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Abstract—Images undergo a complex processing chain from
the moment light reaches the camera’s sensor until the final
digital image is delivered. Each of these operations leave traces
on the noise model which enable forgery detection through
noise analysis. In this article we define a background stochastic
model which makes it possible to detect local noise anomalies
characterized by their number of false alarms. The proposed
method is both automatic and blind, allowing quantitative and
subjectivity-free detections. Results show that the proposed
method outperforms the state of the art.

Index Terms—image forensics, automatic forgery detection,
noise residual, blind algorithm.

I. Introduction
Powerful image editing software is now widespread, and

a fast growing number of falsified images is being shared on
the web. Hence, assessing image authenticity has become
crucial in many areas of science and society.

Visual inspection is not sufficient to detect tamper-
ing [1]: the average human accuracy when determining if
an image is fake or not is only slightly better than random
chance [2]. The erosion of trust in images combined with
this human inability to detect forgeries entails a growing
need for automatic detection algorithms.

In the past 15 years, digital forensics tools have been
developed to address this problem [3]. These methods
can be classified into passive and active. Active methods
insert data or a signature when the image is digitized [4].
Hence, they are limited to specially equipped digital
cameras. Passive methods do not rely on any prior or
preset information. They use the fact that digital forgeries,
while not leaving necessarily visual clues, do alter the
image’s statistics [5], [6]. Most digital images are the
result of a complex processing chain. Each digital image
has been notably denoised, demosaiced, re-interpolated to
correct chromatic aberration and optical distortion, and
subject to a color balance, a gamma-correction, and a final
compression. These operations leave a dense and uniform
set of digital traces enabling the detection of their local
disruptions caused by a forgery.

As first suggested by [7], inconsistencies of the final
noise model can reveal tampering. Each step of the camera
processing pipeline modifies the model of the initial raw
Poisson-Gaussian noise. Yet, the noise model remains
uniform. A forgery generally alters this spatial uniformity.
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Fig. 1: Illustration of the approach. Left: two input images,
one pristine and the other a forgery from the UMD face-
swap dataset. Middle: the distribution of flat blocks (in
white or red, containing only noise). Among them, the
red ones are the flattest ones in each color bin. Right: the
final forgery mask detects a non uniform distribution of
the red blocks among the white ones.
Therefore, adding noise to an image can be an efficient
counter-forensic tool [8]. In short, local anomalies of the
noise model, though imperceptible to the human eye, can
become informative cues for forensic analysis.

Our plan is as follows. Section II presents a review
of techniques detecting image forgeries based on noise
analysis. Section III sets the principles of our method
and describes the proposed approach. Section IV shows
experimental results and a comparison with state of the
art techniques. Section V discusses the presented main
ideas and concludes the paper.

II. Related work

The main sources of noise during the acquisition process
can be classified in two types: random noise sources and
spatial non-uniformity sources [9]. The second class in-
cludes the photo-response non-uniformity noise (PRNU).
The PRNU is caused by differences in pixel responses to
uniform light sources. In [10], [11], the PRNU is estimated
by averaging the noise obtained from multiple images. It is
a unique stochastic fingerprint of imaging sensors that can
be used for device identification and integrity verification.
The limitation of this approach is that it requires access to
the camera that took the image, or to a sufficient number
of images taken by the same camera.



Forgery detection based on random noise analysis in
raw images presents a less challenging scenario since noise
can be accurately characterized by a Gaussian-Poisson
distribution [12], [13]. This fact is exploited in [14], where
the authors construct a noise density table and classify
the contribution of different regions to the global noise
model, encountering two types of contribution if the image
is forged. An extension to JPEG images is available in [15].

One of the most popular algorithms for splicing detec-
tion based on noise analysis was proposed by Mahdian
and Saic [16]. This method performs local wavelet-based
noise level estimation using a Median Absolute Devia-
tion estimator. Regions with homogeneous noise standard
deviations are then identified. In [17], noise estimation is
based on the kurtosis concentration phenomenon [18]. The
fact that the kurtosis values across different band-passed
filter channels is a constant value opens the way to a noise
variance estimation when noise follows an additive white
Gaussian noise model in the filtered domain. The final
step of the method is a segmentation using k-means.

In [19], noise level estimation is performed using prin-
cipal component analysis on the saturation component of
the HSV colorspace. Classification of blocks in two clusters
is primarily done using a k-means clustering technique,
and improved by subsequently applying an SVM classifier.
A similar approach can be found in [20].

The previous methods share the same drawbacks: they
compute local noise levels, but neglect or ignore the
noise dependence on the intensity and they compute
local noise levels with fixed-size windows. The method
presented in [21] addresses these drawbacks by using a
multi-scale segmentation method and by estimating noise
level functions instead of single noise levels.

The authors of [22] propose to estimate jointly the noise
level function (NLF) and the camera response function
(CRF) by segmenting the image into edge and non-edge
regions. The former is used to estimate the NLF and the
latter to estimate the CRF using a Bayesian approach.
Noise level functions are then compared and an empirical
threshold is fixed in order to detect salient curves.

In [23] the authors propose to extract local features
based on noise residuals and their local co-occurrence his-
tograms. The distribution of these histograms is assumed
to follow a mixture model of two classes whose param-
eters are estimated using the expectation-maximization
algorithm. The final output shows, for each block, the
ratio of its distances to both classes. Methods based
on supervised learning are more generic. However, they
often lack reliability due to the unavailability of ade-
quate training sets. In [24], a CNN-based method for
noise residual extraction was proposed. Using a Siamese
architecture, this algorithm is capable of enhancing the
camera model artifacts, which are used as an input to the
feature extraction process proposed in [23]. These last two
methods are good representatives of the state of the art
and will be used in the experimental section.

III. Proposed method
The method is based on four assumptions:
1) in each channel, the noise standard deviation is a

function on the color level;
2) this property of the raw image is maintained by the

whole image processing chain [25];
3) the blocks with small low frequency energy contain

only noise;
4) the relative spatial distribution of blocks with very

small energy among those with very small low
frequency energy is a random uniform Poisson point
process.

The principles 1 to 3 are classic in noise estimation
methods [25]. Indeed, these algorithms perform roughly
as follows: for each color level, they first select the flattest
blocks. Then they estimate noise in high frequencies
using a small percentile of these blocks, where noise is
assumed to dominate over signal. In our setting, we are
not interested in the numerical output of the second step
but rather in identifying which regions of the image the
selected blocks come from. Indeed, if we assume that the
variance of the flattest blocks chosen in the first step can
only be explained by noise, the small percentile of them
used for noise estimation in the second step should have
a random uniform repartition with respect to the first.
However, if we detect that a particular area of the image
concentrates too many of these blocks compared to the
flat regions, we can suspect that this region has a different
noise history than the rest, and is therefore a forgery.

Hence, our method first computes the distributions of
the flattest blocks in each bin and the distribution of
those blocks among the previous ones that exhibit the
lowest standard deviation. In a second step, an a-contrario
approach detects statistically significant deviations from
one distribution to the other [26].

This detection will be steered by forgeries having lower
noise levels than the background and having flat blocks
where noise is measurable. Hence, falsifications in textured
areas will not be detected by this method, and local
forgeries with higher noise level than the target image
should also be missed.

A. Computation of distributions
Given an image I, we first consider all its overlapping

w × w blocks. Since noise is clipped in saturated pixels,
we discard blocks containing at least one saturated pixel.
For each channel, due to the fact that noise is intensity-
dependent, blocks with size w × w are assigned to a bin
according to their mean intensity. We denote by B the
prefixed number of sample blocks within each bin.

For each color channel c and bin b, we construct a set
V b

c in the following way: we first apply the orthogonal
discrete cosine transform (DCT II) to all the blocks in the
corresponding bin and channel and compute the energy
(l2 norm) of their low frequencies. Blocks within the bin
are then ordered from lowest to highest energy. A 2D



Algorithm 1 Distributions computation
Input: image I with C color channels.
Parameters: w block size, B bin size, n << 1, m < 1 two
percentages.

1: V = [ ]
2: L= [ ]
3: blocks← list of overlapping w × w valid blocks
4: for each color channel c ∈ [0, C − 1] do
5: compute bins of B blocks of similar mean
6: for each bin b do
7: compute low-frequency variance of each block
8: V b

c ← list of the nB blocks having the lowest
low-frequency variance

9: compute standard deviation of blocks in V b
c

10: Lb
c ← list of the mnB blocks having the low-

est standard deviation
11: if b is valid then
12: V ←

[
V [. . . ], V b

c

]
13: L←

[
L[. . . ], Lb

c

]
14: end if
15: end for
16: end for
17: return V, L

frequency (i, j) ̸= (0, 0) is said to be a low frequency if
i + j < T where T is a fixed threshold that depends
on the block size w. For w = 5, 8 and 11, the corre-
sponding T values are set to 5, 9 and 13. The mean term
((i, j) = (0, 0)) is discarded [27]. The elements of V b

c are
the elements contained in the n percentile for this order of
block energies, where n is a small percentage value. Since
most of the energy corresponding to the image geometry
is located at the low and medium frequencies, this block
selection ensures that we are actually considering the
flattest ones inside each bin.

Given that the elements of V b
c are the flattest blocks,

their standard deviation is mainly explained by the traces
of sensor noise left over by the image processing pipeline.
We consider a small proportion m of them to construct
the subset Lb

c ⊂ V b
c consisting of the m% of the blocks in

V b
c having the lowest standard deviation. If, however, the

bin has a majority of completely flat blocks (i.e. blocks
with zero standard deviation), the entire bin is declared
invalid and discarded.

We obtain, for each channel and each valid bin, a set V b
c

consisting of a small percentile n of blocks whose variance
in the low and medium frequencies is the lowest, and a
subset Lb

c ⊂ V b
c consisting of the proportion m among

them of blocks having the lowest standard deviation.
Finally, we define:

V =
∪
c

∪
valid b

V b
c and L =

∪
c

∪
valid b

Lb
c .

In short, the elements of V are the flat blocks of the
image in each channel bin, and the blocks in L have
the lowest observed noise levels in each bin. This block
selection procedure is summarized in Algorithm 1.

B. A contrario model
Our null hypothesis (H0) is the absence of any forgery.

Under H0, blocks in V and L should have a similar spatial
distribution in the image. We need to detect significant
deviations from one distribution to the other that could
not happen by chance. For this purpose, we now consider
W ×W non-overlapping blocks which we will refer to as
macroblocks. For each macroblock M we observe s1, . . . sN
blocks in V , of which s1, . . . sK are also in L. We define
the random variables Xi for i = 1, . . . , N as:

Xi =

{
1 if si ∈ L
0 if si ̸∈ L

Under the null hypothesis, the random variables Xi are
Bernoulli distributed with parameter p = mnB

nB = m, for
all i = 1, . . . N . Following the a contrario approach [26],
the number of false alarms (NFA) of the macroblock M
is be defined by

NFA(M) = NtestsPH0(X ≥ K) where X =

N∑
i=1

Xi.

The probability PH0
(X ≥ K) is difficult to compute di-

rectly because the random variables Xi with i = 1, . . . , N
are not independent. We solve this problem by considering
that we are making w2 separate tests: one for each w×w
grid without overlap and assuming that for each of these
tests we observe N/w2 blocks in V and K/w2 blocks in
S. Then, the NFA of a macroblock M is defined

NFA(M) = NtestsB
(
K

w2
,
N

w2
, p

)
.

This is actually an upper bound, since at least one of
the grids will have more favourable parameters. Here,
B denotes the tail of the binomial law, Ntests is the
number of tests we are theoretically performing, namely
w2 × (Nx/W ) × (Ny/W ), where (Nx, Ny) is the size of
the image and therefore (Nx/W ) × (Ny/W ) the number
of macroblocks. Algorithm 2 summarizes the NFA com-
putation.

The NFA of a macroblock M is a (conservative) upper
bound of the expected number of occurrences of the
observed event, namely, observing s1, . . . sN blocks in V ,
of which s1, . . . sK are also in L. A macroblock M is ε-
meaningful if NFA(M) < ε. Once ε is fixed, a macroblock
is detected if it is ε-meaningful. For a given image, forgery
detection masks are then defined as the union of all
macroblocks which featured a detection.

C. Optimal parameters
The proposed method has parameters w, b, n,m, W .

Optimal parameters were computed using the area under
the curve (AUC) criterion for the receiver operating
characteristic (ROC) curves obtained for each parameter
combination on a dataset of 300 forged images from the
DEFALS [28] challenge. Since false-positive rates higher
than 0.1 make little sense for forgery-detection, the AUC
values obtained when restricting the ROC curves to the



Algorithm 2 NFA computation
Input: image I of size Nx ×Ny, V , L two lists of blocks,
w block size, m proportion.
Parameters: W macroblock size.

1: Ntests ← w2 × (Nx/W )× (Ny/W )
2: for each macroblock M do
3: VM ← number of blocks in V for macroblock M
4: SM ← number of blocks in S for macroblock M
5: NFA[M ]← Ntests B

(
SM

w2 ,
VM

w2 ,m
)

6: end for
7: return NFA

[0, 0.1] interval were also considered. The results showed
that, regardless of the interval, the optimal parameters
are w = 5, B = 20000, n = 0.05, m = 0.3, and W = 256.

As stated previously, to define a detection we need to
set a threshold for the NFA. This threshold provides a
bound to the NFA in the total number of performed
tests. This choice is left to the users since it should be
chosen accordingly to the level of confidence needed in
the detections. Notwithstanding the foregoing, we will use
in the rest of the article a threshold ε = 1, meaning that
less than one false detection can occur in each image. As
our estimate of the NFA is conservative, this 1-threshold
turns out to be sufficient for a good control of the false
positives. The source code of the method is available
at https://github.com/marigardella/Noisesniffer.

IV. Experiments and results
A. Evaluated methods

To assess performance we compared our method
with state-of-the-art algorithms based on noise anal-
ysis. Namely, we compared with Splicebuster [23],
Noiseprint [24], Pan [17], and Mahdian [16]. For each al-
gorithm, we used a publicly available implementation [29].

B. Evaluation datasets
The CG-1050 [30], the Korus [31], [32], and the UMD

face-swap [33] databases were used for the comparison.
The CG-1050 database is classified in four datasets

according to the type of forgery: retouching, coloriza-
tion, splicing and copy-move attacks. Forgery masks were
constructed by computing and thresholding the absolute
difference between the original image and the forged one,
at each channel. Masks were then further refined in order
to prevent isolated pixels from being regarded as forged.
The Korus dataset comprises object insertion and removal
attacks together with accurate handmade masks.

Finally, the UMD face-swap dataset is obtained by
performing face-swapping operations using two different
algorithms. A bounding box of the face-swap area which
serves as a mask is provided.

C. Evaluation metrics
The results obtained by the methods were evaluated

using the Intersection over Union (IoU) and the F1 score.
The classic version of these metrics are defined as:

IoU =
TP

TP + FN + FP
, F1 =

2TP

2TP + FN + FP
, (1)

where TP stands for true positive, FN for false negative
and FP for false positive. These metrics are both designed
to evaluate binary maps. However, all the methods used
for comparison deliver continuous heatmaps. To adapt the
metrics to the continuous setting, we used their weighted
version. In this approach, the value of a heatmap H at
each pixel x is regarded as the probability of forgery of
the pixel. Therefore, we define the weighted true positives,
weighted false negatives and weighted false positives as:

TPw =
∑
x

H(x) ·M(x),

FNw =
∑
x

H(x) · (1−M(x)),

FPw =
∑
x

(1−H(x)) ·M(x),

respectively, where H is the output heatmap normalized
between 0 and 1 and M is the ground-truth binary mask
where pixels with value 1 are forged. Then, the weighted
version of the IoU and F1 scores replace TP , FN and FP
with their weighted versions in Eq. 1. It is important to
note that, when H is a binary output, its weighted score
coincides with the classic one.

Taking into account that the output of some of the
evaluated methods is a two-sided heatmap, both the
output heatmap and the inverted one were evaluated and
only the highest score was kept for each image.

D. Results
The results obtained by each of the evaluated methods

on each database are shown in Tab. I. Visual results
on some selected examples are shown in Fig. 2. In the
caption, we list the extremely low NFAs of the detected
masks. Regardless of the evaluation metric, we observe
that our method ranks first on the retouching, colorization,
and splicing datasets from the CG-1050 database as well
for the UMD face-swap database, whereas Splicebuster
shows the best performance on the copy-move dataset
from the CG-1050 database. On the Korus database,
when considering the IoU score both Splicebuster and our
method show the best performance. However, Splicebuster
outperforms all the methods on the Korus dataset when
considering the F1 score. This difference is explained by
the fact that the IoU score penalizes false detections
more than the F1 score. Our method, by introducing a
statistical validation step, might discard true detections
when they do not represent a significant deviation from the
background model. But, on the other hand, this validation
step controls the number of false alarms producing fewer
false detections.

The best performance for all methods is achieved in
the Korus dataset, which targets object insertion/removal
forgery techniques. Object insertion by splicing can be
detected by noise analysis whenever the background image
and the spliced region have different noise models. Object

https://github.com/marigardella/Noisesniffer


Database CG-1050 Korus UMD Average
Retouching Colorization Copy-move Splicing face-swap ranking

Ours 0.087(1)-0.144(1) 0.077(1)-0.127(1) 0.014(2)-0.027(2) 0.035(1)-0.063(1) 0.120(1)-0.193(2) 0.091(1)-0.129(1) 1.2-1.3
Splicebuster 0.060(2)-0.108(2) 0.058(2)-0.097(2) 0.017(1)-0.031(1) 0.024(2)-0.045(2) 0.120(1)-0.200(1) 0.049(2)-0.088(2) 1.7-1.7
Noiseprint 0.031(3)-0.059(3) 0.045(5)-0.078(5) 0.014(2)-0.027(2) 0.011(3)-0.022(3) 0.094(3)-0.163(3) 0.037(3)-0.068(3) 3.2-3.2
Mahdian 0.017(5)-0.032(5) 0.055(4)-0.090(4) 0.013(5)-0.025(5) 0.010(5)-0.020(5) 0.074(4)-0.130(4) 0.024(4)-0.045(4) 4.5-4.5
Pan 0.020(4)-0.038(4) 0.058(2)-0.095(3) 0.014(2)-0.026(4) 0.011(3)-0.021(4) 0.072(5)-0.130(4) 0.021(5)-0.039(5) 3.5-4

TABLE I: Average weighted IoU - average weighted F1 scores obtained by each method in each of the databases
considered and overall average ranking. For the proposed method, we used a NFA threshold equal to 1. Our method
stands first with an average rank of 1.2 when considering the IoU score and 1.3 when considering the F1 score.

insertion by copy-move attacks can also disrupt the under-
lying noise model when performed together with counter-
forensics method such as boundary blurring. However,
when copy-move is done by simple copy-paste, noise-based
methods are less suitable for detection. This explains the
poor performance shown by all methods in the copy-
move dataset of the CG-1050 database. Face-swapping can
be regarded as a particular splicing technique. However,
because of the particular semantic of the manipulation,
it usually involves stretching the spliced face to fit the
original. This leaves further traces in the noise model,
which explains why noise methods perform better in this
particular splicing technique rather than when considering
common splicing attacks, as in the splicing dataset of
the CG-1050 database. Nevertheless, face-swapping is still
challenging for most of the evaluated methods, because
images containing people are likely to present textured
regions that can cause false detections, as shown in Fig. 2.
Colorization attacks, on the other hand, require noise-
based methods to take into account that noise is intensity-
dependent. Our method does so by comparing blocks with
similar intensities. The results show that this is the most
suitable approach to detect this kind of tampering.

A visual inspection shows that methods such as Mah-
dian and Pan are less suited for automatic detection
but might rather be considered as enhancers since their
output consist of residual noise. More recent methods such
as Splicebuster and Noiseprint, which use noise residue
for feature extraction, provide more reliable detections.
However, none of the mentioned methods is able to provide
binary masks based on statistical confidence but only a
heatmap. This kind of heatmaps, as given in Fig. 2, show
edges and texture related to the image content rather
than to noise inconsistencies. This makes the heatmaps
less readable and challenges the user when interpreting
them. On the contrary, our method discards many of
these distractions by just keeping the regions that have a
statistically significant different behaviour.

V. Discussion
In this article we proposed a new automatic forgery

detection algorithm based on noise analysis. As a relevant
addition to existing noise-based methods, our method
incorporates a statistical validation step detecting only
the inconsistencies that could not happen by chance. Each
detection is associated a number of false alarms (NFA),
and a threshold on the NFA provides an effective global

control of the false positives: Given a set of images, an a
priori threshold on the NFA can reduce the number of false
alarms to an acceptable level for the user. Furthermore, the
NFA associates a confidence level to each detection, which,
like a p-value, can be very small for strong detections and
therefore furnish a secure diagnose to users. This is a major
improvement to existing algorithms in contexts where
an objective statistical proof is required. Our method
also provides, together with the statistically validated
detection mask, a visual exploration of the relative flat
patch distributions, as shown in Fig. 1. It can also
aid the interpretation of the results. The performance
achieved by our method in the three databases shows its
relevance in the detection of different forgery techniques.
The proposed approach is able to deal with different image
processing pipelines, including both uncompressed and
JPEG-compressed images.

Nevertheless, the method is by construction unable to
detect a pure internal copy-move (because then the noise
model is unaltered), and it cannot detect splicing in the
(not too frequent) case where the forged region is more
noisy than its target image.
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