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Abstract—Energy Harvesting (EH) is a novel technique to sends information over an AWGN channel is studied. Also,
prolong the lifetime of the wireless networks such as wirelss the effects of energy buffer with different condition andal
sensor networks or Ad-Hoc networks, by providing an unlimited  officiencies in energy storage are studied. Similar study

source of energy for their nodes. In this sense, it has emerde . . .
as a promising technique for Green Communications, recemnyl [7] is presented in[[8] which showed that AWGN channel

On the other hand, cooperative communication with the help & capacity with stochastic energy arrival (i.e., EH) is thmeaas
relay nodes improves the performance of wireless communitan AWGN channel capacity with average power constraint equals
networks by increasing the system throughput or the reliablity  to average recharge rate. Also, two achievability schemes a
as well as the range and efficient energy utilization. In orde presented, namely, save-and-transmit policy and bestteff

to investigate the cooperation in EH nodes, in this paper, we . . ; ] .
consider the problem of optimal power and rate allocation inthe transmit policy. Optimal packet scheduling problem in \ees

degraded full-duplex Gaussian relay channel in which soure and ~ Single user EH communication system, in which energy and
relay can harvest energy from their environments. We considr data packets are stochastically entered the source node is
the general stochastic energy arrivals at the source and theelay  considered in[[9]. In the aforementioned paper, in order to
with known EH times and amounts at the transmitters before the minimize the transmit time of the data packets, transmissio

start of transmission. This problem has a min-max optimizaton . . .
form that along with the constraints is not easy to solve. We rate adaptively changes according to data and energy gaffic

propose a method based on a mathematical theorem proposed The study inl[9] is then extended to broadcast charinel [10],
by Terkelsen [1] to transform it to a solvable convex optimiation  [L11], multiple-access channel [12], interference chaijhg],
form. Also, we consider some special cases for the harvedtin two-hop network[[14] and fading channels [15].

profile of the source and the relay nodes and find their solutins Wireless Rela); Channel (RC), ever since introduced, is

efficiently. . . .
Index Terms—Convex optimization, degraded Gaussian relay used to overcome the challenges of information transmissio
channel, energy harvesting, , resource allocation. in wireless channels with progressively improving protsco
proposed by researchers. Cooperative communicationsl base
|. INTRODUCTION on the use of wireless relay nodes is a specific area of résearc

Energy Harvesting (EH) has emerged as a promising solo-wireless communications that extensively explored i@ th
tion to the perennial energy constraint of wireless networkast decade, from many aspects such as information theoreti
such as wireless sensor networks (WSN) or Ad-hoc networksipacity, diversity, outage analysis, cooperative angvort
which have limited battery sources| [2]. Also, EH is develkoding, resource allocation, etc. Also, resource-coimdtreet-
oped to be used as a foundation of green communicatiearks such as WSN can get benefit of cooperation through
networks [[3]. This will be more critical as increasing energoptimal allocation of energy and bandwidth to the nodesdase
consumption of highly-demanded ubiquitous networks saon bn the available channel state information of those nodss (s
the main cause of global warming. Energy harvesters collecg. [16] and the references therein).
ambient energy from the environment or the resources suctSome recent studies have considered multi-hop and relay
as body heat and convert it into usable electrical energyetworks where their nodes are capable of harvesting ambien
Conventional devices that harvest energy from the enviesmim energy [14], [17],[[18]. In EH two-hop network considered in
are solar cells, water mills, wind turbines, microbial fuefl4], only the relay node can harvest energy, while in twg-ho
cells, vibration absorption devices, thermo-electricagaiors, networks studied in [17] both the source (S) and the relay (R)
piezoelectric cells, etc. EH nodes have access to an uatiminodes are the EH nodes. [n [18], half-duplex (HD) orthogonal
source of energy in contrast to conventional battery-pedierRC with decode-and-forward (DF) relay is considered and two
nodes; however, the limitation on the EH production rate amtifferent delay constraints, namely, one-block decodiatay
its sporadic nature necessitates the sophisticatedatiiliz of constraint and arbitrary decoding delay constraint up ® th
scavenged energy. total transmission blocks, are investigated.

Early works on EH sensor nodes are presented_in [4]-In this paper, we consider the problem of optimal power
[6]. In [Z], shannon capacity of EH sensor nodes, whicand rate allocation for EH nodes of a three-node full-duplex
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Fig. 1. Gaussian relay channel with energy harvesting nodes

(FD) degraded Gaussian RC in order to maximize the tofaite sets Xy, X»,);,)> and conditional probability mass

number of bits that can be delivered from the source noflenctionsp(ys,y1|x2,z1) 0N x Vs consists of (i) A message

to the destination (D) node in a given deadline. We considset [1 : 2"3], (i) An encoder that assigns a codewari(m)

a general model compared to that of the aforementiontd each message: € Ll : 2"3], (i) A R encoder that

papers. In our model, there exists a direct link from S tassigns a symbat,;(y:~') to each past received sequence

D (in contrast to [[14], [[17]) and also we investigate thgi~' ¢ Yi~' for eachi € [1:n], and (iv) A decoder that

FD mode compared to the HD mode of [18]. This causesssigns an estimat® to each received sequengg € V' or

a more complicated min-max optimization problem arises ieports an error. The channel is said to be memoryless in the

our scenario which has not been encountered in the previmesmse that given the current transmitted symbjals;, X»;),

studies. Our aim is to transform this complicated min-matke current received symbao(¥7;, Y;) are conditionally inde-

problem to a solvable convex optimization form, using somgendent of the message and the past transmitted and received

mathematical background. In two steps, we first introduce agmbols (m, X{~*, X371, v;~!, Y7 ~1). We assume uniform

auxiliary parameter and then use a minimax theoreni bf [d]stribution of the message over its set. The average piiitigab

to make our problem tractable. Since the online problem th@t error is defined agpe(”) = Pr{]\Z/ #+ M}.

assigns rate and power in real-time to the nodes, in oureiudi pefinition 2: A rate R is said to be achievable for the DM-

scenario,.isin.tractable for now, we considerthe offineoh RC if there exists a sequence (#"F,n) codes such that

that the time instants of energy harvesting and the amountl%nﬁoope(n) — 0. The capacityC' of the DM-RC is the

harvested energy by S and R are known before the COULSRyremum of all achievable rates.

of the transmission. Furthermore, some special cases on th

harvesting profile of S and R are investigated. The first a

the second cases have only one node (S or R), which harve%*g

energy from its environment, and in the third case, hamgsti

profiles of S and R are the same. These special cases are

presented to give some intuition of the main problem. Yi=aXy+ 2y, @
The remainder of the paper is organized as follows. Section Yo = X1 +0Xo + 2o, (2)

[Mintroduces the system model, and secfioh Il formulates t

throughput maximization problem for the degraded Gaussi@fhere ¢« and b are channel gains of S-R and R-D links,

RC. In sectior{ IV, we provide the optimal solution for th§espectively, assuming normalized channel gain for the S-D
degraded Gaussian RC and in secfidn V, we investigate SOfpR  and we havez; ~ N(0,N), Zy ~N(0,N)
special cases. Finally, sectibnlVI concludes the paper.

e consider Gaussian RC with EH nodes depicted in[Hig. 1.
e channel outputs correspond to channel inputXs is as
ows

Capacity of the degraded RC is as follows|[19]

Il. SYSTEM MODEL
, _ C = max min{[(X1,X5;Y3),I(X1;Y1|X2)}, (3
RC models a three-node network, in which the source node p(wInh;(z)mln{ (X1, Xo: ¥2), I(X05 V1| Xo)} 3

wants to communicate to the destination node with the help

of the relay node. and the capacity formula for the degraded Gaussian RC
Definition 1: A (2", n) code for the discrete memorylesswith power constraint at SY)"" | z%,(w) < nP;, and R,

RC (DM-RC) (Xl X Xg,p(yg, y1|.%'2, ,Tl), Y1 X yg) with four Z?:l x%l(w) <nhPy,is given by [19]
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Fig. 2. EH instants and amounts for S and R with= 6.

C(Pl,PQ) = min{é’l,ég} =

(\/Pl(a2P1 —02Py) + /b2 (a? — 1)P1P2)2

Ci=C
! 2P N ’

Equation [(6) denotes that the powers of S and R should be
nonnegative[(|7) states the energy causality at S[And (@pssta
that power consumption at R should not violate its energy
causality constraint. Finding the solution of the main peaf
is not straightforward as it has the min-max optimizatiomfo
that cannot be separated due to the FD nature of the problem.
In other word, since R can receive and send the information at
the same time, in each epoch we do not know which term (in
epochi, C, (P, Pi) or C,(Pf, Pi)) is the minimum and how
should we assign the powers of S and R to maximize the sum
of the rates allocated to all of the epochs. Also, observe tha
in (@) the condition that specifies the minimum term, depends
on the optimization parameters of the maximization prohlem
i.e., P, and Ps.

IV. OPTIMAL SOLUTION FOR DEGRADED GAUSSIAN RC

In this section, we propose a method to make the problem
tractable and try to solve it. We can rewrite the problem by

i (a®> —1)P, - introducing0 < X < 1 as follows
I - )
(1.a2) Py - K41
. max {1,a?} P . ' {,\ié P! P+ (1= \)HC, (P! Pi}
R (—N ) | otnervise %, D iy (NG P+ (1 X0
(4) ®)
which is achieved byX; ~ A (0, P;) and X5 ~ N (0, ). st Pi>0,P>0, i=1,..K+1, (10)
I1l. PROBLEM FORMULATION L
_ - o SN PUI'<) B, k=1,...K+1, (11)
Our problem is to maximize the number of bits delivered = =
by a deadlineT from S to D. S and R harvest energy k k—1
at random instantg®, ¢!, ¢2,...,t® and in random amounts Zplili < 2317 k=1,..K+1, (12)
E},E?, .. EXY and E}, E3, ..., EX T, respectively. If at pa— et
some instants only S or R harvests energy, we simply set tvr\} ore
amounts of the energy harvested by the other one to zero (see” ™’
Eig. [2). The in;erval rllaetwegn two inStTLS S I(l)rdR or bOtE 0 if C,(Pi, P}) > Cy(P!, Pi),
arvest energy from the environment, will be called an epoch ,; _ J; if G (Pi. Py < C.(Pt. P 13
The length ofi*" epoch isl’ =t — "' fori =1,..., K + 1. _ _ ~1( L 21.) < ~2( L 21.)’ (13)
So, there are a total of¢ + 1 epoch witht® = 0 and arbitrary it Cy(Pf, P3) = Co(Pf, F3).

8+ = T —t%. We consider the offline problem in which\ye then use the following corollary to change the order of

the arrival times and amounts are known to S and R befq{ and max operators which is the application of a min-max
the start of transmission; therefor, i = 1,..., K + 1 are  {hegrem of Terkelsen [1], presented in][20].

known ahead of time. We find optimal power allocation for S Corollary 1 ( [20, Corollary 1]): Let Ay be the d-
and R in order to maximize the rate from S to D with energy;ansional simpI,GzX ied, > 0 and ¢ Ai=1
causality constraints at S and R. This means that energytanty; » pe the set of probaﬁlity distributiéﬁ&(u). Let

be utilized in S or R before it is harvested in the correspmgdiT}(p(u)) i — 1.....d be a set of functions such that the set

node. We formulate the problem as follows: A
K+1 ~ o o K+1 o p
max 3 min {01 (P}, Pi),Cy(Pi, Pg)} —max 3 C(F}, Pj) A={(a1,az,....a0) € R : a; < Ti(p(u)) for somep(u) € P},
Pob i Prby i (14)
(5) is a convex set. Then,
s.t. P} >0, Pi>0, i=1,.,K+1, (6) d d
K k1 sup min > AT;(p(w) = min sup N Ti(p(u)).
Q7% 3 _ p(u)eP d iz d p(u)eP =
Z;Pll g;El, k=1,..K+1, (7) 1 1 (15)
1; ,:1 Now, we consider our optimization problem defined[ih (9).
szili < ZEﬁv k=1,..,K+1. (8) Theorem 1:0ptimal power and rate allocation for the
P} It source and the relay node in the degraded Gaussian RC
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with energy harvesting nodes, is the solution of the foltayvi
problem

K+1 o . .
> {NCU(PL Py + (1= N)Co(PL Py }

min max

AP} P}

(16)
s.t. P} >0, Pi>0, i=1,.,K+1, (17)
k k—1
N PUI'<Y Ei, k=1,...K+1, (18)
=1 1=0
k k—1
NP <> By, k=1,.,K+1, (19)
=1 1=0
0< N <1, i=1,..,K+1. (20)

C,(P,, Py), Tr(p(u)) = Cy(P,,P,) andd = 2. Note that
as we fix the input distribution of S and R to be Gaussian,
ie., X; ~ N(0,P) and X5 ~ N(0, P2), we can replace
Ti(p(z1,22)) with T;(Py, P;) in the above corollary (we
rewrite p(x1,x2) = g(P1, P2)). Now, assume thata;, as) €
A and (by,by) € A. It means thatu; < CY(P,, P,),a2 <
CY(P,, P,) as well asb; < CY(P,,P,), ba < CY(P,, P,).
Then we choosécy,ca) = (nar + (1 — n)by,nas + (1 —
nb2), 0 < n < 1. It is clear thate; < CY(P,,P,)
andc; < CY(P,, P,). Hence, we havéc;,c2) € A. This
completes the proof.
[ |

Now, we decompose our problem into the following two

problems.

Corollary 2: The problem defined if_(21) can be decom-

Proof: We show that the corollaryl 1 is applicable to oupgsed into the following problems:

problem. In other words, we have

K41
K+1 . 2 3 3 AV 3 3 Probleml : * AZ = max AZO P ,P
max Z 1111 {/\ Cl(P1’P2)+(1_)‘)CQ(PI’PQ)}: ( ) 1A= {PiH{Ps} zzl{ (- P2)
(P} AP} i=1 {N} .
. Kil {/\zé (Pi Pi)-i-(l /\l)é (Pi Pz)} (1_/\Z)CZ(P117P211}
min max , — , .
N} (Piy P 1\ 2 2, 12 (24)
(21) i i
Now, we show that every convex combination of the points st Prz0, P20, i=1.. K+1, (25
inside A is also inA. Therefore, 4 is a convex set. Consider oo
the following mutual information terms ;Pll < ;El’ k=1,.,K+1, (26)
(a) k k—1
I(X1;Y1|X2,Q) = H(Y1|X2,Q) — HY1|1X1, X2,Q) i i _
o ZPQZ SZEQ, k=1,.,K+1. (27)
< H(Yi|Xz) — H(Yi|X1, X2,Q) i1 i=0
©)
= H(Y1|X2) — H(Y1| X1, X .
(@) 11%2) (1lX1, X2) (Problem2) : min f*({\'}) (28)
= I1(X1; V1] X2), (22) % ,
st. 0<N <1, i=1,.,K+1. (29
(@)
I(X1, X2;Y2|Q) = H(Y2|Q) — H(Y2| X1, X2,Q) which can be solved, separately. Problem 1 is a convex
b) optimization problem as its objective function is concane a
< _
(Z) H(Y2) = H(Y| X3, X5, Q) its constraints are affine, and can be solved by efficienteonv
= H(Ys) — H(Y2| X1, X2) optimization methods to find its unique maximizer. Problem 2
(d) is a combinatorial problem that can be solved efficientlg, to
= I1(X1, X2; Y2), (23)

For the first problem, we can write the Lagrangian function

where, (a) and (d) follow from the definition of the mutuafor any £ > 0, px > 0,9 > 0 andn, > 0 as [30) in top

information, (b) follows from the fact that conditioning e Of this page together with following complementary sladse
not increase the entropy, and (c) follows from the fact that conditions
is a function of X; and X,. This completes the proof. & b1

AI§0, we can specially show that the aforementioned corol- € Zplili . Z Ei)=0 k=1,..K, (31)
lary is applicable to the Gaussian case. We Bgp(u)) = = et



( ~ i = 1) V. SOME SPECIAL CASES

pe | Y PP E3 | =0, k=1,.,K, (32)

i=1 i=0 In this section we present some special cases, which are
N , interesting from the practical viewpoint. We can consideseas
Zﬁin =0, i=1,..,K+1, (33) in which only one node, i.e. S or R, can harvest energy
i=1 from the environment. Also there may be scenarios that the
N i _ harvesting process of S and R are the same. These special
ZmPZ =0, i=1L.,K+1. (34) cases do not have the complexity of the main problem and
=t presented here to give intuition to the main problem. Altgjiou

This problem can be solved by taking the derivatives of tharee cases are solvable, we only state the solution fohtt t

Lagrangian function with respect t&;, and P» and setting one, which is general compared to the others.

them to zero, and doing some mathematical manipulation;

however, the closed form expression féf and P, give A, Only Relay Harvests Energy

not any explicit idea about the optimal power assignment ) ) )

algorithm. Hence, in the next we prove some lemmas about" this scenario, the topology of the network is such that

the properties of the optimal solution. We use these lemm@&ly R can harvest energy from its environment and S has

in the next section to find the optimal solution for a specigC!€!y @ non-replenishable battery. This is eqlélvalenthe t
case. case that in our system model we sléi #0,Ef = ... =

Lemma 1:In an optimal policy, transmit rates and powerdZi. = 0. In this case we hav@ = =+ = P, ¥i and the
of the S and R are constant within an energy harvesting epd@pacity formula is as follows
and only potentially change at energy harvesting instants. R
Proof: As we know,Cy = g1(P1, P2), Cy = ga(P1) o (¢a2P—b2Pz+;l;v\/<a2—1>Pz) ’
are nonnegative, strictly concave and monotonically iasiry .. ¢

function of their variables?; and P,. We prove this lemma Cr(P) = if P, < (a®>-1)P
by contradiction. Assume that there ist'ac (/~', /) such o <max{1,a2}p> ow
that S and R usé”; and P in (t/~1,¢*) and P, and P, in N ’ o
(t*,7), respectively. Hence we have (37)
_ . As we can see in[(37), the condition that specifies the
-t D P vt D P capacity formula is only the function df, and therefore the
mm(f’hf’z) + WQ1(P1,P2) < 2

o ’ e 3 complexity of the main problem is not exists here; so, finding
g ((t T PHE )R @t )Pt )Pz) . (35) the solution of this problem is straightforward.

i1 ) i1

Similarly B. Only Source Harvests Energy
t* _ tjfl . t] _ t* o . . . . .
. ._192(131) . ._1gz(P1) < _ Thls_, scenario is in contrast to t_hat of the previous one,
ti —t7 R in which only S can harvest ambient energy while R has
9o ((t*ft”lj)Pltjijft*)Pl) . (36) @ conventional non-rechargeable battery. This means that i
B our model we setE) # 0,E? = .. = EX = 0; So,

Therefore by equalizing the transmitted power within anapo Pi= ET; = P, Vi and the capacity in this scenario is as
we can reach to a higher throughput. Hence, changing the

transmitted power of S and R within an epoch is suboptimal. c ((\/unb\/mf)
| a?N ’
Lemma 2:Whenever the power of source or relay changeg;H(Pl) _ it P, > (ail)

it should only increase.
Proof: This is also due to the concavity of; = C(M)v O.W.
g1(P1, Ps), Cy = g2(P1) and the fact that postponing the (38)
transmission of energy or shifting it to the right (in eNergy, . <ame conclusion can be made as the previous case
consumption diagram) does not violate the energy causality P '
constraint and on the other hand, due to the concavity of the
rate function in terms of power, more bits per joule can bé senr’
by setting the power to a constant value. Therefore, the poweThis is also an interesting case that both of S and R
of S or R never decreases in time, i.8} < P2 < P} <... can harvest the ambient energy. In this scenario, S and R
andP} < P?<P3<---. B are considered in the vicinity of each other; therefore, we
Corollary 3: In the optimal policy, if power of S or R can assume the same harvesting profile for them, i.e., the
changes in an instant, the total harvested energy in thégquev harvesting instants are the same and the harvested amounts
epoch of that node has been consumed completely by thi® scaled version of each other. Mathematically speaking,
instant. have Ei = yES, i = 1,...,K, and thusPi = P}, Vi, for

Same Harvesting Process for Source and Relay



some positive constant. The capacity formula is given as VI. CONCLUSION

<\/a2_bzv+b\/v(a2_1))2p] In this paper, we investigated the optimal power and rate
c N ) allocation for a three-node full-duplex degraded Gausstay
¢ (P) = (a1 ch_a_nnel with energy harvesting source _and relay nodes. The
M if = =2lorazyy+1 original problem has a complicated min-max form that is
C (max{lvaz}H) 0. not easy to solve. We transformed it to a tractable convex
N ’ optimization problem, which can be solved efficiently. Also

_ ) S (39)  some special cases on the harvesting profile of the source and
We obtain, the Lagrangian of our problem in this case as ¢ relay nodes were considered.

K+1
) ) . 0/ i i 0/ i i )
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