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Abstract—This paper presents a method for segmenting iris
images obtained from the deceased subjects, by training a
deep convolutional neural network (DCNN) designed for the
purpose of semantic segmentation. Post-mortem iris recognition
has recently emerged as an alternative, or additional, method
useful in forensic analysis. At the same time it poses many
new challenges from the technological standpoint, one of them
being the image segmentation stage, which has proven difficult
to be reliably executed by conventional iris recognition methods.
Our approach is based on the SegNet architecture, fine-tuned
with 1,300 manually segmented post-mortem iris images taken
from the Warsaw-BioBase-Post-Mortem-Iris v1.0 database. The
experiments presented in this paper show that this data-driven
solution is able to learn specific deformations present in post-
mortem samples, which are missing from alive irises, and offers a
considerable improvement over the state-of-the-art, conventional
segmentation algorithm (OSIRIS): the Intersection over Union
(IoU) metric was improved from 73.6% (for OSIRIS) to 83%
(for DCNN-based presented in this paper) averaged over subject-
disjoint, multiple splits of the data into train and test subsets.
This paper offers the first known to us method of automatic
processing of post-mortem iris images. We offer source codes
with the trained DCNN that perform end-to-end segmentation
of post-mortem iris images, as described in this paper. Also, we
offer binary masks corresponding to manual segmentation of
samples from Warsaw-BioBase-Post-Mortem-Iris v1.0 database
to facilitate development of alternative methods for post-mortem
iris segmentation.

I. INTRODUCTION

A. Post-mortem iris recognition

Post-mortem iris recognition has recently gained consider-
able attention in the biometric community. While this method
of personal identification works nearly perfectly when applied
to living individuals, it has been shown that the performance
will deteriorate when existing iris recognition algorithms are
confronted with images obtained in the post-mortem scenario,
i.e., from deceased subjects [1], [2]. This deterioration will
continue as time since death elapses, due to significant distor-
tions of the iris and the cornea caused by post-mortem decay
processes, however, the first evaluations of the dynamics of
post-mortem iris recognition degradation, published by Trok-
ielewicz et al. [3], suggests that conventional iris recognition
algorithms are able to deliver correct matches for samples
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acquired even 17 days after death when bodies are kept in the
mortuary conditions. Bolme et al. studied the decomposition
of iris, among other biometric capabilities, when the cadavers
are put in an outdoor environment, simulating one of a typical
forensic scenarios [4]. More recently, Sauerwein et al. [5]
showed in their experiments that irises stay viable up to
34 days post-mortem, when cadavers were kept in outdoor
conditions and during the winter. No iris recognition method
was used to support their claim, and it was based on the
opinion of human experts acquiring the samples. However, it
suggests that winter conditions increase the chances to see an
iris even in the cadaver left outside for a longer time. All these
papers suggest that automatic post-mortem iris recognition
could lead to important application in forensics, being an
additional tool for forensic examiners. This could help identify
victims of crimes and accidents in cases when other methods
of identification are unavailable or would prove more difficult
to use.

B. Challenges

Erratic image segmentation is often put forward as a po-
tential cause of degrading the performance of iris recognition
algorithms when they are made to work with difficult samples,
with post-mortem samples being no exception. Post-mortem
decay at the cellular level slowly leads to macroscopic changes
in the eye, such as deviations from the pupil’s circularity, wrin-
kles on the cornea that cause additional specular reflections
to appear, and changes in the iris texture [3]. At the same
time, it is known that the correct execution of the segmentation
stage is crucial for ensuring good accuracy of iris recognition,
which is conditional on encoding the actual iris texture, and
not the surrounding portions of the eye. Hence, it is evident
that making an iris recognition more reliable for iris image
acquired after death, the segmentation methods should be
designed so that to be sensitive to these new, post-mortem
deformations.

C. Contributions

To our knowledge, there are no prior papers, or published
research introducing the iris image processing methodologies
specific to post-mortem samples. Hence, this paper is unique
in the sense that it makes the first step in making post-mortem
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iris recognition more reliable and more attractive for forensic
analyses by proposing iris segmentation specifically designed
for post-mortem iris samples. This paper offers the following
three contributions:

• an algorithm for the segmentation of post-mortem iris
images based on a deep convolutional neural network and
experimental results showing that it offers a considerable
improvement over the segmentation results produced on
the same data by a conventional segmentation method,

• source codes of the end-to-end post-mortem segmentation
method, discussed in this paper, along with the weights
of the trained DCNN,

• manually segmented masks for Warsaw-BioBase-Post-
Mortem-Iris v1.0 database [6] to facilitate the develop-
ment of other, post-mortem-aware segmentation methods.

Source codes, network weights and man-
ual segmentation results can be obtained at
http://zbum.ia.pw.edu.pl/EN/node/46.

Structure of this study goes as follows: Section II provides
an overview of the existing applications of deep convolutional
networks for the purpose of segmenting difficult iris images.
Dataset, network model, its training and evaluation, and com-
parison against the conventional iris recognition method are
described in Section III. Finally, Section IV discusses the main
accomplishments and further work.

II. RELATED WORK

A. Deep convolutional networks for image segmentation

Deep convolutional neural networks (DCNN) have recently
shown great potential for solving selected computer vision
tasks, such as natural image classification, with most popular
architectures being described in [7], [8], [9], and image seg-
mentation by dense labeling, which has been reviewed exten-
sively in [10]. These approaches are often named data-driven,
as they learn the correct solution from the data itself, with
minimum use of prior knowledge and with a lot of parameters
(weights) and hyperparameters to be guessed directly from the
samples. This opposes to hand-crafted approaches that use the
prior knowledge on the subject and the training encompasses
fine-tuning of not-so-many hyperparameters, when compared
to data-driven algorithms. Both approaches have upsides and
downsides, and data-driven models are often used when our
prior knowledge on the subject is limited or difficult to be
transformed into formulas possible to be applied in hand-
crafted algorithms. Segmentation of post-mortem iris images
is an example of such problems. One of the most successful
DCNN architectures built for semantic segmentation tasks
is SegNet, comprising a fully convolutional encoder-decoder
architecture [11]. The encoder stage of SegNet is composed of
the VGG-16 model graph. The decoder stage comprises several
sets of convolution and upsampling layers, whose target is
to retrieve spatial information from the encoder output, and
produce a dense pixel-wise classification output of the softmax
layer that is of the same size as the input image. Because of
its state-of-the-art performance, including good accuracy in iris

segmentation tasks [12], and recent inclusion in the MATLAB
software, SegNet was chosen as a candidate network for the
task described in this paper.

B. Applications of convolutional networks to iris segmentation

Regarding the applications of iris segmentation utilizing
neural networks, several attempts at this task have been made,
mostly aiming to improve segmentation of difficult, noisy iris
images, such as these collected in visible spectrum, using low
quality equipment, and pictures captured on-the-move and at-
a-distance.

Broussard and Ives [13] employed neural networks for
determining which measurements (e.g., pixel value, mean,
standard deviation) and which iris regions contain the most
discriminatory information. This is done by training a multi-
layer perceptron to identify and label an unwrapped polar
iris image pixels as either belonging to the iris or not. No
assumption of circularity is made, and the network serves as
a multidimensional statistical classifier to combine data from
multiple measurements into a binary decision for each pixel
independently. Measurements for the MLP input were selected
with respect to feature saliency, i.e., the authors tested which
ones provide the most robust features (most discriminatory
power). The proposed solution is said to approach the manu-
ally annotated ground truth masks.

Liu et al. [14] explored hierarchical convolutional neural
networks (HCNNs) and multi-scale fully convolutional neural
networks (MFCNs) for the purpose of improving segmentation
of noisy iris images, e.g., visible light images with light
reflections, blurry images captured on-the-move and/or at-a-
distance, ’gaze-away’ eyes, etc., with iris pixels being located
without any a priori knowledge or hand-crafted rules. HCNNs
constructed by the authors employ hierarchical patches as
input, ranging from scales small to large for capturing both
local and global iris information. However, this approach is
said to lack efficiency due to the sliding of the path window,
which increases the computational overhead and due to the
field of neurons being limited by the patch size. MFCNs, on
the other hand, are reported to overcome these limitations with
no sliding window (all pixel labels predicted simultaneously)
and no limitation of the neuron field size. MFCNs are said
to use several layers ranging from shallow to very deep, for
capturing both fine and coarse details of the iris image. Ex-
periments were performed on the UBIRIS.v2 and CASIA.v4-
distance databases, comprising noisy color images acquired
in unconstrained conditions and NIR at-a-distance images,
respectively. MFCNs are said to use the VGG-21 model [8],
trained for natural image classification, which is later fine-
tuned using iris images with annotated masks. The following
segmentation errors, defined as deviation from the ground
truth segmentation by the proportion of disagreeing pixels,
are obtained by the authors: 0.9% on the UBIRIS.v2 dataset
and 0.59% on the CASIA.v4-distance dataset. Limitations
include trouble with segmenting irises in images with dark
skin subjects.



He et al. approached the challenge of segmenting noisy
iris images obtained in the visible spectrum with a modified
DeepLab CNN model which is similar to VGG-16, but with
fully connected layers replaced with fully convolutional layers
of kernel size 1 and an additional upscaling layer to match
the output size to this of the input. The authors trained their
solution on the visible spectrum iris dataset consisting of
low quality samples, and reported an accuracy of 92% IoU
(Intersection over Union), which outperforms the traditional
Hough transform method applied to the same data.

Similar problem is studied by Arsalan et al. [15], where
two-stage method for segmenting noisy, visible spectrum iris
images is proposed, comprising of initial approximation of iris
boundary with the use of classic image processing methods,
and further, finer localization with a CNN composed of a mod-
ified and fine-tuned VGG-face model. The solution is shown
to achieve good accuracy in segmenting irregular specular
reflections.

Jalilian and Uhl employed fully convolutional encoder-
decoder networks (FCEDNs) to benchmark their performance
on several iris datasets, including both good and poor quality
samples [12]. These FCEDNs, based on the SegNet architec-
ture, are reported to offer segmentation accuracy comparable
with traditional approaches for good quality samples, and
better for those of low quality.

C. Challenges in post-mortem iris image processing

An important conclusion that we can draw from this brief
literature review, is that DCNNs built for semantic segmen-
tation tasks are a promising solution for dealing with poor
quality iris images. Post-mortem iris images represent another
category of difficult iris samples since they are often heavily
impacted by biological decay processes and show wrinkles
on the iris texture, occurring due to excessive drying of the
cornea, partial collapse of the iris due to loss of intraocular
pressure, as well as additional light reflections associated with
these changes. In addition to all of the above, metal retractors
used to open the eyelids are often visible in the image as
well, see Fig. 1. These make conventional iris segmentation
methods, e.g., those based on Daugman’s idea of using cir-
cular approximations of the iris inner and outer boundaries,
inaccurate and thus ineffective in algorithms targeting forensic
analysis of iris samples.

III. EXPERIMENTS

A. Experimental dataset

For the purpose of this study, we used the only, known
to us, publicly available Warsaw-BioBase-PostMortem-Iris-v1
dataset, which gathers 1330 post-mortem iris images collected
from 17 individuals during various times after death (from
5 hours up to 17 days) [6]. These samples represent ocular
regions of recently deceased subjects. Typical, near-infrared
(NIR), as well as high quality visible light images are available
in this dataset, and we chose to train our network using both
types of samples. Careful examination of the samples shows
that the nature of this data is different from any other iris

Fig. 1: Example images from the Warsaw-BioBase-
PostMortem-Iris-v1 dataset and their corresponding manually
annotated masks, which remove the iris portions affected by
post-mortem changes: NIR (left) and red channel of the RGB
image (right).

dataset, with post-mortem changes being the more pronounced
the more time has elapsed since a subject’s demise. Apart from
additional specular reflections caused by the tissue’s decay, we
can observe wrinkles on the cornea, haze, altered shape of the
pupil, and even visible degradation of the iris tissue and partial
collapses of the eyeball.

B. Preparing ground truth data

For every sample in the dataset, we have carefully annotated
the corresponding ground truth binary mask, which denotes
regions of iris that are unaffected by both the post-mortem
changes, as described above, and the specular reflections,
regardless of their origin. Example images from the dataset
and our binary ground truth masks are shown in Fig. 1. To
expedite the training process and reduce memory overhead,
the images were downsampled to the size of 120×160 pixels,
and the mask predictions produced by the network are later
upscaled to retrieve the original size of 480×640 pixels.

C. Model architecture

For our solution, we use the SegNet model for semantic
segmentation [11], which is a modified VGG-16 network with
removed fully connected layers, and added decoder stage, so
that the resulting architecture follows a concept of a coupled
encoder-decoder network with five sets of convolutional and
pooling/unpooling layers in each half of the network, Fig. 2.
SegNet performs the non-linear upsampling of the encoded
data by employing stored indices from the max-pooling layers
in a corresponding decoder. The softmax layer is then followed
by a pixel-level classification layer, which yields a binary
decision for each pixel (in our case: iris or non-iris). We carried
out our experiments in MATLAB 2017b environment, using
the implementation of SegNet provided by the Neural Network
Toolbox.



Fig. 2: Encoder-decoder architecture of SegNet. Inference
takes place from left to right. Size of the Softmax layer is equal
to the size of the input image. Figure adapted from [11].

D. Training and evaluation procedure

For training and testing procedure, 10 subject-disjoint
train/test data splits were created by randomly choosing the
data from 14 (out of 17) subjects to the train subset, and the
data from the remaining 3 (out of 17) subjects to the test sub-
set. All ten splits were made with replacement, making them
statistically independent. The network is then trained with each
train subset independently for each split, and evaluated on the
corresponding test subset. This procedure gives 10 statistically
independent evaluations and allows to assess the variance of
the obtained results. The training, encompassing 60 epochs in
each experiment, was accomplished with stochastic gradient
descent as the minimization method. We applied momentum
of 0.9, learning rate of 0.001, and L2 regularization of 0.0005.
During testing, a prediction in the form of binary mask is
obtained from the network for each of the images. For each
predicted mask, Intersection over Union (IoU) is calculated
between the prediction and the ground truth mask, which is
available also for test partitions of the data. These are then
averaged to get the mean IoU for each test split.

E. Results and comparison with conventional iris segmenta-
tion

To compare the DCNN-based method developed in this
work with a conventional segmentation method, we did exactly
the same evaluations on the train/test splits using the OSIRIS
v4.1 [16] open source software that implements Daugman’s
idea of using circular approximations of the iris boundaries.
Additionally, OSIRIS uses a Viterbi algorithm for excluding
non-iris portions within the annulus defined by two circles, so
it should be able to effectively cut out obstructions such as
specular reflections, eyelashes and other irregular intrusions.
Similarly to the evaluation of the DCNN-based solution, IoU
parameters are calculated and averaged within each test split,
and compared with those obtained from the DCNN-based
solution. Fig. 3 summarizes average IoU offered in all 10 splits
by both solutions, and Table I details the results obtained in
each split.

The DCNN-based solution proposed in this paper clearly
outperforms the conventional segmentation method, not only

Data-driven (CNN-based) Conventional (OSIRIS)
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Fig. 3: Boxplots representing Intersection over Union in 10 test
splits, for both OSIRIS and DCNN-based approaches. Median
values are shown in red, height of each boxes corresponds to
an inter-quartile range (IQR) spanning from the first (Q1) to
the third (Q3) quartile, whiskers span from Q1-1.5*IQR to
Q3+1.5*IQR, and outliers are shown as crosses.

TABLE I: Mean Intersection over Union in each test split
obtained for OSIRIS and DCNN-based post-mortem iris seg-
mentation. The best and the worst results are bolded. The
third column shows the improvement in performance split-
wise. Averaged results are shown in the last line.

Mean IoU (OSIRIS) Mean IoU (CNN) Improvement

Split 1 0.7793 0.8587 10.2%

Split 2 0.6002 0.7657 27.6%

Split 3 0.7786 0.8681 11.5%

Split 4 0.7533 0.8427 11.9%

Split 5 0.8715 0.8853 1.6%

Split 6 0.6203 0.7986 28.7%

Split 7 0.4823 0.6794 40.9%
Split 8 0.8032 0.87 8.3%

Split 9 0.8078 0.8564 6.0%

Split 10 0.8621 0.8822 2.3%

Average 0.7358 0.8303 12.8%

on average for the entire experiment, but also individually in
each split. It provide the segmentation accuracy as high as
IoU 88.53%, while OSIRIS offers 73.58% IoU on average
in identical evaluation. This means an average improvement
of 12.8% presented by the proposed methods over the con-
ventional algorithm. Looking at the results obtained in each
data split, the DCNN-based solution always outperforms the
OSIRIS, even by as much as 40.9% (split 7).

F. Close-up analysis of the results

It is interesting to see example segmentation results for both
DCNN-based and conventional algorithms, to discuss potential



(a) DCNN-based segmentation (b) OSIRIS segmentation (c) Ground truth

Fig. 4: Results of the DCNN-based (a) and the conventional (b) iris image segmentation when both methods present a good-
quality outcome. The iris image used in this example was acquired in NIR light and only 5h post-mortem. The corresponding
ground truth, manually annotated on the same image is also presented (c).

(a) DCNN-based segmentation (b) OSIRIS segmentation (c) Ground truth

Fig. 5: Same as in Fig. 4, except that the failure of both the DCNN-based (a) and the conventional segmentation (b) is
illustrated. The iris image used in this example was acquired in NIR light and 574 hours post-mortem.

reasons of failures and room for improvement. Figures 4
through 5 present example segmentation results, along with
ground truth annotation for comparison, in four categories:

• both algorithms performed well (achieved simultaneously
the highest IoU), Fig. 4,

• both algorithms failed (achieved simultaneously the low-
est IoU), Fig. 5,

• DCNN-based solution failed (achieved the lowest IoU)
when the conventional method did a good job (achieved
the highest IoU), Fig. 6,

• DCNN-based solution did a good job (achieved the high-
est IoU) when the conventional method failed (achieved
the lowest IoU), Fig. 7.

As expected, both methods perform well for post-mortem
iris images, whose quality does not diverge from a quality
of alive iris images, and can be still classified as meeting
the ISO/IEC 19794-6 and ISO/IEC 29794-6 requirements.
Fig. 4 show an example post-mortem image captured only 5
hours after death, hence in the moment when post-mortem
deformations are not yet excessively present. Additionally,
metal retractors used in the acquisition process made the iris
texture perfectly non-occluded.

In turn, both methods failed to accurately recognize a

small portion of the non-deformed iris texture in the iris that
underwent heavy post-mortem processes, Fig. 5. The DCNN-
based method was not able to localize any iris portion in
this difficult sample acquired 574 hours (almost 24 days)
post-mortem, hence producing no prediction. However, this
behavior is still more favorable than what the conventional
segmentation did, namely finding the iris in the incorrect
region.

There are samples which are easier to process by conven-
tional segmentation method. Fig. 6 presents a post-mortem
sample that displays a regularly shaped iris with good contrast
between the iris and the background. Hence, this sample was
relatively easy to process by OSIRIS software, which presents
a high IoU in this case. However, the intensity and texture
of the iris region departed from what the DCNN saw in the
training samples, and thus our solution was very selective in
annotating the iris areas, ending up with low IoU.

However, one can observe an opposite result more fre-
quently: the DCNN-based segmentation was able to detect
non-standard specular reflections and wrinkles, offering way
better result than the conventional algorithm, Fig. 7. Similar
results were often observed when neither the pupil nor the iris
are perfectly circular, and the iris texture started to be muddy



(a) DCNN-based segmentation (b) OSIRIS segmentation (c) Ground truth

Fig. 6: Same as in Fig. 4, except that the failure of the DCNN-based method is presented (a), in case when the conventional
segmentation did a good job (b). The iris image used in this example was acquired in NIR light and 211 hours post-mortem.

(a) DCNN-based segmentation (b) OSIRIS segmentation (c) Ground truth

Fig. 7: Same as in Fig. 4, except that the results are displayed for an image presenting typical post-mortem deformations. The
DCNN-based segmentation (a) did a good job when compared to the conventional segmentation (b). The iris image used in
this example was acquired in NIR light and 154 hours post-mortem.

due to cornea opacification, resulting in low contrast between
the iris and the surrounding areas. In such cases the supremacy
of the proposed method is visible.

IV. CONCLUSIONS

This study presents the first known to us method for
post-mortem iris image segmentation aiming at making post-
mortem iris recognition more reliable. The proposed solution
incorporates a deep convolutional neural network (DCNN) that
already proved to be useful in semantic segmentation tasks.
We presented that the DCNN-based approach is able to effec-
tively learn deformations of the iris specific to post-mortem
biological processes, and use this knowledge effectively to
skip these deformed regions in the segmentation. The DCNN-
based method outperforms a conventional iris segmentation
algorithm by a wide margin: the Intersection over Union
(IoU), averaged over 10 statistically independent experiments,
equals to 83%, where the conventional algorithm achieves
IoU=73.6%. This work thus makes the first important step in
adapting iris recognition methodology to post-mortem images,
opening up many new opportunities for the forensic examiners
and biometrics experts.

This paper follows the reproducibility guidelines by offering
a) the source codes of the end-to-end post-mortem-aware iris

segmentation method, b) trained DCNN model, and c) manual
segmentation results for the publicly available post-mortem
iris samples available to those who are interested in further
research in post-mortem iris recognition. These, in particular,
allow to fully reproduce the results presented in this paper.
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