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Abstract—Morphed face images have recently become a
growing concern for existing face verification systems, as
they are relatively easy to generate and can be used to im-
personate someone’s identity for various malicious purposes.
Efficient Morphing Attack Detection (MAD) that generalizes
well across different morphing techniques is, therefore, of
paramount importance. Existing MAD techniques predomi-
nantly rely on discriminative models that learn from examples
of bona fide and morphed images and, as a result, often
exhibit sub-optimal generalization performance when con-
fronted with unknown types of morphing attacks. To address
this problem, we propose a novel, diffusion–based MAD
method in this paper that learns only from the characteristics
of bona fide images. Various forms of morphing attacks
are then detected by our model as out-of-distribution sam-
ples. We perform rigorous experiments over four different
datasets (CASIA-WebFace, FRLL-Morphs, FERET-Morphs
and FRGC-Morphs) and compare the proposed solution to
both discriminatively-trained and once-class MAD models.
The experimental results show that our MAD model achieves
highly competitive results on all considered datasets.

I. INTRODUCTION

Automatic face recognition systems (FRSs) are widely
used to verify a person’s identity by matching the face
image of an individual to the data enrolled in the system’s
database. While such systems are today widely deployed
and highly accurate [13], they are known to be prone to
certain types of attacks with manipulated data, such as
morphing attacks [12], [15], [36]. Because face morphs are
created by blending/morphing the facial appearances of at
least two different people, a single morphed image can be
utilized to falsely authenticate all individuals, whose face
has been used during the morph-generation process.

With recent advancements in generative models and
the availability of open-source morphing techniques, the
generation of highly realistic, high–quality morphed face
images has become an almost effortless process. The
successful detection of face morphing attacks is, hence,
crucial for the prevention of illegal activities [7]. While
significant progress has been achieved in morphing attack
detection (MAD), the majority of existing solutions learn
to detect morphed faces discriminatively, i.e., by analyz-
ing and learning the differences between bona fide and
morphed samples. Such techniques have been shown to
be very accurate when evaluated on morphing techniques
seen during training, but often fail to detect morphs created
by unknown morphing attacks. Moreover, when evaluated
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Figure 1. Illustration of MAD-DDPM. MAD-DDPM is a (reconstruct-
ion-based) one-class face morphing attack detection (MAD) model that
uses a probabilistic (denoising) diffusion process to learn the distribution
of bone-fide samples. At run-time, face morphs are detected based on the
produced reconstruction error. Unlike the majority of competing MAD
techniques, MAD-DDPM requires no attack examples during training.

on data from unknown sources, their accuracy is usually
adversely affected by domain shifts.

To address the generalization capabilities of MAD mod-
els, some researchers explored the use of the one-class
models [4], [11], [16], where only bona fide images are
used in the training phase. Such models, are generally
expected to generalize better to unseen morphs and are also
at the heart of this work. Specifically, we propose in this
paper a novel one-class MAD technique (MAD-DDPM)
that exploits Denoising Diffusion Probabilistic Models
(DDPMs) for the detection task. We evaluate the model in
comprehensive experiments over multiple datasets and in
comparison to both discriminatively-trained and one-class
MAD competitors with promising results.

II. RELATED WORK

In this section, we discuss background information and
related work on morphing-attack-detection (MAD) and
diffusion models to provide the necessary context for our
research. For a more comprehensive coverage of these
topics, the reader is referred to some of the excellent
surveys available in the literature, e.g., [3], [37].

A. Morphing attack detection

Existing morphing attack detection (MAD) models can
in general be grouped into single-image (S-MAD) and
differential (D-MAD) models. The first category of models
examines facial morphs independently one from the other,
while the latter are comparing manipulated samples to a979-8-3503-3607-8/23/$31.00 ©2023 IEEE
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reference. D-MADs are generally very accurate in closed-
group problems, while S-MADs are predominantly used
to detect attacks without prior knowledge of the subjects’
identities. We limit the literature review in this section to
S-MADs only, as they are most closely related to our work.

Regardless of the face morphing technique used, the
generated morphs typically contain image irregularities,
such noise, pixel discontinuities, distortions, spectrum dis-
crepancies, and similar artifacts. With early MADs, such
irregularities were often detected using hand-crafted tech-
niques utilizing photo-response non-uniformity (PRNU)
noise [35], reflection analysis [38] or texture-based de-
scriptors, such as LBP [24], LPQ [25] or SURF [20].
Although these methods yielded promising results, their
generalization capabilities were shown to be limited [4].

More recent MADs take advantage of the capabilities of
data–driven, deep-learning algorithms [15]. Raghavendra
et al. [29] were amongst the first to propose transfer
learning, with pretrained deep models for this task. In their
work, attacks were detected with a simple, fully-connected
binary classifier, fed with fused VGG19 and AlexNet fea-
tures, pretrained on ImageNet. Wandzik et al. [40], on the
other hand, achieved high detection accuracy with features
extracted with general-purpose face recognition systems
(FRSs), fed to an SVM. Ramachandra et al. [30] utilized
Inception models in a similar manner, while Damer et
al. [7] argued that pixel-wise supervision, where each pixel
is classified as a bona fide or a morphing attack, is superior,
when used in addition to the binary, image-level objective.
Recently, MixFaceNet [2] by Boutros et al. achieved state-
of-the-art results in different detection tasks, including face
morphing detection [5]. This model represents a highly
efficient architecture that captures different levels of attack
cues through differently-sized convolutional kernels.

Different from the supervised techniques discussed
above, some authors have advocated the use of one-
class learning models trained on bone-fide samples only
to improve the generalization capabilities of the MAD
techniques. Damer et al. [4], for example, were among the
first to achieve significant performance generalization on
unseen attacks with two different one–class methods, i.e. a
one-class support vector machine (OCSVM) and an isola-
tion forest (ISF). Similar generalization capabilities were
later demonstrated in [16], where Ibsen et al. explored
the use of a Gaussian Mixture Model (GMM), Variational
Autoencoder (VAE) and Single-Objective Generative Ad-
versarial Active Learning (SO-GAAL) in addition to an
OCSVM. In a recent study, Fang et al. [11] proposed
an unsupervised convolutional autoencoder, enhanced with
a self-paced learning (SPL) algorithm. Here, the authors
found that morphing attacks are easier to reconstruct
in comparison to non-manipulated samples. The MAD-
DDPM model, proposed in this paper, falls into the group
of one-class learning models, but relies on a probabilistic
diffusion process to learn the distribution of bona-fide face
images.

B. Diffusion models

Denoising Diffusion Probabilistic Models (DDPMs)
have recently been found to be exceptionally powerful
models for various computer-vision tasks [3], [21], [32].
DDPMs, first introduced by Ho et al. [14], were shown
to be able to generate high–quality images sampled from
pure Gaussian noise. These methods learn to gradually add
noise to training samples and to perform denoising, by
iteratively maximizing the data likelihood. Although early
models have shown impressive generative capabilities,
their sampling techniques are time-consuming and often
affect the image quality of the generated samples.

Shortly after the initial release of DDPMs, Nichol et
al. [23] proposed an improved optimization criterion that
significantly sped up the noise removal, while maintaining
the quality of the generated data. Song et al. [39] pro-
posed their own solution for faster sampling and easier
deployment of the diffusion process. Dhariwal et al. [10]
built on these findings and showed that DDPMs can
outperform GANs on image synthesis. In a recent study,
Karras et al. [17] explored different approaches for image
generation with diffusion and provided guidelines related
to the architectural design and the optimization strategy
of DDPMs. Rombach et al. [31] successfully reduced
the complexity of the diffusion models, by implementing
the diffusion process in the latent space of a pretrained
autoencoder with minimal degradation in image quality.

Although DDPMs were primarily developed for the
generation of new data, they have also been adapted to one-
class-learning algorithms. Wolleb et al. [41], for example,
trained an image-to-image diffusion model, that learned to
reconstruct medical images of healthy subjects through the
iterative denoising process. A similar technique, proposed
by Wyatt et al. [42], used Simplex noise, instead of the
common Gaussian noise. In contract, Pinaya et al. [28]
detected anomalies by utilizing diffusion models in the la-
tent space, where the noise reversal is much more efficient.

III. METHODOLOGY

A considerable cross-section of existing MAD tech-
niques uses discriminatively trained models for the detec-
tion of facial morphs and, as a result, often struggles with
the generalization to unseen morphing attacks. In this sec-
tion, we propose a novel MAD model, MAD-DDPM, that
is trained with bona-fide samples only and is, therefore,
expected to generalize better to various (unknown, unseen)
types of morphing attacks.

A. Overview of MAD-DDPM

A high-level overview of the proposed MAD-DDPM
model is presented in Figure 2. The model follows the
(self-supervised, one-class) reconstruction-based frame-
work to anomaly detection [1], [45], where a generative
model is learned to reconstruct so-called normal train-
ing data, i.e., bona-fide face images, frome noisy inputs.
Because anomalies (face morphs in our case) deviate
from the distribution of the normal samples, they are
expected to generate (comparably) larger reconstruction



Figure 2. High-level overview of the proposed MAD-DDPM model. MAD-DDPM is a one-class learning model that uses a reconstruction-based
measure to determine whether the input images are bona fide or face morphs (shown on the left). At the core of the technique is a two-branch
reconstruction procedure that uses denoising diffusion probabilistic models (DDPMs) learned over only bona-fide samples as the basis for the
detection tasks (shown on the right). Here, the first branch models the distribution on bona-fide samples directly in the pixel-space (for low-level
artifact detection), while the second captures the distribution of higher-level features extracted with a pretreind CNN F .

errors. Consequently, these errors can be used to determine
whether the given data sample is normal (bona-fide) or
anomalous (morph), as illustrated on the left of Figure 2.

While different generative models have been used in the
literature for reconstruction-based anomaly detection (e.g.,
autoencoders, GANs, etc.), they were often observed to
generalize too well beyond the training data, leading to
comparable reconstructions for both normal and anoma-
lous data. For the MAD-DDPM we, therefore, design a
powerful reconstruction procedure that: (i) results in larger
differences in the reconstructions of bona-fide and mor-
phed images than competing (one-class) MAD solutions,
and (ii) consequently results in better performance. The
procedure is based on Denoising Diffusion Probabilistic
Models (DDPMs) and the following considerations:

• Complementary data representation: The recon-
struction task is learned over two data representation,
i.e., (i) the pixel space, where the goal is to model
image-level (bona-fide) facial characteristics and to
facilitate the detection of low-level image artifacts,
and (ii) a feature space that captures higher-level
semantic cues of the training data, enabling the de-
tection of potentially more abstract data irregularities.

• Compact distribution modelling: To ensure the gen-
erative models do not generalize too well beyond the
data used for learning, efficient modeling techniques
are needed that result in compact distributions of
the training data. In MAD-DDPM, we model the
data distribution of the bona-fide samples using a
probabilistic denoising diffusion process across two
data representations, which allows us to efficiently
capture the characteristics of the bona-fide samples in
a compact manner. This leads to highly competitive
MAD performance, as demonstrated in Section V.

In the following sections, we present the theoretical
background behind DDPMs, discuss the design of the
MAD-DDPM reconstruction procedure, and elaborate on
the detection-score computation step.

B. Denoising Diffusion Probabilistic Models (DDPMs)

DDPMs are likelihood–based generative methods, that
learn to model a given data distribution pdata(x) with

standard deviation σdata by employing a two–stage ap-
proach [14]. In the first stage, a forward diffusion process is
applied to the data x0 ∼ pdata(x), by gradually corrupting
the sample x0 with Gaussian noise N (0, σ2I). The noising
technique results in a noisy sample xN and represents a
non–homogeneous Markov chain:

q(xt|xt−1) = N (xt|xt−1

√
1− βt, βtI) (1)

where t is the time step from a predefined time sequence
{t0, t1, ...tN}, while βt = σ2

t defines the amount of noise
added at each step and its value is determined by a variance
schedule. Following the recommendations from [17], we
implement a linear variance schedule, found to work best
in terms of sampling speed and generated data quality. The
forward process defined with Eq. (1) enables fast sampling
of xt at any time step t:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

where ᾱt = 1−βt and ᾱt = Πt
i=1αi. In the second stage,

a generative model parametrized by θ performs sequential
denoising of xN according to:

pθ(xt−1|xt,x0) = N (xt−1|µ̃t(xt,x0), β̃tI) (2)

where t = tN , tN−1, ...t0, µ̃t(xt,x0) =
√
ᾱt−1βt

1−ᾱt
x0 +

√
ᾱt(1−ᾱt−1)

1−ᾱt
xt and β̃t = 1−ᾱt−1

1−ᾱt
βt. The mean function

µ̃t is optimized by an aproximator Dθ(x, σ), trained to
minimize the expected L2 denoising error:

L = Ex∼pdata
En∼N (0,σ2I)||D(x+ n;σ)− x||22 (3)

where Dθ(x, σ) is a neural network. For MAD-DDPM,
an unconditional U-Net [33] architecture, originally pro-
posed in [14], is selected for the implementation of this
network. For efficiency reasons, we leverage the recently
published DPM-Solver [19], a dedicated high-order solver
for diffusion ordinary differential equations (ODEs).

C. Reconstruction and Detection-Score Computation
MAD-DDPM uses a two-branch reconstruction proce-

dure to model the distribution of the bona fide samples,
as shown in Figure 2. The first DDPM branch, DI , is
modeling the distribution of bona fide face images in the



pixel space. The second DDPM branch, Dlat, operates in
the feature space of a pretrained convolutional network
F , that extracts high-level image representations over two
different scales. Here, the calculated feature maps are
concatenated before feeding them to the dedicated diffu-
sion model. Each DDPM branch of the model is learned
independently of the other to reduce the computational
effort and reduce cross-talk and interactions between low-
level image characteristics and higher-level semantic cues.

During run-time, the probability of an image xn to
be a morphing attack is quantified using the score sa,
calculated by summing up the reconstruction errors of the
two diffusion branches, i.e.:

sa(xn) = DI(xn +nI ;σI)+Dlat(F (xn)+nF ;σF ) (4)

Because our main goal is to detect face morphing
artifacts, MAD-DDPM performs the iterative noising with
a relatively low σmax, which leads to moderately noised
samples. In contrast to existing generative DDPMs, our
model is, therefore, unable to generate new samples di-
rectly from noise. Instead, it is conditioned on the noisy
input xn + nI and aims to recover information that has
been obscured during the forward noising process.

IV. EXPERIMENTAL SETUP

A. Datasets

We primarily use four publicly available datasets for
the experiments: CASIA-WebFace [43], FERET-Morphs,
FRLL-Morphs and FRGC-Morphs [34]. Images from all
datasets are first preprocessed by RetinaFace [9] to localize
the facial areas. Next, these areas are cropped with a
margin equal to 5% of the bounding box height. With this
strategy, we ensure, that the cropped images include pixels
surrounding the face area, as this is where a considerable
amount of morphing artifacts is typically located. Finally,
the cropped images are resized to 224×224 pixels and fed
to the MAD model. The training of the model is performed
in a one–class learning manner, with bona fide images
only. In the testing phase, we use three different datasets
consisting of both, bona fide and morphed images.

Training data. The MAD models are trained on
CASIA-WebFace [43], a large-scale dataset used com-
monly for face verification and identification tasks. The
dataset consists of 494.414 face images of 10.575 unique
subjects, collected from the internet. The dataset was
designed to include a wide variety of face poses and
expressions, captured under different illumination settings
and with different image resolutions.

Testing data. Testing is done on three common morph-
ing datasets proposed by Sarkar et al. in [34], i.e. FRLL-
Morphs, FERET-Morphs and FRGC-Morphs. All morphed
face images were created by merging bona fide samples
from their respective source datasets, i.e. FRLL [8], [22],
FERET [27] and FRGC [26]. For the generation of the
landmark–based morphs, the authors used OpenCV and
FaceMorpher, while deep–learning–based morphs were
generated with StyleGAN2. Additionally, image samples

Figure 3. Sample images from the datasets used for the evaluation.
The figure shows bona fide training images from CASIA-WebFace [43]
(left) and morphed images and their respective bona fide source faces
from FERET-Morphs, FRLL-Morphs and FRGC-Morphs [34] (right).

Table I
NUMBER OF BONA FIDE IMAGES (BF) AND MORPHING ATTACKS

(MA) IN EACH TEST DATASET. THE MORPHS ARE GENERATED BY 5
MORPHING METHODS, I.E. OPENCV (OCV), FACEMORPHER (FM),

STYLEGAN (SG), AMSL, WEBMORPH (WM).

Dataset Image size BF OCV FM SG AMSL WM

FRLL-M 1350× 1350 204 1221 1222 1222 2175 1221
FERET-M 512× 768 1.413 529 529 529 / /
FRGC-M 227× 277 3.167 964 964 964 / /

from FRLL, have been used as a source for morph gener-
ation with two more morphing methods, AMSL [22] and
Webmorph.The characteristics of the datasets are given in
Table I and a few examples are presented in Figure 3.

Training data for supervised MADs. MAD-DDPM
is also evaluated against selected discriminatively trained
MAD methods, learned on morphs from 3 datasets not
used for our evaluations, i.e. LMA-DRD [7], MorGAN [6]
and SMDD [5]. LMA-DRD morphs are generated with
OpenCV. Digital morphs are labeled with D, while re–
digitalized (printed then scanned) morphs are labeled with
PS. MorGAN also consists of two types of moprhs: LMA,
generated with OpenCV and deep learning-based morphs,
generated with a GAN model. SMDD, on the other hand,
contains synthetically generated data, where both, bona
fide and attack samples are created with StyleGAN2.

B. Evaluation metrics

The model evaluation follows the testing protocol pro-
posed in [11]. Based on morphing attack scores, we first
calculate the proportion of attack samples misclassified
as bona fide, i.e. the Attack Presentation Classification
Error Rate (APCER). We also calculate the proportion of
bona fide samples misclassified as attacks, i.e. the Bona
fide Presentation Classification Error Rate (BPCER). The
overall detection accuracy is then reported in terms of the
Equal Error Rate (EER), where APCER equals BPCER.

C. Implementation details

The input to MAD-DDPM consists of RGB images
and the corresponding feature maps extracted with a
WideResNet50 [44] (model F ), pretrained on ImageNet.
The feature extraction is performed on two different scales,
to better capture differently sized patterns. First, images
of size 224 × 224 are fed to the WideResnet to calculate



Table II
COMPARISON OF MAD-DDPM AND THE CURRENT SOTA
ONE-CLASS SPL-MAD APPROACH IN TERMS OF EER (%).

Dataset Morphing methods SPL-MAD [11] MAD-DDPM (Ours)

FRLL-M

OpenCV 3.63 3.55
FaceMorpher 2.98 4.04
StyleGAN2 15.14 10.96
WebMorph 12.29 14.49
AMSL 11.22 11.67

FERET-M
OpenCV 32.13 30.81
FaceMorpher 27.69 25.14
StyleGAN2 32.57 23.25

FRGC-M
OpenCV 36.11 27.17
FaceMorpher 23.99 23.23
StyleGAN2 36.79 11.41

Average performance 21.32 16.88

feature maps of size 1024 × 14 × 14. Next, each RGB
image is resized and split into 4 non–overlapping patches,
that are passed through WideResNet, to get 4 additional
feature maps. The DDPM branch, labeled as DI (Figure 2),
is then optimized on raw RGB images with σmax = 8,
while Dlat is trained on the concatenated feature maps,
with σmax = 2. The σmax values were determined based
on preliminary experiments. The DDPMs in the proposed
model are optimized with AdamW [18]. The learning rate
is set to 0.0001, β1 and β2 to 0.95 and 0.999, respectively,
while the weight decay is set to 0.001.

MAD-DDPM is implemented in Python 3.8 with
PyTorch 1.9 and CUDA 11.7. Experiments were run
on a single NVIDIA GeForce RTX 3090, where
MAD-DDPM required around 0.6s to perform the
MAD procedure for a single image on average.
The source code od MAD-DDPM is available at
https://github.com/MIvanovska/MAD-DDPM.

V. RESULTS

Comparison to One-Class Competitors. We first com-
pare MAD-DDPM to the current state-of-the-art (SOTA)
one-class SPL-MAD approach [11]. The results in Table II
show that MAD-DDPM achieves very competitive results
on FRLL-Morphs. In the detection of StyleGAN morphing
attacks, it outperforms SPL-MAD by over 5% in terms of
EER, while producing comparable results on the remaining
morphs. On the other two datasets, MAD-DDPM consis-
tently outperforms SPL-MAD across all types of morphing
attacks. Overall, MAD-DDPM achieves an average EER
of 16.88%, outperforming the current one-class SOTA
method by a margin of over 4%.

Comparison to Discriminative MAD models. Simi-
larly to [11], we also compare MAD-DDPM to SOTA
discriminative MAD techniques in Table III, i.e., Mix-
FaceNet [2], PW-MAD [7] and Inception [30]. The dis-
criminative models are learned in a two-class setting,
where a different set of morphing attacks is chosen in
each training session. Although the best EER in individual
categories of morphing attacks is achieved by the discrim-
inative MADs, none of the trained discriminative models
shows consistently superior results across different datasets

and morphing attack types. Moreover, the average morph-
ing attack detection performance is by far the highest for
MAD-DDPM with an average EER of 16.88%. Based on
these results, we conclude that our one-class MAD-DDPM
approach demonstrates strong generalization capabilities.

Ablation study. MAD-DDPM is trained on three dif-
ferent data sources, i.e. RGB images (I) and feature
maps from two different image scales (S1 and S2). The
contribution of each data source is investigated in an
ablation study, where we train three independent DDPMs,
one for each data source. A separate DDPM, is trained
with concatenated CNN features of both scales. As can be
seen from Table IV, among all ablated models, the highest
detection accuracy is achieved by the DDPM trained on
RGB images. We hypothesize, that due to the nature of
DDPMs, such approach efficiently detects high-frequency
components representing image artifacts induced by the
morphing techniques. Conversely, the extracted features
encode high-level semantics that are comparably less in-
formative (yet still important) for the morphing detection
task. They do however consistently boost the detection
performance in all test datasets. The complete MAD-
DDPM model outperforms all ablated models with an
average EER of 16.88%.

VI. CONCLUSION

We presented a one-class model for morphing attack
detection (MAD) that relies on denoising diffusion proba-
bilistic models (DDPM). In comprehensive experiments,
the model was shown to result in highly competitive
performance on multiple datasets. As part of our future
work, we plan to incorporate additional proxy task into
the proposed model to further improve results.
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Table III
COMPARISON OF MAD-DDPM AND DISCRIMINATIVE SOTA MADS IN TERMS OF EER (%).

MAD type Discriminativelly trained One-class

MAD model MixFaceNet [2] PW-MAD [7] Inception [30] MAD-DDPM
(Ours)

Test data
Train data D PS LMA GAN SMDD D PS LMA GAN SMDD D PS LMA GAN SMDD

FRLL-M

OpenCV 8.82 13.22 8.91 17.66 4.39 17.33 15.69 13.96 45.59 2.42 13.72 10.76 6.86 55.89 5.38 3.55
FaceMorpher 7.80 10.97 7.34 15.65 3.87 13.88 15.14 10.92 44.57 2.20 16.62 15.81 6.32 66.14 3.17 4.04
StyleGAN2 20.07 15.29 13.41 23.51 8.89 29.97 27.64 18.11 48.53 16.64 37.24 19.58 20.56 55.03 11.37 10.96
WebMorph 25.97 29.04 20.61 30.39 12.35 33.78 28.51 35.75 52.43 16.65 57.38 58.32 30.88 77.42 9.86 14.49
AMSL 24.53 27.59 19.24 30.03 15.18 36.25 32.95 34.38 48.52 15.18 49.02 61.44 9.80 86.49 10.79 11.67

FERET-M
OpenCV 28.12 32.19 31.57 33.86 31.74 37.27 45.29 34.27 43.11 39.93 6.39 7.23 42.12 13.62 59.32 30.81
FaceMorpher 22.57 29.48 27.90 31.81 23.69 35.16 44.30 28.24 40.40 29.41 5.17 6.91 36.53 18.36 46.94 25.14
StyleGAN2 29.57 29.02 35.46 39.41 39.85 44.25 45.30 29.70 42.47 47.20 9.03 7.12 35.29 15.09 60.05 23.25

FRGC-M
OpenCV 23.81 25.04 31.62 21.11 20.67 57.06 48.60 29.74 53.55 26.45 34.32 13.65 36.17 59.66 19.63 27.17
FaceMorpher 22.83 23.54 29.38 19.98 18.10 56.00 50.70 30.49 51.61 23.40 34.96 19.71 35.10 56.91 16.06 23.23
StyleGAN2 32.71 28.68 21.70 21.95 11.62 37.38 38.42 16.43 26.62 14.32 41.14 25.85 36.19 47.03 15.26 11.41
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