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Abstract—Most of the research on vein biometrics addresses
the problems of either palm or finger vein recognition with
a considerably smaller emphasis on wrist vein modality. This
paper paves the way to a better understanding of capabilities
and challenges in the field of wrist vein verification. This is
achieved by introducing and discussing a fully automatic cross-
correlation based wrist vein verification technique. Overcoming
the limitations of ordinary cross-correlation, the proposed system
is capable of compensating for scale, translation and rotation
between vein patterns in a computationally efficient way. Intro-
duced comparison algorithm requires only two cross-correlation
operations to compensate for both translation and rotation,
moreover the well known property of log-polar transformation
of Fourier magnitudes is not involved in any form. To emphasize
the veins, a two-layer Hessian-based vein enhancement approach
with adaptive brightness normalization is introduced, improving
the connectivity and the stability of extracted vein patterns. The
experiments on the publicly available PUT Vein wrist database
give promising results with FNMR of 3.75% for FMR ≈ 0.1%. In
addition we make this research reproducible providing the source
code and instructions to replicate all findings in this work.

I. INTRODUCTION

Among a vast variety of modalities, vein biometrics has
a number of motivating points: it is easily collectable, non-
intrusive, unique, can be used in a non-contact manner and is
challenging to spoof leaving no latent marks. These properties
have attracted a lot of attention both from research and
industrial communities with a high emphasis on palm and
finger vein recognition systems. Probably, the most known
industrial players in the field are Fujitsu PalmSecure R© and
Hitachi VeinID R©, designing palm and finger vein recognition
systems respectively, which are already well deployed in
many security-sensitive applications. At the same time, the
smart watch industry paves the way to introduce biometrics
in wearable devices, considering wrist veins as a modality
with high usability potential. In contrast to industrial interest,
wrist vein biometrics is not sufficiently explored in scientific
literature, which is also highlighted in most recent published
work [1]. To bridge this gap, current paper introduces
a robust cross-correlation based fully automatic wrist vein
verification algorithm. The recognition system is designed
to be robust to two specific challenges in vein recognition:
noise and pose [2]. The noisy and low contrast images are
caused by active imaging in near-infrared (NIR) spectrum.
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Fig. 1. The block-diagram of the proposed automatic wrist vein verification
system.

The appearance of veins is further affected by such factors
as ambient air temperature and lighting, thickness and color
of the skin, body constitution. As a result, the input images
usually suffer from low signal to noise ratio and non-uniform
brightness. Therefore various image processing techniques
are mandatory for quality improvement. The pose challenge
is coming from the way the data subjects are presented to
the system. Significant geometrical transformations among
images are common for unconstrained and contactless image
capturing approaches, which is true for the database used in
the evaluation experiments of this paper. The structure of the
proposed algorithm follows the block-diagram in Figure 1.
The system is composed of three main units: 1) preprocessing
and Region Of Interest (ROI) extraction; 2) feature extraction
/ vein segmentation; 3) comparison stage. In our case, the
feature extraction unit is designed to deal with noise and low
contract issues, while the pose is compensated in preprocessing
and comparison stages. These modules are discussed in the
following paragraphs.

The main task of the preprocessor is to find the ROI in
the input image. In palm and finger vein recognition systems,
characteristic points of the palm contour, such as finger gaps
and tips, are usually involved in the ROI localization [3], [4],
[5]. Authors in [3] applied the same strategy using wrist joints
as referencing points for ROI detection in the wrist images. In
our case, no referencing points are present in images. Instead,
ROI detection is based on an empirical observation: in active
NIR imaging systems the wrist region usually appears as a
bright spot in the darker background. Therefore, our proposed
ROI detection method is based on adaptive thresholding of
gray-scale values presented in the image. Additionally, scale
normalization and image centering is done in the preprocessing



stage minimizing geometrical transformations between the
images to be compared. The introduced preprocessing unit is
discussed in Section II-A.

In this paper the network of wrist veins is used as features
for recognition. Therefore the task of the feature extraction
module is to segment veins in the input image. The literature
on vein segmentation is vast with many methods developed
for biometric and medical applications [6]. Algorithms can
be classified as matched-filter based [7], Hessian / curvature
based [8], [6], [9], and machine learning methods [6]. There is
a number of attempts to use an enhanced structure of the veins
in wrist vein recognition tasks. Authors in [1] use Maximum
Curvature Points (MCP) [8] and matched filters [7] in com-
bination with cross-correlation based comparison. Kabacinski
and Kowalski in [10] demonstrate that even simple vein
segmentation strategies can cope with the task fairly well.
Authors obtain a binary pattern thresholding a smoothed input
image.

In this work both binary and gray-scale vein patterns are
discussed and employed in experiments. The selected binary
extractor is MCP [8]. The proposed gray-scale vein extractor
is Hessian-based with an additional brightness normalization,
which is discussed in Section II-B.

The task of the comparison stage is to compare two ex-
tracted vein patterns. Previous research on wrist vein recog-
nition can be classified into cross-correlation versus machine
learning based methods [11], [3], [1]. The most recent pub-
lication in the field [1] covers both of these comparison ap-
proaches. Authors propose a physical set-up for the collection
of wrist vein images and demonstrate the performance of a
number of algorithms on the collected database. The data
was acquired using the device with wrist positioning stand
minimizing the displacements of the subject. Despite the fact
that wrist a positioning stand was used, authors report low
performance for the methods based on cross-correlation of
local features, such as MCP and matched filters. This fact
can be explained with limitations of cross-correlation methods
being robust to translation only. The database used in this work
is not publicly available, limiting reproducibility potential.

Another cross-correlation based recognition algorithm is in-
troduced in [10]. In the comparison stage the cross-correlation
of two images is computed iteratively rotating the probing
sample in the range of [−15◦, 15◦] with 1◦ steps. The gain
of the approach is robustness to both translation and rotation,
which comes at a cost of computational inefficiency. In this
paper authors introduce the PUT Vein database of palm and
wrist vein images and report global results. The database
contains 1200 NIR images of both wrists of 50 individuals. A
drawback of [10] is the absence of clear evaluation protocol,
nor separate recognition performance is provided for the wrist
vein modality.

There is also a number of cross-correlation based methods
using vein minutiae points instead of entire vein patterns [2].
Authors propose to extract characteristic minutiae points - the
ending and branch points in the skeletonized structure of the
veins. Vein minutiae are then transformed into translation and

scale invariant representation, where rotations can be compen-
sated as-well. In fact, the transformation is a Fourier spectrum
of minutia pattern sampled in the log-polar coordinates. The
similarity score is the normalized cross-correlation computed
for two log-polar spectra of minutiae patterns. To compensate
for the rotation, the horizontal circular shift of spectra is used
raising the time complexity of the comparison stage. The
wrist-related results are reported for the UC3M [12] database,
which is relatively small with 348 NIR vein images of 29 data
subjects.

The main contribution of this paper is the proposed cross-
correlation based comparison principle capable of compensat-
ing both translation and rotation between vein patterns in a
computationally efficient manner. The introduced comparison
algorithm requires only two cross-correlation operations in
the Fourier domain to compensate for both translation and
rotation, regardless of the number of observed angles. In
contrast, in the classical approach, namely cross-correlating
with rotated templates, the number of cross-correlation oper-
ations is equal to the number of observed angles. Moreover,
the well known and less computationally efficient comparison
approach, utilizing the properties of log-polar transformation
of Fourier magnitudes [13], [2], is not involved in any form,
making our method, to the best of our knowledge, unique.
The algorithm can cope with both binary and gray-scale vein
patterns in the input. The detailed description of the approach
is given in Section II-C.

The supportive preprocessing and feature extraction units
are developed as-well, demonstrating the gain from the pro-
posed comparison in the task of automatic wrist vein recog-
nition. The output of the proposed feature extractor is a gray-
scale vein pattern. The well known MCP features are used
to demonstrate the operation of our comparison algorithm
in the case of binary inputs. The results reported in this
work are fully reproducible: (i) the publicly available PUT
Vein database is used in all experiments, (ii) the evaluation
protocols are strictly defined and, finally, (iii) the source code
and instructions to replicate all findings are available. The
experimental results are summarized in Section III.

II. PROPOSED WRIST VEIN VERIFICATION SYSTEM

This section is dedicated to the proposed wrist vein verifica-
tion system discussing all the modules in details. The system
is composed of three main units, (Figure 1): 1) preprocessing
and ROI extraction; 2) feature extraction / vein segmentation;
3) comparison stage. The main tasks of the first module
are ROI detection and scale normalization. The second unit
highlights the structure of the veins in the input image, which
is mandatory due to low signal to noise ratio. Finally, the
comparison block, prior to score computation, compensates the
rotation and translation between enrolment and probe samples.

A. Preprocessing

The ROI detection algorithm is briefly discussed in this
section. The steps of the algorithm are as follows. First, the
input image I ∈ Rm×n is smoothed using Gaussian filter with



Fig. 2. An example of the preprocessing and ROI extraction. From left to
right: wrist image from PUT Vein database; centered and scaled image of the
wrist, k = 0.2; binary mask of the ROI.

standard deviation σ. Next, Np points are uniformly selected
from the smoothed image. The points are split into two
clusters using a trivial k-means++ algorithm [14]. Applying
clustering on the subset of pixels accelerates the computations,
however the value of Np can’t be too small to ensure a proper
convergence of k-means. The global threshold is computed
as an average of two centroids produced by the clustering
algorithm. The binary mask of the ROI is defined by pixels
above threshold. If the number of disjoint blobs in binary mask
of the ROI is larger than one, then only the largest blob is
preserved removing the small ones.

To compensate for the scale, both input image and ROI are
scale-normalized. Scale normalization makes the area of ROI
k times smaller comparing to the area of the input image.
Parameter k is fixed. Centering is next applied to both scaled
input image and scaled ROI aligning the center of mass of
ROI with the center of the image. An example of ROI and
correspondingly preprocessed input image are displayed in
Figure 2. The ROI is of an arbitrary shape, similar to the idea
in [4], maximizing the area to extract the vein pattern from.

B. Feature extraction

This section is dedicated to a brief description of the
proposed vein segmentation algorithm. The segmentation al-
gorithm is Hessian-based producing a gray-scale vein pattern
with a normalized intensity. A brief description of the approach
is given next.

First, the Hessian matrix is computed for each pixel in the
smoothed input image. The smoothing is done using Gaussian
filter parametrised by standard deviation σ. The Hessian matrix
describes second order intensity variations around each pixel.
Next, the eigenvalues of Hessian matrices are computed.
Eigenvalues reflect the curvature in principal orientations for
a given position. The image with highlighted veins is obtained
selecting the maximum eigenvalue of Hessian matrices. At this
point the image with highlighted veins is the result of one-
layer vein enhancement. To segment the veins in the image
of eigenvalues, the elements below mean are set to zero, see
example in Figure 3 (b).

To enhance the veins even further, a two-layer processing
is proposed. In this case, the intensity values in the image
of eigenvalues are inverted making the veins dark in the
brighter background. Next, all operations of one-layer vein
enhancement are applied to the image of inverted eigenvalues.
The result of this operation is shown in Figure 3 (d). Veins

(a) (b) (c)

(d) (e) (f)

Fig. 3. Vein segmentation example: (a) input image; (b) segmented veins
pattern, one-layer case; (c) normalized veins pattern, one-layer case; (d)
enhanced veins image before thresholding, two-layer case; (e) segmented veins
pattern after thresholding, two-layer case; (f) normalized veins pattern, two-
layer case.

(a) (b) (c) (d)

Fig. 4. Feature comparison example: (a) enrolled vein pattern Ve; (b) sum
of pre-rotated enrolment patterns after cropping Sec; (c) result of cross-
correlation of Sec and probe; (d) probe vein pattern Vp.

are expected to have positive curvature. Therefore, to segment
veins after two-layer enhancement, negative values of are set
to zero, see the result in Figure 3 (e).

The gain of the proposed two-layer processing is: better
connectivity of the veins, sustainability to non-vein artefacts,
see (b)(c) vs. (e)(f) in Figure 3.

To compensate the uneven brightness of blood vessels, Fig-
ure 3 (e), the following normalization procedure is introduced.
The disjoint peaks are detected in every row of the vein image
and normalized so as the value of the maximum of the peak
becomes 1. The peaks (veins) in a row are disjoint by a set of
zeros. The same normalization procedure is also done column-
wise and for two 45◦diagonals of the veins image. All the
normalized matrices are then stacked giving the 3D matrix. To
find the final normalized image of the veins the maximum is
determined along the dimension corresponding to the number
of normalized images. The resulting normalized vein patterns
are displayed in Figure 3 (c) and (f) for one-layer and two-
layer vein segmentation strategies respectively.

C. Feature comparison

In the comparison stage two extracted vein patterns, namely
enrolment and probe samples, are compared. The details of the
proposed approach are discussed next.

Let’s introduce the following notations: Ve and Vp repre-
senting the vein patterns of the enrolment and probe sample



respectively, as shown in Figure 4 (a) and (d). First, the
enrolment sample Ve is rotated around the center in the
specified range of angles [α1, αk] with an angular step of ∆α,
producing a set of rotated enrolment images Ve:

Ve = {Ve,α1
,Ve,α2

, . . . ,Ve,αk
} (1)

The elements of the set Ve from (1) are next summed up:

Se =
∑
X∈Ve

X (2)

The dimensionality of Se and Ve is identical Se = (se,ij) ∈
Rm×n. Next, Se is cropped leaving the central part of the
image:

Sec = (se,ij), i = cv, . . . ,m− cv, j = ch, . . . , n− ch. (3)

In Equation (3) cv is the number of pixels to remove from
top and bottom of the image, ch is the number of pixels to
be removed from left and right. The dimensionality of Sec is
(m− 2cv)× (n− 2ch), see an example in Figure 4 (b).

The cross-correlation of Sec and Vp is computed next,
which can be done efficiently using a Fast Fourier Trans-
form (FFT). The position of the maximum in the cross-
correlation output, Figure 4 (c), defines the translation between
the images. Furthermore, the proposed transformation of the
enrolment sample Sec makes cross-correlation robust to the
rotations in the [α1, αk] range of angles. No zero-padding is
used in the cross-correlation operation. Therefore, parameters
cv and ch define the maximum possible displacement in
vertical and horizontal directions between the images Sec and
Vp.

At this point angle estimation between enrolled and probe
vein patterns is done. Given the position rm = (xm, ym) of the
maximum in the cross-correlation, the probe Vp is cropped:

Vpc = (vp,ij), i = ym, . . . , ym +m− 2cv,

j = xm, . . . , xm + n− 2ch.
(4)

The dimensionality of the cropped probe image becomes
Vpc ∈ R(m−2cv)×(n−2ch). Next, all images in the set Ve are
also cropped using the Equation (3) giving the set:

Vec = {Vec,α1 ,Vec,α2 , . . . ,Vec,αk
} (5)

After cropping operations (4) and (5) the image Vpc is
translation-registered (aligned) with all images in the set Vec.
Next the image Vpc is compared to all images in the set Vec
producing the angular scores:

sα,l =

(m−2cv)∑
i=1

(n−2ch)∑
j=1

(Vpc ◦Vec,αl
)ij , l = 1, . . . , k (6)

The symbol ◦ in (6) means element-wise multiplication. The
maximum angular score in sα = (sα,i) ∈ Rk points to the
angle in α = (αi) ∈ Rk, which is an estimated angle αep
between enrolled and probe vein patterns.

Given the angle αep the enrolment sample Ve is rotated
matching the orientation of Vp. At this point the cross-
correlation based comparison inherited from [15] is used to

compute the similarity score. In this approach the enrolment
sample is cropped similarly to the strategy adopted in the
Equation (3) giving Vec. The cross-correlation of Vec and Vp

is next computed. The maximum value of cross-correlation is
denoted as cm, which has the position rm = (xm, ym). With
known rm the probe is cropped according to Equation (4).
The cropped enrolment pattern Vec and probe Vpc are now
registered both in terms of translation and orientation. The
resulting similarity score:

s = cm/

(m−2cv)∑
i=1

(n−2ch)∑
j=1

(Vec + Vpc)ij

 (7)

In the proposed comparison approach only two cross-
correlation operations are needed to compensate both the
translation and rotation. In contrast, the exhaustive-search
proposed so far requires the number of cross-correlations to
be proportional to the number of search angles [10].

III. EXPERIMENTS

Wrist vein verification experiments are conducted using the
publicly available PUT Vein database [10], which, to the best
of our knowledge, is the largest publicly available dataset of
wrist vein images. There are two more datasets of wrist vein
images were introduced in the literature [12], [1], however
both of them are smaller than PUT Vein, with 348 images
of 29 clients in [12], and 1000 images of 50 clients in [1].
Another limitation of database from [12] is that it was captured
in one session. The database in [1] has two sessions, which
is still less than in PUT Vein with 3 sessions. Moreover, it
is not mentioned in [12], [1], that the databases are publicly
available, nor the download links are provided. Thus, these
databases are not included in the experiments.

The PUT Vein database contains 1200 wrist vein images
collected from both wrists of 50 individuals. In the proposed
scenario each hand is considered as a separate client, there-
fore Nclients = 100. The data was collected in 3 sessions,
Nsessions = 3, with at least one week interval between each
session, capturing 4 images per session for each client/hand.

Unfortunately, no evaluation protocol is described in [10].
Therefore, evaluation protocols are introduced in this paper
paving the way for reproducibility. Two evaluations protocols
are proposed, namely ”P 1” and ”P 4”. All protocols are
split into development (”dev”) and evaluation (”eval”) sets.
Images of the left wrist belong to the development set, while
images of the right wrist form the evaluation set. Images in
the ”eval” set are mirrored to better match the appearance of
left wrists found on the ”dev” set. The development set is
used to tune hyper parameters related to proposed recognition
methods, while the evaluation set is solely used for reporting
performance. One notable parameter estimated from ”dev” set
is the recognition threshold related to the selected operational
point of the system. The number in protocol names indicates
how many enrolment images are used to produce a single
similarity score, being 1 or 4. In the proposed experiments,
a maximum score fusion strategy is used for protocol ”P 4”.



TABLE I
PROTOCOLS STATISTICS (IDENTICAL FOR ”DEV” AND ”EVAL” SETS).

Protocol Nenrolls Nprobes Ngenuine Nimpostor

P 1 200 400 1600 78400
P 4 200 400 400 19600
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Fig. 5. ROC curves for different evaluation protocols, evaluation set.
Features: MCP binary vein patterns. Comparison: solid lines - proposed cross-
correlation based approach; dashed lines - cross-correlation based algorithm
from [15].

Sets ”dev” and ”eval” are further divided into enrolment
and probe sub-sets. Images of the first session are consid-
ered to be enrolment samples, sessions 2 and 3 are probes.
The resulting statistics containing the number of enrolment
Nenrolls and probe images Nprobes as well as the number
of genuine Ngenuine and Nimpostor comparisons/scores for
different protocols is summarized in Table I. The statistics is
identical for ”dev” and ”eval” sets having the same number of
clients Nclients = 50 in each.

In our experiments both binary and gray-scale vein patterns
are tested as features to be compared. The comparison al-
gorithms with and without compensation for the rotation are
tested. The hyper-parameters of the system are tuned on the
”dev” set. The selected settings are discussed next.

The preprocessing / ROI extraction (Subsection II-A) mod-
ule is identical in all experiments. The specifications are:
dimensions of the input image m = 1024, n = 768; σ = 1;
Np = 10000; ROI area normalization constant k = 0.2. The
corresponding preprocessing example is displayed in Figure 2.

In the feature extraction stage both binary and gray-scale
features are produced. In the case of the gray-scale vein ex-
traction algorithm (Subsection II-B) two-layer processing and
brightness normalization are enabled. The standard deviation
of the Gaussian filter is σ = 9. The Maximum Curvature
Points (MCP) [8] algorithm is used to extract the binary vein
structures. The only parameter of the algorithm is standard
deviation, which is also set to σ = 9.

To estimate the gain of the proposed rotation compensation
scheme, two comparison strategies are tested: cross-correlation
based comparison inherited from [15] and the introduced
approach (Section II-C). In both cases the enrolment sample
cropping parameters are cv = 300, ch = 225 pixels, Equa-
tion (3). With rotation compensation the range of angles is
[α1 = −10◦, α2 = 10◦] with a step ∆ = 1◦. In the case of
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Fig. 6. ROC curves for different evaluation protocols, evaluation set. Features:
proposed Hessian based gray-scale vein patterns. Comparison: solid lines -
proposed cross-correlation based approach; dashed lines - cross-correlation
based algorithm [15].

TABLE II
FNMR AND HTER IN % REPORTED FOR THE evaluation SET GIVEN

THRESHOLDS CHOSEN a priori ON THE development SET. THRESHOLDS
FOR THE REPORTED FNMR ARE ESTIMATED ON THE DEVELOPMENT SET

FOR FMR=0.1 %. THRESHOLDS FOR HTER ARE ESTIMATED ON THE
DEVELOPMENT SET FOR THE EER OPERATION POINT.

Comparison: No rotation [15] Proposed
Protocol ↓ FNMR HTER FNMR HTER
MCP features:
P 1 26.06 9.58 10.00 9.26
P 4 12.00 5.86 3.75 3.58
Hessian-based features:
P 1 20.19 13.89 13.13 12.93
P 4 8.25 7.76 4.75 6.20

binary images the veins are morphologically dilated with a
disk-shaped structuring element of 3 pixels radius, reducing
the negative effect of local perturbations.

The ROC for the evaluation sets are plotted in Figure 5
for MCP features, and in Figure 6 for Hessian-based features,
Subsection II-B. The False Match Rate (FMR) axis is plotted
in logarithmic scale detailing the low range of false positives.

The numerical performance results are also summarised in
Table II reporting the False Non-Match Rate (FNMR) and
the HTER (Half Total Error Rate) for different protocols of
the ”eval” set of the database. The FNMR is computed given
threshold, which is estimated on the ”dev” set for a value of
FMR=0.1 %. The HTER is computed for threshold estimated
on the ”dev” set for EER operation point.

The paper [11], to the best of our knowledge, is the only
one reporting recognition results using PUT Vein database.
However, the precise evaluation protocol is unknown. First,
no splitting into development and evaluation sets is introduced.
Second, the all-vs-all strategy is used for score computation.
In the most similar experiment authors use the first session to
train the proposed system, while sessions 2 and 3 are used
for testing. The reported EER is 1.23 %. However, based
on the ROC curves provided in [11], the FNMR values for
FMR≤0.1% are higher comparing to our results.

Our proposed system is developed in Python using Bob
library [16], [17] and was tested using Linux machine with



TABLE III
EXECUTION TIMES FOR DIFFERENT PROCESSING STEPS.

Features: MCT Hessian-based
Processing step ↓ time, s time, s
ROI + preprocessing 0.37 0.37
Feature extraction 1.10 0.62
No rotation comparison [15] 0.12 0.12
Brute-force comparison [10] 2.71 2.71
Proposed comparison 0.26 0.30

i7-5930K CPU and 32 GB of RAM. The source code1 is
available. The timing for all steps of the proposed system is
summarised in Table III. The comparison incorporating brute-
force/exhaustive search of the rotation angle is added, high-
lighting the gain of the introduced rotation robust comparison
strategy. The speed-up is approximately of a factor of ×10. At
the same time the comparison is just ×2.5 times slower than
ordinary cross-correlation.

IV. CONCLUSION

This work introduces a fully automatic wrist vein ver-
ification algorithm, capable of dealing with more realistic
recognition scenarios. Moreover, to the best of our knowledge,
this is the first paper paving the way to the reproducible
research in the field of wrist vein verification.

The proposed verification system is composed of three main
modules: ROI extraction and preprocessing; feature extraction;
comparison. In the first stage a methodology for the extraction
of arbitrary shaped mask of the ROI is developed, maximizing
the area to extract the veins from. Moreover a scale nor-
malization is moved to this step, simplifying the comparison
stage. Enhanced pattern of the veins is an output of the feature
extraction module. In this step a two-layer Hessian-based vein
enhancement is introduced improving the connectivity of the
veins and minimizing the presence of non-vein artifacts in
the output. Moreover an adaptive brightness normalization is
proposed in extraction unit making the intensity of the veins
uniform across the image. The main contribution of the
paper is the cross-correlation based comparison capable of
compensating both rotation and translation between the images
in a computationally efficient way. The comparison is ∼ ×10
faster than the equally performing brute-force approach, and
is just ×2.5 times slower than ordinary cross-correlation. The
comparison is also capable of dealing with both binary and
gray-scale inputs.

The verification performance is promising demonstrating
the applicability of wrist veins modality in biometric systems.
The lowest HTER is 3.58% and FNMR = 3.75% for FMR
≈ 0.1%. The advantage of the discussed system is a stability
across a wide range of FMR values, which is important in
realistic applications. Interestingly, that in most cases tech-
niques using binary patterns of the veins perform better. The
gray-scale approaches give lower FNMR (FMR≤0.1%) only

1Available at: https://gitlab.idiap.ch/bob/bob.bio.vein

when no rotation compensation is involved. Moreover, the
multi-enrollment strategy, protocol ”P 4”, helps to boost the
performance in all cases.
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