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ABSTRACT

The aim of this work is to determine how vulnerable different
iris coding methods are in relation to biometric template ag-
ing phenomenon. This is considered to be particularly impor-
tant when the time lapse between gallery and probe samples
extends significantly, to more than a few years.

Our experiments employ iris aging analysis conducted us-
ing three different iris recognition algorithms and a database
of 583 samples from 58 irises collected up to nine years apart.
To determine the degradation rates of similarity scores with
extending time lapse and also in relation to multiple image
quality and geometrical factors of sample images, a linear re-
gression analysis was performed. 29 regression models have
been tested with both the time parameter and geometrical
factors being statistically significant in every model. Quality
measures that showed statistically significant influence on
the predicted variable were, depending on the method, image
sharpness and local contrast or their mutual relations.

To our best knowledge, this is the first paper describing
aging analysis using multiple regression models with data
covering such a wide time period. Results presented suggest
that template aging effect occurs in iris biometrics to a sta-
tistically significant extent. Image quality and geometrical
factors may contribute to the degradation of similarity score.
However, the estimate of time parameter showed statistical
significance and similar value in each of the tested mod-
els. This reveals that the aging phenomenon may as well be
unrelated to quality and geometrical measures of the image.

Index Terms— biometrics, iris recognition, biometric
template aging, linear regression

1. INTRODUCTION

Since the advent of iris recognition research there has been
a profound belief in scientific community that selected fea-
tures of the iris pattern are stable and not subject to changes
over a person’s lifetime. Safir and Flom mention this for the
first time in their iris recognition patent dated on 1987 [1].
John Daugman presents a similar statement in his 1994 patent

[2]. However, to this day no research has been presented that
would prove these hypotheses.

Biometric algorithms reliability assessment is usually
conducted using samples collected within a short time period
(from days to months), but it is extremely difficult to evaluate
performance of coding methods using images collected a few
or more years apart. Given the long time lapse, it is partic-
ularly not easy to collect sufficient databases that span over
many years and provide sample images from a large number
of subjects.

In this paper we describe an evaluation of three iris cod-
ing methods in terms of their vulnerability to the iris template
aging phenomenon, defined as a similarity score degradation
with the extending time-lapse between gallery and probe im-
ages. We use 583 sample iris images from 58 irides collected
up to nine years apart.

2. RELATED WORK

Tome-Gonzalez et al. [3] evaluate the time impact on intra-
class variability using dataset of 8128 iris images collected
from 254 people over several periods covering one to four
weeks. Authors report that for the Libor-Masek algorithm
there is over 50% increase in the False Rejection Rate (abbre-
viated FRR later on) caused by a visible shift in genuine inter-
session similarity scores when compared to the intra-session.

Bowyer et al. mention the term ‘template aging’ in their
paper concerning factors that contribute to degrading biomet-
ric recognition performance as one of ‘the accepted truths’
about iris biometrics [4]. However, they also point to the pupil
dilation differences between images as a possible cause of the
decrease in genuine similarity scores. Baker et al. report that
the average Hamming distances for iris template comparisons
conducted 4 years after the gallery images were acquired are
greater than when short time span is involved. This is true
both when averaged for all irides and for each iris separately
[5]. Those studies consisted of 26 irides. The estimated FRR
of the evaluated system rose about 75% when compared to the
scenario in which probe images were collected after a shorter
(i.e. a few days) time span. Researchers go further in their
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experiments, extending the database to 46 irides and dividing
it into subsets containing data collected up to 120 days after
the first enrollment and those collected after more than 1200
days [6]. IrisBEE algorithm, Neurotechnology VeriEye and
Cam-2 from 2006 ICE all showed a significant increase in
FRR, while FAR remained mostly unaffected. VeriEye, being
the most accurate method, noted an increase of about 70%.
Fenker et al. broaden this research using dataset of 86 irides
collected two years apart, reporting FNMR (False Non-Match
Rate) for the VeriEye matcher 195% to 457% higher, depend-
ing on the acceptance threshold applied [7]. Different causes
of such increase, including a visible dilating of the pupil with
increased time lapse, are laid out. Finally, Fenker and Bowyer
investigate a dataset that consists of images of 644 irides us-
ing a commercially available VeriEye method [8]. Authors
create 4 sets of comparisons: between images collected no
longer that several months apart, over 1 year apart and over 2
and 3 years apart, respectively. Each of them was then eval-
uated in reference to the set of comparisons between images
collected with a short time span, noting increases in FRR as
high as 50%.

Czajka conducts an experiment using a dataset of 58 iri-
des with time-span between acquisitions inside a class reach-
ing over 8 years [9]. A proprietary BiomIrisSDK algorithm,
VeriEye SDK and MIRLIN SDK are employed and degrada-
tion of the average genuine similarity score for all methods
reaching as high as 45%, is reported. In addition, Czajka cre-
ates a modified dataset with iris diameter unified throughout
a given class, however, no statistically significant differences
are found.

In contrast to most results stands the NIST IREX VI re-
port [10], stating that ’recognition metrics are stable, consis-
tent with the absence of widespread iris ageing’ and that ’iris
recognition of average individuals will remain viable over
decades’. However, authors do not consider any factors, other
that biological changes to the iris anatomy, as contributing
to the aging phenomenon. Bowyer and Ortiz [11] present a
critique of this approach, pointing at several methodological
errors in the regression analysis performed by the authors, as
well as at it’s non-compliance with operational practice.

Another possible factor that can have impact on iris recog-
nition is the sensor ageing effect, discussed in [12]. Authors
claim that this has the potential to affect iris recognition due
to the noise appearing in aged imaging sensors, however, no
explicit trends or tendencies are found.

Sazonova et al. propose broadening aging studies by
including quality measures calculated for iris images [13].
Authors suggest that covariates like the number of occluded
pixels, local contrast, average intensity of pixels and image
sharpness may contribute to the degradation of recognition
performance. To prove this hypothesis they conduct a linear
regression analysis using two regression models: one contain-
ing only the time parameter, the latter being a combination of
time and quality parameters. Researchers prove that there is a

Fig. 1. Samples from sessions in 2003 (A) and 2010 (B).
Sample images that were discarded from the dataset (C, D).

statistical significance of all regression parameters for at least
one sample from a pair of images. This is true for Neurotech-
nology’s VeriEye SDK and Masek’s algorithm. Also, the
time parameter estimate contributes to an average increase in
genuine Hamming distance with the value of 0,0077 per year.

Being a rather novel approach to the topic of template ag-
ing, multimodal regression analysis aimed at finding as many
contributing factors as possible certainly seems worth inves-
tigating. Our own work described in this paper takes inspira-
tion from the experiments of Sazonova et al. while taking it
further with additional factors.

3. DATA

To conduct research described in this paper we use our own
database consisting of iris images obtained from 35 persons
(hence from 70 eyes). Depending on the class, there are 40
to 140 images of each iris and varying time span between im-
age acquisitions that in some cases extends up to 2960 days.
Majority of images have been collected in years 2003 – 2004
and 2010 – 2011 (see Fig. 1). This data have been care-
fully evaluated for poor quality samples not compliant with
the ISO/IEC 19794-6:2011 [14] and possibly clouding exper-
imental results. We discarded all images out of focus, suffer-
ing from motion blur, with too little iris visible (due to closed
eyelids or eyelash occlusion) and those with iris occluded by
light reflections or eyeglasses.

Remaining dataset consisted of 583 images of 58 irides.
Automatic segmentation employing BiomIrisSDK [15] was
performed on the data to locate the iris. However, in sev-
eral cases iris has not been correctly localized. To make sure
that in our analysis only aging-related factors contribute to the
degradation of similarity scores (without additional depen-
dencies such as failed segmentation), we performed a manual



correction for those images, where automatic segmentation
failed to produce an acceptable result.

4. EXPERIMENTAL METHODOLOGY

When performing an analysis of variance for the average
similarity scores in selected data subsets, one needs to ar-
bitrarily divide the dataset into several time periods. This
approach does not include factors other than the time param-
eter. Also, there is little information about the extent of aging
phenomenon outside the selected time periods, e.g. how well
will templates perform after another 4 or 8 years after the
period covered by the database.

4.1. Regression analysis predictors

To determine the possible causes of similarity score decrease
over time and to be able to predict the extent of these changes,
we perform a linear regression analysis using several predic-
tors that include the time parameter in combination with iris
image quality and geometrical factors. As for quality factors
we use the same as described in [13], namely: occlusion, local
contrast, illumination and sharpness:

• occlusion is determined by the presence of eyelashes,
eyelids and reflections that occlude the iris: OC =
nm−N
nm where n,m are polar image dimensions and N

denotes the number of unoccluded iris pixels;

• local contrast: LC =
√

1
N

∑n
i=1

∑m
j=1 δ(Iij −Mij)2

where δ is the noise factor for pixel i, j that becomes 0
for the occluded pixel and 1 otherwise, Iij is the pixel
intensity and n,m is the image size in pixels. Mij

denotes the intensity median from 10-by-10 neighbor-
hood centered in i, j;

• illumination is to distinguish images being poorly illu-
minated and on that account potentially decreasing per-
formance: IL = 1

N

∑n
i=1

∑m
j=1 Ii,jδ where Iij and δ

are defined as above;

• sharpness to find images out of focus using the Lapla-
cian of Gaussian: SH = 1

N

∑n
i=1

∑m
j=1 I

LoG
ij

We also use two geometrical factors: iris and pupil radii (de-
noted as IR and PR, respectively) and their variability in a
given image pair.

4.2. Matchers

In this study we use three different iris coding methods:
BiomIrisSDK developed by Czajka [15, 16], Neurotechnol-
ogy’s VeriEye SDK [17] and an implementation of Daug-
man’s method [18].

BiomIrisSDK employs Zak-Gabor wavelet packets to
find (independently) the best space and frequency pairs when

calculating the iris code. This methodology has also been
employed to perform a manual correction in cases when auto-
matic segmentation would yield poor results. Two 90-degree
regions on the opposite sides of the iris are used for encoding.
They were also modified in some cases to make sure that
no occluded (non-iris) pixels are taken into account. Such
attitude lets us hope that conclusions withdrawn from experi-
ments will leverage time-related iris pattern alteration and not
other factors, such as faulty segmentation. To our best knowl-
edge, this is the first attempt of such approach. BiomIrisSDK
produces results in a form of Hamming distance between
compared iris codes, with values near 0 for the same, and
roughly 0.5 for different eyes.

VeriEye SDK uses proprietary, unpublished encoding
methodology with active shape based image segmentation.
This matcher provides result in a form of similarity score,
with values spreading from 0 (non-match in ideal case) to
infinity (for two same images).

The third method is close to the original Daugman’s idea
based on filtering the image with 2D Gabor wavelets and cre-
ating the iris code using signs of real and imaginary parts of
the filter response [19]. It employs real wavelets instead of
complex ones, originally found in Daugman’s work. It re-
quires images in polar coordinates, therefore they have been
prepared accordingly to localization results devised earlier
with BiomIrisSDK segmentation and our corrections. As a
consequence we ensure that the input data for this matcher
represents only the proper regions of the iris.

4.3. Linear regression modeling

Due to the fact that not all of the examined matchers use an
occlusion mask or take advantage of known localization re-
sults, different regression models are built for each method.
29 models are evaluated to propose a single and most accurate
regression model for each method. For each of those models
the R2 statistic and significance levels for all regression fac-
tors are calculated (with α = 0.05).

For the Daugman’s method 12 regression models are cre-
ated. The first one (D0) is identical to the model proposed by
Sazonova in [13].

D0 = β0 + β1t+ β2OC1 + β3OC2 + β4LC1 + β5LC2+

+β6IL1 + β7IL2 + β8SH1 + β8SH2 + ε

where β0 is the intercept, βi are the regression coefficients
for corresponding regression parameters, and ε stands for the
noise. Di represents the predicted HD value. For the sake
of simplicity, all models are described in the same manner:
D0 through D11, B0 through B9 and V0 through V11 for the
Daugman, BiomIrisSDK and VeriEye SDK matchers, respec-
tively.

The next step was to create four models (D1 through D4)
and substitute sums of coefficients with multiplication (for



OC) or differences (LC, IL and SH), e.g.:

D1 = β0 + β1t+ β2|OC1 ∗OC2|+ β3LC1 + β4LC2+

+β5IL1 + β6IL2 + β7SH1 + β8SH2 + ε

This was then performed for the LC, IL and SH as well. In
our opinion this approach seems more appropriate as the im-
age order is not taken into account. It is also difficult to come
up with any conclusion if one of the images in a pair yields
statistical significance while the other does not. In model
(D5), this change is made for all parameters:

D5 = β0 + β1t+ β2|OC1 ∗OC2|+ β3|LC1 − LC2|+

+β4|IL1 − IL2|+ β5|SH1 + SH2|+ ε

Then a model incorporating only geometrical factors was
built (D6) and another one (D7) being a combination of mod-
els D5 and D6 to evaluate a possibility of mutual impact of
those two groups of factors (geometrical and quality).

D6 = β0 + β1t+ β2|PR1 − PR2|+ β3|IR1 − IR2|+ ε

D7 = β0 + β1t+ β2|OC1 ∗OC2|+ β3|LC1 − LC2|+

+β4|IL1 − IL2|+ β5|SH1 + SH2|+ β6|PR1 − PR2|+

+β7|IR1 − IR2|+ ε

Lastly, four additional models were created, each being the
same as D7, but deficient in one of the quality coefficients
(OC, LC, IL and SH). This is to determine whether such
exclusion can increase significance of remaining factors.

D8 = β0 + β1t+ β2|LC1 − LC2|+ β3|IL1 − IL2|+

+β4|SH1 + SH2|+ β5|PR1 − PR2|+ β6|IR1 − IR2|+ ε

For the BiomIrisSDK similar models were created (yet with-
out the OC parameters, as this method does not employ polar
masks) This also modifies calculations, as quality factors have
to be computed using pixels of an entire image. The VeriEye
matcher models were same as for the BiomIrisSDK, but geo-
metrical factors were excluded from those models due to the
unknown segmentation result.

5. RESULTS

5.1. Regression analysis results for selected models

5.1.1. Daugman’s method

For the sake of clarity only those models that yielded promis-
ing results are described below. In the original D0 model for
every pair of quality factors the regression coefficient one of
them is not statistically significant (with p-value over 0.23)
while the other is (p-value close to zero). This is not true
only for the OC parameters, however, based on such results
one can presume that this is not the most appropriate way to

predict changes, as the regression parameters change when
images in an image pair are being replaced with one another.
In this model only the second image form a pair yields statis-
tically significant regression parameters.

While experimenting with models D1 through D4, we
found that replacing one of the pairs of factors with an ab-
solute value of either a multiplication or a subtraction causes
different effect, depending on the type of the factor: it can in-
crease or decrease the statistical significance of this particular
factor while increasing or decreasing significance of others.
Due to the fact that there are possibly too many hidden rela-
tions between those coefficients, we came up with a conclu-
sion that it would be best if all quality factors are represented
in this way. This is done in modelD5. Here, the |OC1 ∗OC2|
and |SH1 − SH2| factors gain the highest statistical signifi-
cance, while the |LC1−LC2| and |IL1−IL2| factors are not
statistically significant. We can thus assume that the former
two should be included in the final regression model proposed
for this coding methodology.

The D6 model incorporates only the time parameter and
geometrical factors: pupil and iris radii, that being |PR1 −
PR2| and |IR1 − IR2|, respectively. There is a statistical
significance for all of the parameters, which leads to the con-
clusion that those are also parameters that have to be put in a
final regression model.

ModelsD5 andD6 have been combined in modelD7 that
proves further significance of the OC and SH factors while
LC and IL remain statistically insignificant. Despite the fact
the the OC factor’s p-value is slightly higher than α = 5% it
is later included in further models as we managed to show that
the presence of certain factors might decrease the significance
of others.

This becomes even more evident when evaluating mod-
els D8 through D11. When the LC parameter is removed,
the |OC1 ∗ OC2| parameter’s p-value drops below α = 0.05
again. Further investigation of these four models lets us ob-
serve that none of them incorporate IL and LC factors with
statistical significance. Also, removing these parameters in-
creases the significance of OC and SH parameters.

To conclude, for the Daugman’s coding methodology the
|OC1∗OC2| and |SH1−SH2| seem to be the best candidates
for the final regression model in combination with both geo-
metrical factors. The time parameter is statistically significant
in every tested model (p < 10−7), which proves its impact on
the predicted Hamming distance between samples. With the
estimate of t = 0.000018, this contributes to an increase in
HD of 0.007 with each elapsed year.

5.1.2. BiomIrisSDK

In the first model for the BiomIrisSDK (B0) both LC factors
gain statistical significance, unlike in all previous models. So
are statistically significant the first parameters from the IL and
SH parameter pairs, but not the second ones. This changes



Table 1. P -values for βi estimates and R2 statistics in selected regression models (’–’ when parameter is not present).

Model number t |OC1 ∗OC2| |∆LC| |∆IL| |∆SH| |PR1 − PR2| |IR1 − IR2| R2 statistic
D5 0.0000 0.0097 0.4805 0.2777 0.0042 – – 0.216
D6 0.0000 – – – – 0.0000 0.0000 0.218
D7 0.0000 0.0565 0.4386 0.3613 0.0148 0.0000 0.0000 0.225
Dfinal 0.0000 – – – 0.0000 0.0000 0.0000 0.225
B5 0.0000 – 0.0000 0.9368 0.0129 – – 0.345
B6 0.0000 – – – – 0.0000 0.0000 0.293
Bfinal 0.0000 – 0.0000 – 0.0022 0.0006 0.0000 0.351
V5 0.0000 – 0.0000 0.7817 0.0000 – – 0.352
V9 0.0000 – – 0.0011 0.0000 – – 0.275
Vfinal 0.0000 – 0.0000 – – – – 0.352

when instead of one LC factor for each image a |LC1−LC2|
factor is used. All of the model parameters are statistically
significant then.

When introducing the |OC1 ∗ OC2| instead of two sep-
arate factors every regression parameter in a model showed
statistical significance. However, replacing the image inten-
sity in the same way did not produce any better results for the
rest of the parameters. With model B5 we find out that LC
and SH factors expressed as |LC1−LC2| and |SH1−SH2|
may be usable in the final model, as both of them represent
high statistical significance.

Analogously to the Daugman’s method, both geometrical
factors (namely |PR1 − PR2| and |IR1 − IR2|) show high
statistical significance for the BiomIrisSDK matcher in every
model. This suggests that these factors should be involved in
building the final model as well.

5.1.3. VeriEye SDK

For the VeriEye matcher, the first model V0 (the same as D0,
but without theOC parameters) brings up only one factor that
is statistically significant. That being said, we modified each
of the models, replacing one pair of factors at a time as we
did for the two former matchers. Model V2 (with |LC1 −
LC2|) yielded the best results with all regression parameters
statistically significant (p-value < 0.05).

In model V5 all factors were replaced (|LC1 − LC2|,
|IL1 − IL2| and |SH1 − SH2|). The only quality factor that
showed statistical significance was local contrast. This factor
was the only one statistically significant in two more models,
in which |IL1 − IL2| and |SH1 − SH2| were removed, one
at a time. However, only model V9 produced statistical sig-
nificance for every regression parameter present in it and this
model does not include |LC1 − LC2| parameter. Yet because
model V9 presented lower R2 statistic (approx. 0.352 versus
0.275) than models promoting the local contrast factor, we
chose to include LC in the final model built for the VeriEye
matcher.

5.2. Proposed final regression models

After a detailed analysis of 29 regression models it is possible
to put forward three with best results in terms of statistical sig-

nificance of regression parameters. For the Daugman method
we propose a following model:

Dfinal = β0 + β1t+ β2|SH1 − SH2|+ β3|PR1 − PR2|+

+β4|IR1 − IR2|+ ε

It predicts the change in Hamming distance in relation to time
(increase in HD of 0.007 each year), differences in image
sharpness and differences in pupil and iris radii. All regres-
sion parameters are statistically significant.

As for the BiomIrisSDK, the Bfinal model is considered
to produce best results. It attempts to predict change in HD
in terms of time (increase in HD of 0.007 each year), pupil
and iris radii, local contrast and image sharpness. All factors
are given in a form of a difference in covariates calculated for
each image from a pair.

Bfinal = β0 + β1t+ β2|LC1 − LC2|+ β3|SH1 − SH2|+

+β4|PR1 − PR2|+ β5|IR1 − IR2|+ ε

Finally, model Vfinal seems best for the VeriEye matcher.
It incorporates only the time parameter (decrease in similar-
ity score of about 11.3 each year) and a difference in local
contrast of the two images. Those parameters show high sta-
tistical significance (with p-values below machine accuracy).
This model also yields the highest R2 statistic of all three
models proposed, being the most accurate in predicting the
extent of the studied effect:

Vfinal = β0 + β1t+ β2|LC1 − LC2|+ ε

6. DISCUSSION

Results brought up in our work extend beyond most of the
previous studies with a series of regression models for each
of tested matchers, that attempt to to predict changes in sim-
ilarity score as a function of time parameter in combination
with geometrical and quality image factors. Each of the mod-
els was tested for the p-value it produces for every regression
parameter, to put forward a few models that give best results.

Time parameter is statistically significant in every single
model, which clearly expounds time impact on aging phe-
nomenon, recognized as a perceivable degradation of gen-
uine similarity score distributions. That being said, we found



that aging might be autonomous from iris image quality and
geometrical characteristics. Nevertheless, those components
shall be taken into account throughout future studies since
some combinations of them prove to be statistically signifi-
cant in regression modeling.

Although some of the models produced statistical signif-
icance for all of their predictors, low R2 statistics reveal that
there may be miscellaneous factors that were not taken into
account in our work or investigations of other researchers, but
which may also contribute to the studied phenomenon. It is
also critical to examine and expose mutual interrelations be-
tween applied regression parameters to come up with more
sentience while constructing regression models.

Experimental evidence of iris template aging shall not be
a starting point to diminish iris as a biometric characteristic.
Future studies should focus on collecting vast databases in-
cluding as many samples and embracing as long time peri-
ods as reasonably possible. Detailed research on the matter
shall incorporate evaluating more coding methodologies and
put forward attainable countermeasures to keep iris recogni-
tion a fast, reliable and secure biometric method.
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