Already today, the
mobile phone’s image quality is not a limiting constraint. As
technology development progresses, mobile phone cameras
will improve further and will be able to deliver consistently
high image quality even under more difficult circumstances
than we have evaluated in this case study.

The results are encouraging, particularly as they establish
a lower performance bound. One major drawback is that the
image capture resolution needs to be estimated in order to be
scaled to 500 ppi for optimal performance as most fingerprint
image quality features are optimised for this particular reso-
lution. However, the experiment emphasises that a rough ap-
proximation is reasonable if no setup with a known resolution
and fixed distance is available.

We are looking forward to the official release of NFIQ2
to ensure the correctness of our work and benefit from its fast
reference implementation.
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