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Abstract

The Kernel Tool Kit (KTK) is an object-based operating system kernel and parallel
programming library that offers explicit support for on- and off-line program configu-
ration. Specifically, KTK allows the specification of attributes for object classes, object
instances, state variables, operations and object invocations. Attributes are interpreted
by policy classes that may be varied separately from the abstractions with which they
are associated. They can be used to vary object internal implementation and semantics
without affecting the methods being invoked.

In this paper, the runtime configuration of KTK attributes is shown to improve the
runtime performance of multiprocessor applications. KTK is layered on a portable and
configurable parallel programming substrate, a Mach Cthreads compatible runtime li-
brary.
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1 Configuring parallel systems for performance

It is well-known that the performance of a parallel program can be significantly affected by the
operating system primitives it is using. Mismatches between a program’s desired operating system
functionality or state and the primitives, policies, and state offered by the system can cause sub-
stantial performance degradation. Such mismatches can arise at the time of program initiation or
even during program execution, since a program’s pattern of operating system usage can change
over time.

Synchronization and scheduling are two well-studied examples of dynamic changes in program
behavior involving operating system abstractions. Concerning synchronization, it has been shown
that long busy-waits on a single lock can cause severe performance degradation due to memory or
switch contention on shared memory multiprocessors. Since the size of a critical section protected
by the lock and the contention regarding critical section is often subject to unpredictable change
during execution, lock implementations should vary dynamically for best performance[22]. Similarly,
since system loads cannot be predicted in multi-user systems, the optimal levels of parallelism (ie.,
scheduling) for each parallel program cannot be statically predicted and should also be changed
dynamically[28].

One reaction of the high performance computing community to potential static or dynamic mis-
matches between programs and operating systems has been to remove operating systems completely
from their application programs, as seen by past ‘operating systems’ used in hypercube machines[8]
offering only basic support for message passing. A similar reaction has been to use only those op-
erating system facilities that offer suitable performance at the loss of ease of programming[11, 29].
However, in the recent past, operating system researchers have addressed the issue of matching
operating system to application functionality and performance (1) by offering users the ability to
write custom policies on minimal, low-level mechanisms[14, 7] or to tailor their programs to dif-
ferent target operating systems or hardware configurations[25], (2) by removing operating system
services from kernel to user levels, ultimately leading to current notions of micro-kernels, and (3) by
designing new interfaces between the operating system and users so that selected state is efficiently
shared and manipulated by both (e.g., consider recent work on scheduler activations[2]). In addition,
researchers have investigated novel means of structuring operating system kernels such that (1)-(3)
can be performed conveniently and efficiently, in the past using protection-based techniques[7] and
now using object-oriented operating system structures[1, 12, 5, 27, 9].

The current status of research in operating system for high performance can be summarized as

follows:

o There are several ways to implement operating systems such that their compile-time config-
uration is possible, including the use of servers, of object-oriented technology for structuring
OS kernels, etc.



e Limited on-line configuration is possible by dynamic re-linking of OS kernels, by dynamic
server process creation and deletion, and by dynamically re-directing selected system calls.

The goal of our research is to increase the performance of parallel programs beyond what is
currently possible, by dynamically and jointly configuring operating systems and parallel application
programs[26, 18]. This distinguishes our work from other efforts addressing distributed or real-time
systems[16, 4, 13, 17] (including some of our own past work[3, 9]), where the primary concern has
been to maintain certain levels of system response or reliability in the presence of uncertain execution
environments. In accordance with this goal, the contribution of the Kernel Toolkit (KTK) is the
provision of mechanisms for the dynamic configuration, inclusion, and use of alternative kernel
abstractions.

In the remainder of this paper, we first present the basic configuration mechanisms offered by
KTK. In Section 3, we demonstrate the use of these mechanisms for dynamic configuration of an
application-level abstraction in a parallel program: a global queue in a parallel branch-and-bound
code solving the travelling salesperson problem (TSP). Section 4 provides some implementation
details of KTK and of the global queue in order to explain the performance evaluation of on-line
configuration of the TSP queue. In Section 5, additional performance gains are attained by on-line

configuration of a second abstraction in TSP, a mutex lock protecting the global queue.

2 The kernel toolkit (KTK)

2.1 Configuring KTK programs

The Kernel Toolkit (KTK) is an object-based operating system kernel and programming library

that offers explicit support for on- and off-line object configuration:

e KTK allows the specification of (configuration) attributes for object classes, object instances,
state variables, operations and object invocations.

o Attributes are interpreted by system- or programmer-defined policies, which may be var-
ied separately from the abstractions with which they are associated. For example, policies
and attributes may be used to vary objects’ internal implementations without changing their
functionalities, or to vary the semantics and implementations of object invocations without
affecting the methods being invoked.

¢ Dynamic configuration may be performed by policies at or below the object level of abstraction,
therefore permitting programmers to make dynamic changes of selected attributes of lower-
level runtime libraries and to exploit peculiarities of the underlying multiprocessor hardware.
KTK also offers efficient mechanisms for the on-line capture of the program or operating
system state required for dynamic configuration.

As an example, consider the attribute ‘InvocationType’, which is a name-value pair:

InvocationType: enum {synchr, asynchr}



This attribute expresses that an invocation can be of type ‘synchronous’ or ‘asynchronous’. The
code implementing both types of invocations resides in a policy object, which in this case, offers the
methods ‘synchr’ and ‘asynchr’ corresponding to the two possible attribute values. In general, such
a policy is a special object class that defines, interprets, and enforces the properties intended to be
expressed by attributes.

A policy can be associated with any of the program components ‘object instance’, ‘class’, ‘state
variable’, ‘method’, and even ‘object invocation’. This association is performed such that the pro-
gram component’s implementation and specification are not affected. For the attribute ‘Invocation-
Type’ above, the policy class containing code for implementation of synchronous vs. asynchronous
invocations may be associated with some object instance or class, and the runtime specification of
the ‘synchr’ vs. ‘asynchr’ attribute value is interpreted by that policy and therefore, determines the
semantics of object invocation.

The mechanisms for configuration in KTK can also be used for kernel customization by special-
izing and/or modifying existing kernel abstractions. In addition, KTK is exztensible in that new
abstractions and functionality (ie., classes, policies, and attributes) are easily added while poten-
tially maintaining a uniform kernel interface (e.g., when not adding any new kernel classes). In our
past work, we have developed a significant extension of KTK addressing real-time applications[9],
and we are now developing a second extension addressing configurable communication protocols[15].
However, in this paper, we are focussing on the use of KTK’s mechanisms for dynamic program and
kernel configuration. The kernel abstraction configured in this paper is a mutex lock. The program
abstraction configured in this paper is a global queue. As with other global abstractions in parallel
programs (e.g., global sums, etc.[24]), certain dynamic program characteristics (e.g., the natural
orderings between queue elements due to their times of insertion into the queue) can be exploited in
order to reduce the costs of executing certain policies associated with those abstractions (e.g., the
amount of work performed or the actual communication topology used to maintain some acceptable

global ordering in a queue).

2.2 KTK abstractions and structure

KTK Abstractions. In KTK, an application program consists of a number of independent ob-
jects which interact by invoking each other’s operations (methods). Each object maintains its own
state and that state is not directly accessible to other objects. Objects can range from light-weight
procedure-like entities to multi-threaded servers with associated concurrency control and scheduling
policies. Complex objects can be built by having objects as components of other objects, starting
with four built-in object classes chosen due to their usefulness in a wide variety of parallel appli-
cations constructed with KTK: ‘ADT’, ‘TADT’, ‘Monitor’ and ‘Task’!. An ‘ADT’ (abstract data

type) defines an object that has no execution threads of its own and doesn’t synchronize concurrent

The built-in object classes in KTK are quite similar to concurrent object constructs offered in recent designs and

implementations of object-oriented concurrent languages.



calls. Calling an ‘ADT’ is performed in the address space of the caller. Calling a ‘TADT’ (threaded
abstract data type) creates a new execution thread for execution of the called operation, but also
does not synchronize concurrent calls. A ‘Monitor’ [10] is an object without execution threads
that only allows a single call to be active at a time. It can also define condition variables on which
calls can wail, thereby allowing other calls to proceed, until the condition variable is signaled. A
‘Task’ (like Ada tasks) has a single execution thread. It defines a number of entries which can be
called from other objects. All calls are performed in the context of the ‘TASK’ and are taken one
at a time.

Typical KTK programs consist of complex objects constructed from the four built-in object
classes. KTK can be extended by defining new policy classes and linking them to the kernel. In
addition, for configurability and to achieve uniformity of kernel interfaces, two distinct views of
each object exist: (1) the application view and (2) the system view. The application view of objects
is presented in terms of their classes characterizing their external interfaces (methods), where a
class is an abstraction for a number of similar objects. The system view, on the other hand, is
defined by each object’s policy and attributes. Essentially, policies define a parameterized execution
environment for objects in terms of attributes, invocation semantics, and kernel interactions:

e A policy interprets attributes defined at the time of creation for classes, objects, states and
operations. A sample attribute for a class is one that describes some dynamically determined

aspect of the internal representation of each of its instances, such as the ‘number-of-spins’
performed by a lock object before the caller is blocked.

e A policy can define the invocation semantics to an object by intercepting invocation requests
and by defining and interpreting invocation time attributes that can be specified as part of the
invocation. A sample invocation attribute is one that specifies dynamically determined limits
on the permissible duration of an invocation for multi-media or real-time applications[9].

e A policy can also extend the KTK interface with special services. For example, a policy
could specify a new invocation mode, such as an eveni_dependeni_invoke, defining it in such
a way that the other objects could interact with the policy for determining how (or whether)
such invocations should be executed. Such control is useful for protecting programs against
excessive number of events during emergency conditions, for example.

The policies associated with a program are the vehicles for interactions of application programs
with the lower levels of the multiprocessor kernel or with the user-level runtime library supporting
KTK programs. Since policies are executed implicitly as a result of object creation and invocation,
typical application programs see only the objects and classes defined in their code and offered by
KTK. One exception to this rule is when an object explicitly invokes an operation of its own policy
(referred to as a policy interaction). Such interactions are useful for program-driven dynamic changes
to objects.

KTK Structure. The structure of the Kernel Toolkit is depicted in Figure 1 as consisting of three
components: (1) configurable threads, which is the portable cthreads package underlying KTK, (2)



Figure 1: Structure of the Kernel Toolkit (KTK)

Configurable threads is the partially machine dependent component[20] that implements the basic
abstractions used by the remainder of KTK: execution threads, virtual memory regions, synchroniza-
tion primitives, monitoring support for capture of parallel program and KTK state, and a limited
number of basic attributes for the configuration of threads-level abstractions, such as synchronization
primitives and low-level scheduling. Configurable threads are explained further in Section 5.

The set of policies constructed with KTK varies with the target application domain or hardware.
The most complex set is called CHAOS*' and addresses real-time systems[9]. The most commonly
used policies are those that offer varying invocation semantics and object representations.

The various object classes required by an application or application domain reside at the appli-
cation level. Typically, these are complex objects, which means that they have associated policies
and multiple component objects. An example of a complex object is an internally parallel object
containing multiple TADTs used as servers, with a policy that intercepts all invocations to the
object. Another example explained in the next section is a complex object implementing a global

queue object internally consisting of multiple ADTs serving as distinct object fragments.



KTK implementation. KTK currently runs as a user-level library on various parallel machines,
including a 32-node BBN Butterfly parallel processor, a 32-node Kendall Square supercomputer,
SUN Sparcstations, and SGI multiprocessors. Previous prototypes of KTK have been run on a
larger number of Unix machines, including a Sequent Symmetry, Sun3’s, and Sun386. It has also

been run as a native kernel on the GP1000 BBN Butterfly multiprocessor.

3 A configurable distributed queue

In this section, we demonstrate how policies and attributes can be used to configure the behavior of
objects during execution. As an example, we describe a specific complex object — a distributed queue
object — used in our implementation of a best-first LMSK branch-and-bound algorithm solving the
Travelling Salesperson Problem (TSP).

Extensive experimental results with alternative TSP implementations on distributed memory (an

Intel iPSC machine[23]) and on shared memory machines (the BBN Butterfly and Kendall Square
NUMA multiprocessors[6]) have demonstrated that the dynamic configuration of selected program
attributes in the TSP application is essential for good runtime performance. This paper provides
two different demonstrations of runtime gains due to on-line configuration. The first demonstra-
tion concerns runtime adjustments to the global ‘work queue’ abstraction maintained in the TSP
program, as described in this section. The second demonstration concerns additional performance
gains due to the dynamic configuration of the mutex locks used within the ‘work queue’ abstraction,
as described in Section 5.2.
The global queue. The TSP program’s branch-and-bound algorithm performs optimization in a
dynamically constructed search space. The parallel implementation of the TSP application exhibits
two abstractions shared by all of its objects: (1) a global best tour object, which is used for prun-
ing the search space, and (2) a work sharing or ‘queue’ object used for the dynamic distribution
of work among the searcher objects. Runtime configuration addresses the queue object. Specifi-
cally, we have shown that adequate performance on large-scale parallel machines can be attained
only (1) if the queue is implemented as multiple queue fragments distributed across the different
nodes of the multiprocessor[24, 6], and (2) if some desirable global ordering on queue elements is
maintained. This implies representing the global queue as multiple fragments using some explicit
topology as a fragment communication structure and using some program-dependent access policy
to each fragment as well as to neighboring fragments.

Queue communication topology and access policy should be represented with KTK policies and
attributes, in part because neither of these characteristics affect the basic functionality of such a
queue. As in any object-oriented software description, such functionality is represented by the ab-
straction’s operations: PutSubProblem and GetSubProblem, where the former adds a partial tour to

one distributed queue’s fragments and the latter returns a previously enqueued element. To summa-



rize, three KTK attributes may be used to specify queue characteristics related to its performance:
o Topology — the topology of the communication structure among queue fragments (e.g., a ring,

a tree, etc.); and

o InsertionType and WhichPriority — which are indications of whether a queue insertion should
involve other than the local fragment and of the ordering criteria to be used for element
insertion, respectively.

An additional, useful queue configuration attribute is the specification of the method of queue
invocation (e.g., synchronous or asynchronous). This has been shown useful in non-shared memory
multicomputers[24], where a retrieval from a remote fragment may be sufficiently slow so that the
invoking object should first complete some other work before checking for the arrival of the sought
queue element.

The following Braid? pseudo-code demonstrates the specification of policies and attributes using

the KTK:
POLICY DistributedQueue IS

ATTRIBUTES
Topology: TopologyDescription;
InvocationType: enum {synchr, asynchr};
InsertionType: enum {local fragment,

with_load_balance};

WhichPriority: PrioritySpecification;

END

OPERATION invoke

OPERATION load_balance
BEGIN

/*initialization code for policy obj creation*/
END
CLASS Prty_queue_fragment IS

/* data structure definition for item_type */

STATE

/* definition for priority queue */
END
OPERATION insert_item ...

/* insertion code for local fragment */

OPERATION remove_item

2 Kernel Tool Kit objects are described using the Braid Language, which extends the C language with object-oriented

constructs and features for expressing attributes, invocation semantics, invocation control, and kernel interactions.



BEGIN
/* initialization code for object of this class */
END
DistributedQueue CLASS Distr_tsp_queue IS
STATE
nb_of fragments: int;
/* pointer to Prty_queue_fragment */
array _of fragments : *object_t;
/* priority of the first queue (frag zero) */
first _priority : int;
/* index of the first fragment with items */
first_not_empty : int;
/* mutual exclusion on the shared queue */

mutex_t queue_lock;

END
CONDITION DoneOrQueueNotEmpty;
OPERATION GetSubProblem
(node : OUT object_t);
OPERATION PutSubProblem
(node : IN object_t);
OPERATION init ();
BEGIN
/* initialization code ... */

END

In this example, DistributedQQueue is the policy associated with the class ‘Distr_tsp_queue’. When
an object ¢ of class ‘Distr_tsp_queue’ is created, a policy object using the DistributedQueune spec-
ification is also created and will act as an interface of ¢ to other KTK policies and KTK internal
code. Object ¢’s attributes are stored and manipulated by the policy object, and they will be used
to dynamically control the execution of ¢’s operations ( GetSubproblem, PutSubProblem, and Init).

The state definition for class ‘Distr_tsp_queue’ describes an object ¢ of this class as composed
of a number of fragments (‘Prty_queue_fragment’s objects), and it also describes general infor-
mation like the number of elements in the queue (nb_item), monitoring information (insert_time,

remove_time), etc. The CONDITION declaration associates with each object the condition Done-



OrQueueNotFEmpty on which worker objects can wail or signal.

The DistributedQQueue policy determines the list of attributes associated with ¢. In this example,
four such attributes are enumerated. The class initialization code specifies initial values for these
attributes.

Different possible invocation types for objects using the policy DistributedQQueue are specified in
the policy using the OPERATION ‘invoke’. This operation’s code will examine the value of the
attribute ‘Invocation_Type’ and call either of its internal functions ‘invoke_async’ or ‘invoke_sync’

before invoking ¢’s operations GetSubProblem or PutSubProblem. Specifically, the operation:

INVOKE g¢$PutSubproblem (n) <InsertionType=with_load_balance, WhichPriority=tour_value>

will be intercepted by the policy object, its attributes will be evaluated, and then the insertion will
be performed as determined by the attributes ‘InsertionType’ and ‘WhichPriority’ using the default

topology of the policy for communication among the queue fragments.

4 Implementation and performance of configurable objects

Policies. Attributes and policies are the Kernel Toolkit’s configuration mechanisms. KTK policies
can potentially execute in kernel space, and they have access to low-level library and hardware
resources. Any policy written with KTK must interface both with the object it manages and other
objects. Toward this end, each policy must offer a number of operations using a fixed naming

convention. These operations address:

o Object creation: a policy must handle object creation requests, which involves setting object
creation time attributes and the actual creation of the user object. This is achieved by invoking
relevant operations in the policy object such as set_state_attribules, set_objects_attributes, and
sel_operation_altributes. Next, the create operation for the policy is executed, finally invoking
the basic operation object_create.

e Invocation interpretation: a policy intercepts and performs invocation requests, thereby defin-
ing and enforcing invocation attributes and semantics. More specifically, an invocation request
of the form:

INVOKE ¢$ PutSubProblem (n) <Topology =t> is mapped to a call to an operation invoke of
the policy DistributedQueuve. The arguments to this operation are contained in an invocation
block comprised of generic information such as object name (¢), operation name ( PutSubProb-
lem), and a pointer to the actual parameter block containing the argument n. The rest of the
arguments to the operation are the invocation attributes. The support for various invocation
semantics with different sets of attributes is implemented by mapping invocation requests of
the form:

INVOKES$mode obj$op (args) attributes

to the policy invocation:



INVOKE policy(obj)$invoke_mode

(invocation_block(obj,op,args), attributes)

Basic costs. The dynamic use and interpretation of attributes by policies results in certain
overheads experienced with object invocations. The measurements depicted in Tables 1 and 2 list
the actual overheads experienced on a 32-node GP1000 BBN Butterfly and a 64-node Kendall Square
supercomputes, respectively. For reference, a procedure call without parameters to locally stored
code costs approximately 3 microseconds on the BBN Butterfly, and a call to a local ADT costs
only 18 microseconds. All measurements below distinguish ‘local’ from ‘global’ since non-replicated
addressing information and attribute values may be located on either the processor’s local memory
or in remote memory units.

When inspecting Table 1 below, it is apparent that policies impose only small additional overheads
on invocations. The reasons for this are the following. First, it takes very little time to locate an
object’s policy (find policy) since KTK does not attempt to dynamically link new policies to objects
after their creation. Similarly, policy invocation itself is cheap since ‘small’ policies are efficiently
constructed with ADTs, therefore not involving additional context switches, etc. In fact, policy
invocation cost is dominated by the number of attributes passed to a policy. This is shown by the
two different sets of measurements for building invocation blocks involving no parameters (labelled
‘fast’) or any number of parameters (labelled ‘asynch’). In the ‘fast’ case, none of the mechanism
used for space reservation for actual parameters is used during parameter block construction, and no
attributes are passed. The ‘asynch’ case uses those mechanisms (in these particular measurements
not involving any actual parameters), but also does not pass any attributes. The measurements for
the KSR machine (Table 2) demonstrate this fact further by measuring the cost of ‘asynch’ invoke
with different numbers of attributes, as required for the distributed queue in the TSP application.
Of course, none of the measurements below take into account the actual costs of policy execution,

which depend on the code contained in policies.

operation asynch fast

local global | local global

find policy 10 30 10 30
build invoc block 40 60 15 25
invokr policy 26 95 26 95

| total | 6 145] 51 110

Table 1: Timing (useconds) for invocations on GP1000

DSA Objects. The measurements shown above demonstrate that the basic overheads of attributes

and policies are not high. The issue addressed next is whether those overheads are outweighed



operation | no attr 1 attr 2 attr fast

loc gl |loc gl|loc gl|loc gl
fnd pley 3 12 3 12 3 12 2 12
bld inv bl 3 13 3 14 5 15 3 12
invk pley 8§ 30 8§ 31 9 34 8§ 30

| total | 14 55] 14 57| 17 61 13 54|

Table 2: Timing (pseconds) for invocations on KSR1

by the benefits of on-line configuration. For the TSP application, we have evaluated prototype
implementations of the work sharing queue on the BBN and KSR multiprocessors, contrasting four
different implementations:

1. Centralized — the work sharing queue is implemented without KTK as a totally ordered queue
located in shared memory and accessed by all worker threads.

2. Distributed — the queue is implemented in shared memory as a set of fragments that do not
maintain any global ordering and do not perform load balancing.

3. Distribuledg — this shared memory implementation offers load balancing and enforces a de-
sirable global ordering on queue elements, using a ring-structured communication topology
connecting all fragments[6] > , again using shared memory.

4. Distributedpss — a partial prototype of KTK is used to implement Distributedg, in order
to evaluate the cumulative performance effects of the KTK mechanisms of attributes and
policies on the TSP application. In the final paper, actual measurements with a full KTK
implementation will be presented.

Table 3 lists the execution times of the TSP application (with 15 processors on the BBN Butterfly
and 15 processors on the KSR1 multiprocessor) using the four alternative implementations of the
work sharing queue explained above. It is apparent from those results that the alternative heuristics
(e.g., no load balancing vs. load balancing enforcing a partial global ordering) for queue access and
management enforceable with KTK attributes and policies strongly affect program performance. In
fact, use of the attributes ‘InsertionType’ and ‘WhichPriority’ and the load balancing heuristic using
them is shown essential for achieving high performance in the TSP application. Speedup results
(on a BBN Butterfly multiprocessor[6]) comparing a non-load balanced with a load-balanced queue
shown in Figure 2 further support these statements. At the same time, KTK overheads cause some
degradation in performance, as seen by the DistributedDSA versus DistributedQQueue measurements
in both Table 3 and Figure 2. Actual execution times on the KSR1 are comparatively smaller to
those on the BBN Butterfly due to the KSR’s faster processors. KSR results are attained with an
untuned prototype version of KTK.

?Every two ‘get’ operations by a searcher thread on its local queue fragment trigger a move of the second best node from
the local queue fragment to the next fragment along a ring-structured communication topology connecting all fragments.
As a result, ‘good’ nodes are frequently shared among different searcher threads. This increases the overall quality of
nodes used by searcher threads, but it also increases the total number of accesses made by threads to non-local node

representations.



Queue Implementation | BBN KSRI1
Centralized 3445 724
Distributed 6920 1346
Distributedg 2393 579
Daistributedpg g 2725 636

Table 3: TSP Execution Time (millisecs.) of alternative queue implementations on 15 processors

We posit that similar results will hold for many other parallel application programs. In addition,
while some performance degradation occurs when the KTK prototype implementation is used, we
believe that the increased ease of programming by use of KTK outweighs the penalties imposed by

these costs.
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Figure 2: Speedups of alternative implementations of the TSP application

5 Configurable threads

5.1 Performing on-line threads configuration

As with the object layer of KTK, the threads level of KTK also provides support for configurability.
Specifically, each component of the configurable threads package defines a set of basic attributes used
for its configuration. At this level, we are primarily concerned with attributes that characterize a
component’s internal representation. Such attributes may be altered dynamically by policies resident

inside or outside the component. Furthermore, each component also provides support for efficient



customized state monitoring.

Information on component state may be used by heuristics resident inside the component or
outside the component (as KTK policies) when making configuration decisions. For example, the
configurable lock “queue_lock” used in class “Distr_tsp_queue” in Section 3 contains two sets of

attributes and a customized monitor module:

1. The Waitl attribute set specifies the manner in which a thread is delayed while attempting to
acquire the lock. Sample wait attributes are: timeout and spin-time parameters, list of wait
methods, etc. These attribute values implement a spectrum of multiprocessor locks ranging
from a pure spin lock to a pure blocking lock[21].

2. The Scheduling attribute set determines the delay in lock acquisition experienced by a thread
using the lock. This set consists of three attributes: (a) a registration attribute logging all
threads desiring lock access, (b) an acquisition attribute determining the waiting mechanism
and policy to be applied to each registered thread (without registration the lock cannot apply
different waiting policies to individual threads), and (c) a release attribute that grants new
threads access to the lock upon its release.

3. Custom monitoring records lock-specific information (e.g., the number of waiting threads at
any particular time).

An application uses the customized monitor to sense the current state of the lock, and configures

the lock implementation by altering the lock attributes.

5.2 Performance results of on-line lock configuration

Extensive measurements of on-line lock configuration with the TSP and other parallel application
programs are reported in [21, 22]. Here, we simply reproduce one set of measurements (Table 4)
showing total performance improvements of approx. 20% on the BBN Butterfly and 10% on the
KSR multiprocessor when the central queue implementation of TSP uses a configurable rather than
a simple spin or blocking lock. Essentially, dynamic lock configuration ‘selects’ the appropriate lock
implementation during execution of the TSP program.

Analysis of locking patterns of the parallel programs being used demonstrates the substantial
changes in locking behavior experienced by these applications over time. On-line lock configuration
exploits these changes, thereby continually correcting for potential application program and oper-
ating system mismatches[21, 22]. Two such locking patterns for the TSP queue’s mutex lock are
shown in Figures 3 and 4, depicting both heavy contention on the lock and substantial changes in
lock contention over time. Extensive studies of locking patterns of multiprocessor applications[22]
have shown that: (1) the locking pattern of a multiprocessor lock varies over the lifetime of the
application, (2) locking patterns of different locks in the same application are different, and (3) the
locking pattern of a particular lock belonging to a particular application differs when run on differ-

ent machines (as shown in Figures 3 and 4 for ‘qlock’ on the BBN versus KSR machines). These



observations prompt us to believe that a rigid set of non-configurable synchronization mechanisms
will not be able to optimize program performance for different applications and across different

machines.

TSP:Qlog

No. of waiting threads

0 200 400 600 800 1000 1200 1400
Elapsed time(milliseconds)

Figure 3: Locking pattern for qlock in TSP; 10-processor run on KSR1
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Figure 4: Locking pattern for qlock in TSP; 10-processor run on BBN

The last issue addressed in this paper are the limitations of on-line configuration as per the costs
of the state monitoring required for making configuration decisions. Toward this end, we present an
evaluation of lock configuration performed with the custom monitoring used in the measurements

above vs. an outside configuration policy using explicit object state monitoring in order to configure



Multiprocessor | blocking locks configurable locks

BBN 3207 2636
KSR1 364 335

Table 4: Performance (millisecs) of the centralized implementations of TSP using reconfigurable locks

(using 10 processors)

the mutex lock.

Thread monitoring. Application monitoring and visualization requires more information about
a program’s execution than can be provided by automatic tracing facilities. Collection of this data
generally involves software level instrumentation which may be placed in the operating system, the
run time system, system supplied libraries, libraries used as alternatives to system-supplied libraries,
or, most often, in the source code of the program under study. The “thread monitoring” system
developed by our group provides general monitoring facilities at the threads level of KTK.

Monitoring at the thread level is implemented using a dedicated “local monitor” thread that
collects trace data (sensors) from application threads, performs some low-level processing if nec-
essary and sends traces to a “central monitor” if desired (possibly running in a remote machine).
The central monitor uses an X window-based “user interface” for users to communicate with the
monitoring system.

Application threads communicate with the local monitor thread using thread-specific monitor
buffers. In an un-optimized implementation of the system on the KSR1, creation of a 40-byte long
lock-sensor (containing ‘lock type’, ‘time-stamp’, ‘current processor number’, ‘thread id’, and ‘lock
state’) takes 118 useconds, insertion of the sensor in the thread’s monitor buffer takes 58 pseconds,
and retrieval of the sensor by the local monitor thread takes 51 useconds. These measurements do
not include costs for cache line movement across processors.

We found the performance of such a general monitoring scheme unsuitable for implementation
of the configurable lock (for comparison, a mutex lock takes 6 useconds on the KSR1), in part
because of the loose coupling between the application thread and the local monitor thread (it takes
38 useconds for communication of a 8 byte word from an application thread to the local monitor
thread). This causes performance degradation and configuration delay?. Hence, for the configurable
locks described above, we use a closely coupled, customized monitor which monitors only those lock-
specific attributes that are required for on-line lock configuration (e.g., no. of waiting threads, lock
holding time, etc). Furthermore, we eliminate the local monitor thread and employ the application
thread calling the lock for its monitoring and configuration. With this scheme, it takes 5.5 useconds
to monitor and configure an attribute for a configurable lock. This implies that KTK must offer a

variety of monitoring and configuration mechanisms for use with different configuration tasks. Such

* A configuration action is based on lock state that is ‘too old’ due to the relatively slow and asynchronous communication

between applications threads and the local monitor thread.



variety is offered in KTK by permitting alternative implementations of policies (such as ADTs,

TADTs, etc).

6 Conclusions

KTK and configurable threads provide an efficient basis for building configurable operating system
kernels and application programs for multiprocessor systems. The performance advantages demon-
strated with on-line configuration range from 10%-50%, for a variety of parallel application programs
and abstractions, on a BBN Butterfly and a KSR multiprocessor. For larger-scale parallel appli-
cation programs, we are hoping to achieve cumulative performance gains approaching or exceeding
100%.

The general goal of our group is extend the notions and mechanisms of configuration presented in
this paper to develop a new technology for high performance computing systems, called interactive
program steering. The essential idea of this technology is to give users the ability to steer their
programs quickly past uninteresting results or data domains, therefore significantly reducing pro-
gram execution time or alternatively, offering additional computing power for required high-fidelity
computations. In general, such interactive program steering can be defined as the configuration of
a program by algorithms or human users during its execution. We wish to understand the basic
principles and opportunities of program steering, to develop abstractions and tools that facilitate
the construction, execution, and control of steerable and configurable programs, and to demonstrate
the performance advantages of program steering on parallel and distributed target machines.

Evidence of the utility of interactive program steering already exists in many large-scale parallel
programs. For example, in our collaboration with physicists, we estimate that the sizes of 30%-40%
of the time steps taken by their physical simulations of advanced material properties may be reduced
in size and therefore, in computational duration, perhaps in favor of more precision and fidelity of
results during interesting material behaviors. Additional reductions in computation time can be
achieved by use of the on-line configuration algorithms presented in this paper, which recognize
certain program characteristics and reconfigure selected program abstractions and/or operating
system mechanisms and policies.

Future work on the topics presented in this paper concerns (1) the evaluation of cumulative
performance improvements for applications like the TSP program and also for a large-scale parallel
simulation kernel (a Time Warp simulator) and (2) the integrated use of the threads-level monitoring
facilities with the KTK library. In addition, the native implementation of KTK on next generation
multiprocessor hardware is being considered. Other research conducted by our group addresses the
use of KTK for protocol construction as well as the extension of KTK across non-shared memory

systems.
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