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Abstract—The index coding problem is a simple dis-
tributed source coding problem in which a sender broad-
casts multiple messages to their respective receivers with
side information about other messages. This problem arises
in many applications such as content broadcasting, dis-
tributed caching, and wireless interference management.
At the same time, it is a canonical instance of the multiple-
unicast network coding problem that captures the essence
of broadcasting multiple interfering streams. Reflecting the
importance as well as the difficulty of the index coding
problem, several coding schemes have been proposed that
are built on tools from graph theory, linear network coding,
combinatorial optimization, and interference alignment.
This paper studies the composite coding scheme based on
random coding in information theory. Despite its concep-
tual simplicity that allows for rather straightforward anal-
ysis, the scheme uniformly outperforms the existing coding
schemes by Birk and Kol (1998), Blasiak, Kleinberg, and
Lubetzky (2013), and Shanmugam, Dimakis, and Langberg
(2013), and is optimal for all index coding problems with
up to five messages.

I. INTRODUCTION

Consider a communication scenario in which a sender

has multiple messages to communicate to a set of

receivers. Each receiver is interested in one of the

messages and has prior side information consisting of

a subset of the other messages. What is the amount of

information that should be broadcasted from the server to

the receivers so that every receiver can recover its desired

message? This problem, broadly referred to as index

coding, is one of the canonical problems that capture

the effect of broadcast and interference in multiuser com-

munication systems. Originally introduced by Birk and

Kol [1], [2] in the context of satellite communication, the

index coding problem has received significant attention

from various disciplines such as theoretical computer

science [3]–[6], network coding [7], [8], information

theory [9], [10], and wireless communication [11], [12].

There are many variants of the problem considered

in the literature. In this paper, we consider the fol-

lowing variant with large data blocks that was initially

formalized by Alon, Lubetzky, Stav, Weinstein, and

Hassidim [5] and studied in most subsequent papers.

Suppose that a sender wishes to broadcast a tuple of

n messages, xn = (x1, . . . , xn), where xi ∈ {0, 1}t for

all i, to n receivers. Receiver j ∈ [n] := {1, 2, . . . , n}
has prior knowledge of x(Aj) := (xi : i ∈ Aj), where

Aj ⊆ [n] \ {j}, and wishes to recover xj . Assume that

the sender is aware of A1, . . . ,An.

Since an index coding problem is fully characterized

by the side information sets A1, . . . ,An, as a shorthand

notation we write the problem as (1|A1), . . . , (n|An).
For example, the 3-message index coding problem with

A1 = {2},A2 = {1, 3}, and A3 = {1} can be written

as (1|2), (2|1, 3), (3|1). An index coding problem can be

also represented by a directed graph G = (V , E), referred

to as the side information graph,1 where V = [n] and

(i, j) ∈ E iff i ∈ Aj ; see Figure 1 for an illustration.

Given an index coding problem, a t-bit index code

C = (φ, {ψj}) is defined by

• an encoder φ : {0, 1}nt → {0, 1}r that maps n-

tuple of t-bit messages to an r-bit index, and

• n decoders ψj : {0, 1}r×{0, 1}|Aj|t → {0, 1}t that

maps the received string y = φ(xn) and the side

information x(Aj) to a t-bit message estimate.

The performance of a code C is measured by its rate

β(C) = r/t and the average probability of decoding error

α(C) =
1

2nt

∑
xn

1{ψj(φ(xn),x(Aj)) �=xj for some j},

that is, the probability that at least one receiver does not

recover its desired message correctly. Define the optimal

broadcast rate of the index coding problem as

β∗ = inf
t

inf
C:α(C)=0

β(C),

where the second infimum is over all t-bit index codes

that achieve zero decoding error, i.e., φ is one-to-one

for each xj given x(Aj). Thus, β∗ characterizes the

fundamental limit on the rate of index codes such that

every message can be recovered exactly. Further define

β∗
ε = inf

t
inf

C:α(C)≤ε
β(C).

Under this notation, β∗ = β∗
0 . Furthermore, the follow-

ing relationship holds between β∗ and β∗
ε .

1Some papers use the opposite convention in which the directions
of the edges are reversed.
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Lemma 1 (Langberg and Effros [13]). β∗ = limε→0 β
∗
ε .

In light of this lemma, β∗ can be alternatively char-

acterized as the infimum of the rates β such that there

exists a sequence of t-bit index codes {Ct}∞t=1 such that

β(Ct) = β and limt→∞ α(Ct) = 0.

An important application of the index coding problem

is content broadcasting, in which a server communicates

data packets to multiple clients. In the first phase of

communication, the server broadcasts the packets and

each client stores only a subset of the transmitted packets

due to communication error or limited storage. In the

second phase of communication, index coding can be

used to reduce the number of required transmissions.

This situation arises in satellite communication [1] or

peer-to-peer video distribution [5]; see also [14] for a

more holistic analysis on distributed caching.
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Fig. 1. (a) The directed graph representation for the index coding
problem (1|2), (2|1, 3), (3|1). (b) The equivalent network coding
problem.

Another application is wireless network interference

management, in which multiple interfering transmitters

communicate to their respective receivers. Suppose that

due to the topology of the wireless network, each re-

ceiver has only a subset of signals interfering with the

desired signal. Then, we can construct a corresponding

index coding problem by taking the noninterfering sig-

nals as the side information at the receiver. In [11], [12],

it is shown that the symmetric degrees of freedom (the

symmetric capacity at high signal-to-noise ratio) is upper

bounded by the symmetric capacity (the reciprocal of the

optimal broadcast rate β∗) of the corresponding index

coding problem and the two problems are equivalent

under linear codes.

Perhaps the most important motivation for index cod-

ing arises in network coding. As illustrated in Figure 1,

index coding is a representative instance of the multiple-

unicast network coding problem, in which there is a

single bottleneck link that can utilize the index code for

the given side information pattern. Moreover, Effros, El

Rouayheb, and Langberg [8] showed that the zero-error

capacity region of any multiple network coding problem

can be found by characterizing β∗ of a corresponding

index coding problem. Thus, any progress in the index

coding problem can lead to advancement in network

coding.

In this paper, we first present an upper bound on

the optimal broadcast rate of a general index coding

problem using the composite coding scheme outlined

in [15]. Reminiscent of the coding scheme in the

original network coding paper by Ahlswede, Cai, Li,

and Yeung [16], the composite coding scheme is built

on Shannon’s random coding [17] (or more precisely,

Cover’s random binning [18]) approach that establishes

the existence of a good code through an elementary

probabilistic method. Rather surprisingly, this coding

scheme is optimal for small n; for example, it achieves

β∗ for all 9608 index coding problems of n = 5. (See

[19] for the complete list of the problems and optimal

broadcast rates.)

Second, we compare the composite coding scheme

with existing coding schemes. In particular, we show that

the composite coding scheme uniformly outperforms the

(partial) clique covering scheme by Birk and Kol [1], the

fractional clique covering (graph coloring) scheme by

Blasiak, Kleinberg, and Lubetzky [6], and the fractional

local graph coloring scheme by Shanmugam, Dimakis,

and Langberg [10].

The rest of the paper is organized as follows. In the

next section, we survey the existing coding schemes in

the literature. In Section III, we describe the composite

coding scheme and characterize the broadcast rate βCC

it achieves as the solution to a linear program. In Sec-

tion IV, we compare βCC with the broadcast rates βFL
achieved by fractional local coloring and βPC achieved

by partial clique covering. In Section V, we conclude

the paper with potential extensions of composite coding

and a discussion on limitations of composite coding and

other existing coding schemes.

II. EXISTING CODING SCHEMES

Roughly speaking, there have been two general ap-

proaches to index coding in the literature. We explain

these two intimately related approaches in the next two

subsections. Inter alia, we will clarify the relationships

among different coding schemes that are often difficult

to elucidate from the literature.

A. Graph coloring

The first (and perhaps the most natural) approach

to index coding is based on partitioning of the side

information graph G by cliques (or equivalently, coloring

of the undirected complement of G). We illustrate this

approach through the following.



Example 1. Consider the index coding problem repre-

sented by the side information graph G in Figure 2(a).

Note that three cliques {1, 2}, {3, 4}, and {5} partition

G. Let t = 1 and transmit the binary sums (pari-

ties) of all the message symbols in each clique, i.e.,

φ(x1, x2, x3, x4, x5) = (x1 + x2, x3 + x4, x5). Since φ
is injective in xj given Aj for every j, this code achieves

zero error at rate β = 3, which is the chromatic number

of the undirected complement Ḡ of G; see Figure 2(b).
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Fig. 2. (a) The directed graph G representing the index coding problem
(1|2, 5), (2|1, 3), (3|2, 4), (4|3, 5), (5|1, 4). (b) Its undirected com-
plement Ḡ that is obtained by drawing an undirected edge {i, j} iff
(i, j) /∈ E or (j, i) /∈ E .

In general, for any index coding problem with side

information graph G, we can achieve the minimum

number of cliques that partition G (or equivalently, the

chromatic number of its undirected complement). It can

be readily checked that this rate is the solution to the

integer program

minimize
∑
S∈K

ρS

subject to
∑

S∈K:j∈S

ρS ≥ 1, j ∈ [n],

ρS ∈ {0, 1}, S ∈ K,

(1)

where K is the collection of all cliques in G.

This coding scheme has been extended in several

directions. First, Birk and Kol [1] showed that we can

code over arbitrary (sub)graphs instead of cliques. An

n-node directed graph is said to be a k-partial clique

if the minimum indegree of all vertices is n − k − 1.

Suppose that the side information graph of an index

coding problem is a k-partial clique. Then, since each

receiver j ∈ [n] is missing at most k + 1 messages, we

can transmit k + 1 parity symbols generated from the

message symbols and a systematic maximum distance

separable (MDS) code [20] that can correct arbitrary k
erasures from them. For instance, a clique corresponds

to k = 1 and the MDS code in this case is a single parity

x1 + · · ·+ xn. As another example, for the graph corre-

sponding to the index coding problem (1|2), (2|3), (3|1),
G is 1-partial clique, and two parity symbols, say, x1+x2
and x1 + x3, suffice to correct any two erasures from

(x1, x2, x3). Generalizing this idea to subgraphs, we can

establish the following.

Theorem 1 (Birk and Kol [1]). If G1, . . . ,Gm are partial

cliques of parameters k1, . . . , km that partition G, then

the optimal broadcast rate is upper bounded by

βPC(G1, . . . ,Gm) = (k1 + 1) + · · ·+ (km + 1) (2)

and thus by

βPC = min
G1,...,Gm

βPC(G1, . . . ,Gm),

where the minimum is over all partitions.

Note that by limiting the subgraphs to be cliques, we

recover (1).

As another extension of (1), Blasiak, Kleinberg, and

Lubetzky [6] showed that we can use more than one

clique per message. A function f : 2[n] \ {∅} → [0, 1]
is said to be a fractional partition if for every j ∈ [n],∑

S:j∈S f(S) = 1. Note that a partition is a special case

with f(S) = 0 or 1 for every S. Now by considering

a fractional partition f over all cliques (i.e., f(S) > 0
only if S is a clique) and splitting messages according

to the given fractions, we can achieve the broadcast rate∑
S f(S). As an illustration, we revisit the index coding

problem in Example 1. Let

f(S) =

{
1/2, if S = {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1},

0, otherwise.

It can be readily verified that f is a fractional partition

with
∑
f(S) = 5/2. This rate can be achieved by taking

t = 2, splitting message xj into (xj1, xj2), j ∈ [5],
and transmitting (x11 + x21, x31 + x41, x51 + x12, x22 +
x32, x42+x52). In general, by optimizing over fractional

partitions, we can establish the upper bound on the

broadcast rate that can be rewritten as the solution to the

linear program (1) with integer constraints ρS ∈ {0, 1}
relaxed by

ρS ∈ [0, 1], S ∈ K. (3)

This upper bound is equivalent to the fractional clique

covering number of G or equivalently the fractional

chromatic number of the undirected complement of G.

Taking an orthogonal step to extending the orig-

inal clique covering scheme, Shanmugam, Dimakis,

and Langberg [10] showed that we can reduce the

number of parity transmissions by applying an MDS

code for parity symbols and using side informa-

tion to recover them, just as Birk and Kol [1] re-

duced the number of message transmissions with

an MDS code. For example, consider the in-

dex coding problem (1|2, 3, 4), (2|1, 3, 4), (3|4, 5, 6),
(4|3, 5, 6), (5|1, 2, 6), (6|1, 2, 5). The side information

graph G can be partitioned into three cliques
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Fig. 3. The side information graph representation of the index coding
problem (1|2), (2|3), (3|1), (4|5), (5|4).

{1, 2}, {3, 4}, and {5, 6}, and hence it suffices to trans-

mit parities x1+x2, x3+x4, and x5+x6. However, since

only two of the three parities are missing at each receiver,

we can reduce the number of parity transmissions by

using a two-erasure correcting MDS code with two

hyperparity symbols, say, (x1 + x2) + (x3 + x4) and

(x1 + x2) + (x5 + x6). This coding scheme achieves

the local chromatic number [21], [22] of the directed

complement of G. Further extending this scheme with

fractional coloring, we can establish the following.

Theorem 2 (Shanmugam, Dimakis, and Langberg [10]).

The optimal broadcast rate is upper bounded by the

solution βFL to the linear program

minimize max
j∈[n]

∑
S∈K:S�⊆Aj

ρS

subject to
∑

S∈K:j∈S

ρS ≥ 1, j ∈ [n],

ρS ∈ [0, 1], S ∈ K.

(4)

The rate βFL is referred to as the fractional local

chromatic number of the directed complement of G.

Clearly, the fractional local coloring scheme outperforms

the clique covering scheme (see (1)) and its fractional

generalization (see (3)). Moreover, it can be shown that

this relationship can be strict [10]. However, it does not

outperform and is not outperformed by the partial clique

covering scheme (see Theorem 1). For the index coding

problem in Example 1, βPC = 3 > βFL = 5/2. For the

other direction of dominance, consider the following.

Example 2. Consider the 5-message index coding prob-

lem represented by the side information graph G in

Figure 3. Since G can be partitioned into two partial

cliques {1, 2, 3} and {4, 5} with parameters 0 and 1
respectively, βPC = 3. However, it can be checked that

the fractional local chromatic number of the directed

complement of G is βFL = 4.

B. Linear coding

The coding schemes discussed in the previous subsec-

tion are all built around a special class of linear codes,

namely, the MDS code for some subset of messages.

Bar-Yossef, Birk, Jayram, and Kol [3] considered a

general linear code. As an example, we revisit the index

coding problem (1|2), (2|3), (3|1) and consider any 3-

by-3 matrix M such that

Mii �= 0 and Mij = 0 if i �∈ Aj . (5)

The rank-2 matrix

M =

⎛
⎝1 0 1
1 1 0
0 1 1

⎞
⎠

satisfies such constraints. Suppose that we transmit any

two independent columns of M multiplied from right by

the message vector (x1, x2, x3), say, x1+x2 and x2+x3.

Since the matrix has rank 2, each receiver can recover

all linear combinations of the messages generated by the

matrix M . (In coding theory, M is referred to as the

parity-check portion of the systematic generator matrix.)

Moreover, receiver j can use the linear combination

from column j to recover xj since it contains only

xj and x(Aj). We can optimize over all matrices M
satisfying (5) to minimize its rank. For a general index

coding problem with side information graph G, Bar-

Yossef, Birk, Jayram, and Kol [3] defined this quantity as

minrk2(G), which yields an upper bound on the optimal

broadcast rate. Note that this bound always holds for

t = 1.

This coding scheme has been extended in several

directions. First, Lubetzky and Stav [4] showed that we

can tighten the upper bound (even for t = 1) by using

a matrix in a larger field F that satisfies (5), which

results in the upper bound �minrkF(G) log2 |F|	. For

t 
 1, coding over message symbols in F can remove

the unnatural factor log2 |F|, further tightening the upper

bound. Lubetzky and Stav [4] also demonstrated that for

some index coding problems, the performance can be

significantly improved by partitioning G into subgraphs

and using fields of distinct characteristics over each

subgraph.

Motivated by interference alignment coding schemes

in wireless interference channels [23], [24], Maleki,

Cadambe, and Jafar [9] proposed an extension that uses

message symbols in F
t and t-by-t matrices in place of

Mij , 1 ≤ i, j ≤ n, in (5). The rank of the resulting nt-
by-nt matrix provides an upper bound on the optimal

broadcast rate.

Several special classes of index coding problems have

been studied for which the scalar linear coding scheme

by Bar-Yossef, Birk, Jayram, and Kol [3] or the vector

linear coding scheme by Maleki, Cadambe, and Jafar [9]

is optimal. In general, however, it is rather difficult to

find an optimal linear code or its performance for a given

index coding problem, even when n is small. In this

sense, the coding schemes based on graph coloring have

been referred to as “the state of the art” [10].



III. COMPOSITE CODING

The basic idea of the composite coding scheme is

to ensure that ψj(φ(x1, . . . , xn), x(Aj)) is one-to-one

for each j ∈ [n] with high probability by taking

a composition of random maps yS(x(S)), S ⊆ [n],
and z(y{1}, y{2}, . . . , yS , . . . , y[n]) of appropriate input–

output rates. To illustrate the scheme, we revisit the

index coding problem (1|3), (2|1), (3|2), (4|5), (5|4) in

Example 2 with side information graph depicted in

Figure 3 and show that any broadcast rate β > 3
is achievable. As the first step of composite coding,

we map (x1, x2) to an index y{1,2} = y{1,2}(x1, x2)
drawn uniformly at random from [2γ{1,2}t]. Similarly,

map (x2, x3) and (x4, x5) into random indices y{2,3} =
y{2,3}(x2, x3) ∈ [2γ{2,3}t] and y{4,5} = y{4,5}(x4, x5) ∈
[2γ{4,5}t], respectively. As the second step of composite

coding, we map (y{1,2}, y{2,3}, y{4,5}) to a codeword

z = z(y{1,2}, y{2,3}, y{4,5}) drawn uniformly at random

from [2βt] and transmit it.

Decoding is also done in two steps. Each receiver j
first recovers (y{1,2}, y{2,3}, y{4,5}) from z, which is suc-

cessful with high probability if γ{1,2}+γ{2,3}+γ{4,5} <
β, and then recovers xj from (y{1,2}, y{2,3}, y{4,5}) and

x(Aj). For example, receiver 1 recovers x1 (and x2)

from y{1,2}, y{2,3}, and side information x3 successfully

if γ{1,2} > 1 and γ{2,3} > 1. Similarly, it can be easily

verified that other receivers can recover their messages

with high probability if γ{1,2} > 1, γ{2,3} > 1, and

γ{4,5} > 1.

We can streamline this idea by letting each decoder j
optimize over the set Dj of messages it recovers. This

establishes the following.

Theorem 3. If D1, . . . ,Dn ⊆ [n] satisfy

j ∈ Dj , j ∈ [n], (6)

then the optimal broadcast rate is upper bounded by the

solution βCC(D1, . . . ,Dn) to the linear program

minimize max
j∈[n]

∑
S⊆[n]:S�⊆Aj

γS

subject to min
T ⊆Dj\Aj

1

|T |

∑
S⊆Dj∪Aj

S∩T �=∅

γS ≥ 1, j ∈ [n],

γS ≥ 0, S ⊆ [n],
(7)

and thus by

βCC = min
D1,...,Dn

βCC(D1, . . . ,Dn),

where the minimum is over all subset tuples

(D1, . . . ,Dn) satisfying (6).

Proof: Following the standard steps in random cod-

ing proofs in information theory [25], [26], we prove the

theorem by describing a t-bit randomly generated index

code ensemble of rate β and showing that the average

probability of error of the random code ensemble tends

to zero as t→ ∞, provided that β > βCC(D1, . . . ,Dn)
for some (D1, . . . ,Dn) satisfying (6).

Codebook generation. Fix β > 0 and γS ≥ 0 for each

S ⊆ [n]. For simplicity of exposition, we assume that βt
and γSt are integers. For each S and each x(S) ∈ [2|S|t],
independently generate yS(x(S)) uniformly at random

from [2γSt]. For each (y{1}, y{2}, . . . , yS , . . . , y[n]) ∈
[2γ{1}t]× [2γ{2}t]× · · · × [2γSt]× · · · × [2γ[n]t], indepen-

dently generate z(y{1}, y{2}, . . . , yS , . . . , y[n]) uniformly

at random from [2βt].

Encoding. To send message tuple (x1, . . . , xn), the

encoder first computes yS = yS(x(S)) for each S ⊆
[n] and then transmits the corresponding codeword

z(y{1}, . . . , y[n]).

Decoding at receiver j. As with the encoding, decod-

ing also has two steps. First, decoder j declares that

(ŷ{1}, . . . , ŷ[n]) is sent if it is the unique tuple such that

z(ŷ{1}, . . . , ŷ[n]) = z, where ŷS = yS(x(S)) for every

S ⊆ Aj . If there is more than one such tuple, then it

declares an error.

Next, decoder j declares that x̂(Dj ∪Aj) is sent if it

is a unique tuple that satisfies ŷS = yS(x̂(S)) for every

S ⊆ Dj ∪ Aj , where x̂(Aj) = x(Aj). If there is more

than one such tuple, then it declares an error.

Analysis of the probability of decoding error. We first

bound the probability P1 that receiver j declares an error

in recovering (y{1}, . . . , y[n]), that is,

P1 = P
{
z(ŷ{1}, . . . , ŷ[n]) = z(y{1}, . . . , y[n])

for some (ŷ{1}, . . . , ŷ[n]) �= (y{1}, . . . , y[n])
}
.

Since ŷS = yS for each S ⊆ Aj , the number of wrong

tuples (ŷ{1}, . . . , ŷ[n]) is 2
∑

S�⊆Aj
γSt − 1. Furthermore,

the probability that two distinct indices are mapped to

the same codeword is 1/2βt. Hence, by the union of the

events bound,

P1 ≤
2
∑

S�⊆Aj
γSt

2βt
,

which tends to zero as t → ∞, provided that β >∑
S�⊆Aj

γS .

Next, we bound the probability P2 that receiver j
declares an error in recovering (x1, . . . , xn) from the

correct tuple (y{1}, . . . , y[n]), that is,

P2 = P
{
yS(x̂(S)) = yS for all S ⊆ Dj ∪ Aj

for some (x̂1, . . . , x̂n) �= (x1, . . . , xn)
}
.

Since x̂(Aj) = x(Aj), we can decompose the wrong

tuples x̂ := (x̂1, . . . , x̂n) by collecting the subset T ⊆



Dj \ Aj of erroneous message indices, i.e., x̂i �= xi iff

i ∈ T . Thus, by the union of the events bound, P2 is

upper bounded by

∑
T ⊆Dj\Aj

∑
x̂:x̂i �=xi, i∈T

P

(
⋂

S⊆Dj∪Aj

S∩T �=∅

{
yS(x̂(S)) = yS

})
.

Now for each T the number of wrong tuples is (2t −
1)|T |, and for each wrong tuple with x̂i �= xi iff i ∈
T , the probability that two distinct message tuples are

mapped to the same yS for all S ⊆ Dj∪Aj with S∩T �=

∅ is 1/2
∑

S⊆Dj∪Aj :S∩T �=∅ γSt. Hence,

P2 ≤
∑

T ⊆Dj\Aj

2|T |t

2
∑

S⊆Dj∪Aj :S∩T �=∅ γSt
,

which tends to zero as t→ ∞, provided that

1

|T |

∑
S⊆Dj∪Aj :S∩T �=∅

γS > 1, T ⊆ Dj \ Aj .

IV. COMPARISON TO GRAPH COLORING CODING

SCHEMES

We show that the composite coding scheme (Theo-

rem 3) outperforms the partial clique covering scheme

(Theorem 1) and the fractional local graph coloring

scheme (Theorem 2).

Theorem 4. βCC ≤ βPC.

Proof: Given an index coding problem of side

information graph G, let G1, . . . ,Gm be partial cliques

of parameters k1, . . . , km that partition G. For each j,
let Dj = Gi if j ∈ Gi and consider

γS =

{
ki + 1, if S = Gi for some i,

0, otherwise.

By the definition of partial clique, if Dj is a k(Dj)-
partial clique,

|Dj \ Aj | ≤ k(Dj) + 1.

Moreover, for every j ∈ [n] and every T ⊆ Dj \ Aj ,

|T | ≤ |Dj \ Aj | ≤ k(Dj) + 1 =
∑

S⊆Dj∪Aj :S∩T �=∅

γS .

Hence, (γS : S ⊆ [n]) is a feasible solution to (7) and

βCC ≤ max
j∈[n]

∑
S⊆[n]:S�⊆Aj

γS ≤
∑
S⊆[n]

γS = βPC.

The inequality in Theorem 4 is sometimes strict.

Consider the index coding problem in Example 1. For

this problem, it can be checked that βCC = 5/2 [15],

which is equal to β∗, but βPC = 3. (Note that βPC is

always an integer.)

Theorem 5. βCC ≤ βFL.

Proof: Given an index coding problem, let ρS , S ∈
K, be the solution to the linear program in (4), i.e.,

βFL = max
j∈[n]

∑
S∈K:S�⊆Aj

ρS

and ∑
S∈K:j∈S

ρS ≥ 1, j ∈ [n].

Let Dj = {j}, j ∈ [n], and consider

γS =

{
ρS , if S ∈ K,

0, otherwise.
(8)

Then, ∑
S⊆[n]:S⊆{j}∪Aj , j∈S

γS =
∑

S∈K:S⊆{j}∪Aj , j∈S

ρS

=
∑

S∈K:j∈S

ρS (9)

≥ 1,

where (9) follows since j ∈ S ∈ K implies that S ⊆
{j} ∪ Aj . Hence, (γS : S ⊆ [n]) is a feasible solution

to (7) and

βCC ≤ max
j∈[n]

∑
S⊆[n]:S�⊆Aj

γS = max
j∈[n]

∑
S∈K:S�⊆Aj

ρS = βFL.

The inequality in Theorem 5 is sometimes strict, as

demonstrated by the following.

Example 3. Consider the index coding problem

(1|2, 4, 5, 6, 7), (2|3, 4, 5, 6, 7), (3|1, 4, 5, 6, 7),

(4|1, 2, 3, 5, 6, 7), (5|2, 3, 6, 7), (6|1, 3, 5, 7), (7|1, 2, 5, 6).

By solving the respective linear programs, it can be

checked that βCC = 5/2 < βFL = 8/3. Note that for

this case, βPC = 3.

V. DISCUSSION

The composite coding scheme in this paper can be

generalized in several directions. First, it can be ex-

tended to the broadcasting with side information problem

studied by Alon, Hassidim, Lubetzky, Stav, and Wein-

stein [5], in which each message can be requested by

more than one receiver. In addition, it can be extended

to the variable message rate case studied by Blasiak,

Kleinberg, and Lubetzky [27], in which each message

xj has its individual rate βj . The optimal tradeoff

between these individual rates are better captured by

that between their reciprocals (which correspond to the



capacity region in network coding problems). In the

expanded version of the paper to be posted in arXiv,

we will discuss the information-theoretic formulation of

this problem (including multiple receivers), the general

composite coding scheme and the resulting inner bound

on the capacity region, and an outer bound on the

capacity region based on submodularity of entropy.

Example 3 demonstrated that the composite coding

scheme can strictly outperform the better of the par-

tial clique covering and fractional local graph coloring

schemes. Let G be the union of the corresponding side

information graph G and consider the n-blow-up of

G, namely, the Cartesian product of G and the graph

([n], ∅). The additivity of the optimal broadcast rate for

Cartesian product implies that there is an Θ(n) gap

between βCC and min{βPC, βFL}. It remains open to

prove or disprove that this gap can be strengthened to a

multiplicative one.

The following example, in turn, demonstrates that the

composite coding scheme is suboptimal.

Example 4. Consider the 7-message index coding prob-

lem

(1|2, 3, 4, 6, 7), (2|1, 3, 6, 7), (3|1, 4, 5, 7), (4|1, 2, 5, 6),

(5|3, 4, 6, 7), (6|2, 4, 5, 7), (7|2, 3, 5, 6).

Using the vector linear coding scheme built on interfer-

ence alignment, Jafar [11] showed that β∗ = 5/2. In

comparison, it can be shown that βCC = 8/3.

Thus, there is a Θ(n) additive gap between β∗ and

βCC in general. Again there is no known multiplicative

gap between β∗ and βCC.
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