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Abstract—This paper presents a strategy to synthesize face
images based on human traits. Specifically, the strategy allows
synthesizing face images with similar age, gender, and ethnicity,
after discovering groups of people with similar facial features.
Our synthesizer is based on unsupervised learning and is capable
to generate realistic faces. Our experiments reveal that grouping
the training samples according to their similarity can lead
to more realistic face images while having semantic control
over the synthesis. The proposed strategy achieves competitive
performance compared to the state-of-the-art and outperforms
the baseline in terms of the Frechet Inception Distance.

Index Terms—Face synthesis, biometrics, unsupervised learn-
ing, mixture models

I. INTRODUCTION

Only recently, the synthesis of face images has evolved
significantly in terms of quality, albeit with an increase in
the complexity of the methods. The state-of-the-art produces
high-quality faces with outstanding details [1], [2]. Syhtesizing
face images can help to train identification models when the
training data is scarce or cannot be acquired due to privacy
concerns. Moreover, in the context of computer security, this
computer vision task is gaining attention to better understand
how artificial biometrics are currently generated so they can
be timely and accurately identified, for instance, detecting fake
social media accounts and preventing identity fraud [3], [4].
Despite the fact that recent methods allow for some basic
control over the synthesis process, e.g., generating face images
depicting people smiling [5], [6], there are several open aspects
to be addressed, for instance, the influence of the training
set demographics on the synthesized images. Recent works
report an imbalance in the demographic groups depicted in
commonly used datasets [7]–[9]. For example, less than a third
of the images in the dataset Face Synthetics [9] depict Black,
Hispanic, Arab, and Indian individuals, despite the fact that
these are the most numerous ethnic groups in the world. This
issue requires novel methods for unbiased face synthesis that
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can preserve the unique facial features of different groups of
people while generating face images that result in balanced
datasets. In this paper, we introduce a strategy to synthesize
face images in an unbiased manner based on different human
traits. Our main motivation is to preserve the characteristics of
different groups of people during the synthesis process. Our
contributions are as follows:

• We show the importance of separately capturing the face
features for each group of people for the face synthesis
task.

• We achieve state-of-the-art performance in terms of im-
age quality.

• Our strategy can be tailored to any existing face image
synthesizer.

The proposed strategy provides the basis for a fairer and
unbiased face image synthesis process. Since our strategy
preserves the unique facial features of different groups of
people, it can help to increase trust in the face image synthesis
task. The rest of this paper is organized as follows. Section
II summarizes the previous work in face image synthesis.
Section III details the proposed strategy. Section IV provides
the experiments results and related discussions. Finally, section
V concludes this work.

II. PREVIOUS WORK

The methods to synthesize face images can be classified
into five groups depending on their methodology. Those based
on statistical feature models rely on the data distribution to
generate new samples by mapping a noisy training feature
space to the synthesized face images. For example, Bordes
el al. [10] propose a Markov model to recursively denoise
random samples by matching the target distribution from the
training dataset. Song et al. [11] propose a Markov model
for specific domains to mimic the target data distribution. Ho
et al. [12] propose a probabilistic directed graphical model
to create a progressive noisy decompressor using variational
inference. Prafulla et al. [13] use a CNN filter bank and up-
down sampling blocks to generate the images.

The methods based on Generative Adversarial Network
(GAN) rely on the discriminator’s capacity to distinguish
between the original and the samples synthesized by the
generator. For example, Gauthier et al. [5] propose to restrict979-8-3503-3607-8/23/$31.00 ©2023 IEEE
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Fig. 1: Proposed strategy. The full training dataset comprising N images is first encoded by IR-SE-50 into embeddings of 512 dimensions.The
dimensions of the feature space are then reduced using several techniques. kp groups are then found by using unsupervised clustering. Finally,
a synthesizer is trained for each group separately to generate new face images.

the GAN’s generation ability by creating an intermediate
space that accepts the noise data along with an embedding
to produce an image. Liu et al. [14] propose a two-stream
GAN, whose architecture encodes high-level semantics and
allows synthesizing pairs of images sharing the same level of
abstraction but with a different level of realization. Radford
et al. [15] propose a GAN that uses an ad-hoc deep CNN
architecture that does not require fully-connected or pooling
layers. Yin et al. [16] propose to traverse the latent space using
semantic definitions to generate face images with specific
characteristics, e.g., smiling or wearing glasses, by using
supervised learning. The semantics are also exploited by [17]
for face synthesis. Karras et al. propose a coarse-to-fine GAN
[8], where the generator and discriminator layers are added as
the training progresses. Similarly, Struski et al. [18] constrain
the spatial resolution to capture local regions more accurately
during the synthesis. Karras et al. [19] further propose to add
noise and information from the latent space into the layers’
blocks of the synthesis network in charge of up-sampling the
inputs.

Methods based on Variational Auto Encoder (VAE) have
recently gained attention because of the high quality of the
generated images. Van den Oord et al. [20] propose formu-
lating a VAE in the discrete space via Vector Quantization
(VQ), which helps to prevent the posterior collapse issue that
occurs when the decoder ignores the latent space. Razavi et
al. [21] propose an updated version of the VQ-based VAE,
which relies on two deep feed-forward networks. Their method
requires two stages, in the first stage a hierarchical VQ-based
VAE is trained to encode images into a discrete latent space.
In the second stage, a pixel-level CNN is trained to condition
the categorical distributions. Rewon et al. [22] show that
the VAE requires to be as deep as the data dimension to
increase statistical dependence. Although their approach seems
very computational expensive, it requires fewer parameters
than other VAE-based methods. Vahdat et al. [1] propose a
bidirectional encoder comprising residual networks. Similar

to the HQ-VAE, their method increases expressiveness in the
generated face images by partitioning the latent space.

Methods based on transformers have started to gain im-
portance in computer vision tasks [23], including face image
synthesis. Esser et al. [24] propose a transformer GAN that
uses the transformer’s representation to quantify the vectors
in the latent space generated by the VQ-based GAN [21].
Jiang et al. [25] propose a transformer GAN that is free of
convolutions. Their method addresses two fundamental issues
of the CNNs: their local receptive field and incapability to
process long dependencies unless having several layers.

Finally, methods based on geometric modelling. require
estimating the face anatomy in order to generate new face
images. This process may be manual or synthetic. Cao et al.
[26] propose using RGBD cameras to capture an image and
subsequently generate a 3D model. Their strategy requires
deforming a facial mesh and estimating the captured data
with respect to several face landmarks. It then learns the
face’s appearance under different deformations. Banerjee et
al. [27] propose estimating the face anatomy via Delaunay
triangulations, where the face patches are combined and bent
to generate new face images. Kim et al. [28] use several facial
landmarks to crop face images and train a CNN to estimate
the textures. Their model learns pose, shape, expression,
skin reflectance, and incident illumination. The authors also
propose to learn face features by combining synthetic face
images with real ones, a process named breeding. Wood et al
[9] propose a rendering sequence based on hand-crafted facial
features to generate face images with outstanding realism and
diversity. The synthesis requires polygon masks with several
layers of texture.

III. PROPOSED STRATEGY

The proposed strategy is motivated by the importance of
preserving and capturing key human traits, i.e., age, gen-
der, and ethnicity, during the face image generation process.
Achieving this helps to prevent the generation of imbalance
datasets. Since one of our main objectives is to understand
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Fig. 2: Sample 2D embeddings of the FFHQ dataset produced after projecting the IR-SE-50 feature vectors into a low-dimensional feature
space. From left to right. T-SNE, IsoMap, PCA, and LLE.

the effect of the training set demographics on the generated
images, we select an existing synthesizer based on modesty
in terms of computational complexity, i.e., a synthesizer that
produces good quality results in an acceptable amount of time.
Specifically, we use a GAN-based synthesizer as the backbone
of our strategy. Hence, our strategy is not tailored to any
particular synthesizer.

Fig. 1 depicts the block diagram of our strategy. It requires
splitting the training dataset into several groups and training
a synthesizer accordingly to generate the faces for specific
groups of people. The strategy requires generating a feature
space in an unsupervised fashion. The strategy comprises four
stages, which we describe next.

A. Feature Encoding

We use manifold learning to visualize the training dataset
and discover groups of people, i.e., clusters, based on their
conglomerate distribution. To this end, we first generate the
feature space via IR-SE-50 [29], [30], which is a pre-trained
model for face recognition purposes. Specifically, we use the
last fully connected layer of IR-SE-50 as the feature encoder.
Once the feature space is generated, we learn the manifold
using a dimensionality reduction technique.

B. Feature Projection

The feature space is mapped into a low-dimensional space to
facilitate discovering the groups. After this mapping, we create
a matrix X = {x1, x2, . . . xN} containing the low-dimensional
samples. The projected data are used to train a mixture model,
as detailed next.

C. Group Generation

The matrix X = {x1, x2, . . . xN} can be considered as a
collection of i.i.d samples from an observable distribution. Let
us define a mixture model as follows:

p(X|π, µ, σ) =
K∑

k=1

πkN (X|µ,Σ), (1)

where θ = {π, µ,Σ} is the parameter set comprising the
model weights, means, and covariances, respectively, for K
components. To estimate θ, we employ the EM algorithm to

estimate the maximum likelihood of the mixture of Gaussians.
Because a key objective is to maximize the probability of the
observed data, X , we use the component that provides the
maximum posterior to create our groups:

k : argmax
k

p(X,π, µ,Σ). (2)

A total of K groups are generated after computing the
posterior.

D. Face Synthesizer

The final step is to train the synthesizer to generate images
for each group. We use as the backbone synthesizer the model
proposed by Karras et al. [19] after tailoring it by reducing
the input size from a 1024× 1024 resolution to a 256× 256
resolution. This reduction in resolution is coupled with modi-
fications at the regularization coefficient. Because the original
scale is four times the desired scale, we scale the coefficient
of the original model by a factor of 4 × 4 = 16. Another
important hyperparameter that is tailored is the number of
training iterations. This number is set to 1000 using batches
of 32 samples. Experimentally, we observe that the model
produces acceptable results from iteration 500 upwards. We
also observe that the generation of high-quality images heavily
depends on the number of samples assigned to each group as
discovered by the mixture model components.

IV. EXPERIMENTS

All experiments use the Flick Faces High Quality (FFHQ)
dataset [8]1. This dataset comprises 70,000 face images taken
from the flickr platform2. We use this dataset as it contains
samples depicting a diverse range of subjects in terms of age,
gender, and ethnicity, with no specific criteria used during data
collection. Hence, this dataset is useful to explore the synthesis
of different groups of people, unlike other existing datasets,
e.g., Celebrities A High Quality (CELEBA-HQ) [7]3, which
comprises face images depicting individuals from a specific

1https://github.com/NVlabs/ffhq-dataset
2https://www.flickr.com
3https://github.com/tkarras/progressive growing of gans
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TABLE I: FID values attained by the proposed strategy and the baseline on the FFHQ dataset for different embeddings.

Baseline [19] IsoMaps LLE (Best kernel) PCA Hessian Eigen Map SE T-SNE

8.04 9.972 32.272 12.772 19.332 13.325 7.39
† Lowest FID while training.

TABLE II: FID values attained by the proposed strategy and the baseline on the FFHQ dataset for different groups.

Baseline [19] Asian Males Children Asian Females Latin and White Females Old White Males Young White Males Latin Males Old White Females

8.04 10.3697 6.3327 6.7907 6.6353 6.8685 6.3834 6.8685 8.2416
† Lowest FID while training.

TABLE III: FID values attained by state-of-the-art methods on the
FFHQ dataset.

Method FID

StyleGAN [19] 8.04
VQ-VAE [21] 10.01

Ours 7.39

age range (the majority are adults) and posing under highly
controlled environments.

We use the model proposed by Karras et al. [19] as the
baseline for comparison purposes after tailoring as described
in Section III-D. However, the baseline is trained with the full
dataset and not on a per-group basis.

A. Embeddings

We first evaluate the IR-SE-50 embeddings prduced by us-
ing different dimensionality reduction techniques. The purpose
of this evaluation is to confirm visually if the feature space
forms well-defined clusters, or groups. If this is the case,
one can then confirm that it is possible to discover groups of
people based on the similarity of their low-dimensional feature
vectors. To this end, we test eight different dimensionality
reduction methods and randomly visualize 100 samples per
method. Specifically, we test Isomaps, Local Linear Embed-
ding (LLE) (three kernels), PCA, hessian eigenmapping, Spec-
tral Embedding (SE), and T-distributed Stochastic Neighbor
Embedding (T-SNE) [31].

Fig. 2 shows the resulting embeddings by using different
dimensionality reduction methods. We can visually confirm
that T-SNE is capable of generating the best-defined groups.
We confirm that by using T-SNE, samples associated with the
most dissimilar faces, e.g., the elderly and young, tend to be far
from those associated with very similar faces. Hence, by using
the T-SNE embeddings, it is possible to generate groups that
have very similar visual characteristics. Conversely, IsoMaps
fail to cluster samples with very similar features, creating
effectively sparse groups. PCA effectively generates only one
well-defined group comprising samples with very similar facial
features. Finally, all of the LLE embeddings produce very
sparse groups and thus no visual similarity can be established.
We evaluate the effect of using different embeddings on the
quality of the synthesized images, as detailed next.

B. Synthesis

We evaluate the proposed strategy in terms of quality
generation and compare its performance against the baseline
in terms of the Frechet Inception Distances (FID). This metric
is useful to measure face image quality in terms of visual
properties. FID values steadily increase as face images lose
visual quality due to noise and distortion. Hence, low FID
values are desirable [32].

From Table I, we can see that the T-SNE embeddings
indeed produce the best results. T-SNE maps the IR-SE-50
features into a new space where one can see clearly groups
sharing similar visual properties. These results are computed
as the average over all groups discovered. They mainly reveal
the importance of dimensionality reduction in the face image
synthesis. Results on a per group basis are tabulated in Table
II. From this table, one can see that with the exception of two
groups, i.e., Asian Males and Old White Females, the proposed
strategy achieves significantly better results than the baseline.
More specifically, the proposed strategy archives the lowest
FID values for those groups with more training samples. It is
worth clarifying that the FID value reported for the baseline is
for all images without generating them by groups. The baseline
is then trained with the full dataset. The results in Table II
demonstrate the advantages of generating samples on a per
group basis. Finally, Table III tabulates FID values for two
other methods based on a GAN and a VAE. Their reported
FID values are for all images without generating them by
groups. We can see that the proposed strategy achieves very
competitive results in terms of image quality generation.

We also visually inspect the synthesis results to corroborate
the profiling generation per group of people. Figure 3 shows
samples generated for each of the identified groups. The
identified dominant groups in Fig. 3 are Asian males (all ages),
Young latin and white females, Old white females, Young
white males, Young white and latin children, Young asian
females, Adult latin males, and Old white males. One can
see that the proposed strategy can accurately generate faces
for each group preserving the facial features.

V. CONCLUSION

This paper presents a strategy to synthesize face images
based on key human traits as discovered by an unsupervised
clustering approach. The proposed strategy keeps the features
of the face images that are unique to each discovered group
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(a) Asian males (all ages).

(b) Young latin and white females.

(c) Old white females.

(d) Young white males.

(e) Young white and latin children.

(f) Young asian females.

(g) Adult latin males.

(h) Old white males.

Fig. 3: Sample synthesized image by the proposed strategy using the FFHQ dataset as the training set. Each row displays
samples of each one of the dominant groups discovered by the strategy.
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of people during training. The results show outstanding per-
formance in terms of image quality, thus corroborating the
effectiveness of the proposed strategy. The proposed strategy
is a cornerstone in developing fairer face image synthesis
methods, as it adequately captures the facial characteristic of
different groups of people.
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