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Abstract—Interference Alignment is a new solution to over-
come the problem of interference in multiuser wireless com-
munication systems. Recently, the Compute-and-Forward (CF)
transform has been proposed to approximate the capacity ofK-
user Gaussian Symmetric Interference Channel and practically
perform Interference Alignment in wireless networks. However,
this technique shows a random behavior in the achievable sum-
rate, especially at high SNR. In this work, the origin of this
random behavior is analyzed and a novel precoding technique
based on the Golden Ratio is proposed to scale down the fadings
experiences by the achievable sum-rate at high SNR.

Index Terms—Compute-and-forward, lattice reduction, succes-
sive minima, Diophantine approximation.

I. I NTRODUCTION

Nowadays multiuser interference is one of the most chal-
lenging problems encountered in present wireless communica-
tion systems, particularly with growing number of subscribers
as well as the decreasing size of cells for cellular systems,
increasing demand in terms of transmission rates and channel
limits. We should think through methods which eliminate or
uses interference to recover desire information in a proper
way in our communication systems. Interference Alignment
(IA) is an interference management technique that achievesa
linear scaling of the network throughput with the number of
source-destination pairs, a scaling that would be impossible
with interference avoidance. Two alignment approaches are
known in literature: linear interference alignment for time-
varying channels [3] and non-linear interference alignment for
static single-antenna channels [6].

A. Related Work

From information theoretical perspective, this issue is mod-
eled by the interference channel introduced many years ago
in [7] and [8]. Still it remains one of the most important
challenges in the domain of multiuser information theory. In
two-user interference channel, a significant progress had been
made for the case ofstrong [9] and very stronginterference
[10] channels. Indeed, it is natural to overcome the problemof
achievable sum-rate described in [2], for 2-user systems before
generalizing it forK−user case, whichK > 2.

Among existing interference management techniques, we
focus in this work on IA. This novel framework will be used

to design actual codes. First lattice-based codes are designed
for channels with integer-valued coefficients and later extended
to real-valued (resp. complex-valued) channel coefficients. In
particular we are interested in lattice-based IA using the CF
framework. Originally introduced by Nazer and Gastpar as re-
laying strategy in [2]. The CF allows relay nodes to decode and
forward linear equations of originally transmitted messages
using the noisy linear combinations provided by the channel.
Upon receiving enough linear combinations, the destination
can retrieve the original data flows with higher transmission
rates compared to traditional relaying techniques. At high
SNR, the computation rate can be maximized by choosing
equation coefficients close to the channel coefficients. Many
works have been done to analysis the Degrees of Freedom
(DoF) for CF. Among which, Nilsenet al. have used the
approach of CF to show achievability results for DOF [4].
For what concerns interference management, the CF has been
used by Ordentlichet al. in [1] to show achievability results.
The alignment problem can be formulated as that of solving an
overdetermined system of equations with respect to a subset
of unknowns and can be cast into the familiar language of
vector spaces [5].

B. Summary of Paper Results

Our basic strategy is to consider the computation rate,
defined in [2], for Gaussian Symmetric Interference Channels
(GS-IFC) and the new scheme of CF described in [1], for
modeling 2-user GS-IFC, and improving its achievable sum-
rate. In this paper we assume that there is no need of channel
side information at transmitters. If we consider the same
method used in [1] to simulate the achievable sum-rate for
2-user GS-IFC, we get the performance showed in Fig. 1. We
are interested in the fractal behavior of the sum-rate at high
values ofSNR, when using the CF transform. In this case, as
it can be seen in Fig. 1, the achievable sum rate suffers from
deep fadings and it can change dramatically, even for a small
interfering gain variation.

In the second part of this work we will introduce the
channel model and the lattice structures. In the third part,by
considering the main frame work of [1] and [2], we will model
the achievable sum-rate for 2-user GS-IFC. After defining
correspondent quadratic form, we will introduce the “Golden
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Ratio” and its equivalent structures to approximate channel
coefficients. These new approximated channel coefficients will
help us to avoid deep fadings and improves the achievable
sum-rate by using just one time-slot to send each codewords
to destination, but it will have its own disadvantages. Finaly in
the last part of this work we will define our new method of CF
transform to send codewords through channel to destinations
in n different time-slots, by usingPrecoderscombined with
Golden Ratioat transmitters level. This method improves
significantly the final achievable sum-rate, and we can limit
deep fadings of previous works.
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The Upper Bound
Achievable Sum−Rate

Fig. 1. Upper and lower bounds on the capacity of a 2-user Gaussian
symmetric interference channel with respect to the cross-gain g and the CF
scheme defined in [1].

II. CHANNEL MODEL AND LATTICE STRUCTURE

A. Channel Model

In this paper, the channel model is theK−user CS-IFC.
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Fig. 2. 2-User Gaussian Symmetric Interference Channel.

By using a simple lattice interference alignment [1], the
symmetricK−user case is approximately equivalent to the
symmetric2−user case which is shown in Fig. 2. This means
that:

H =

[

1 g

g 1

]

(1)

The received signal is expressed by:

y =

[

y1

y2

]

= Hx+ z (2)

Wherex denotes the input-vector,y the output-vector and
z the noise-vector, all of sizeK. The components ofz are
independent Gaussian real zero-mean random variables with
power equal toσ2. The SNR is defined asSNR = P

σ2 . Each
transmitter satisfies the power constraint, which forn channel
uses for useri is given by:

1

n

n
∑

j=0

|xi
2| ≤ Pi (3)

We assume in this paper that all users have the same power
constraint i.e.,Pi = P . The channel is symmetric in the third
part of this paper, but in the last part of this paper when
we introduce our precoding scheme, we are transforming the
Symmetric Channel (SC) to Asymmetric Channel (AC). A
channel is said symmetric whenH(i, j) = g for all i 6= j,
and after normalizationH(i, i) = 1 for all i’s.

B. Lattice structure

In this paper we will use the Nested lattice framework pro-
posed by [11]. This choice allows to achieve the computation
rate that will be used below. A latticeΛ is a discrete additive
subgroup ofRn, i.e., ∀t1, t2 ∈ Λ, where t1 + t2 ∈ Λ and
−t1,−t2 ∈ Λ. Any latticeΛ in Rn can be characterized by a
n×n symmetric definite positive matrixG called Gram matrix
or by using an × n matrix M called generator matrix such
that:

Λ = {A = M · Z : Z ∈ Zn} (4)

By applying the Cholesky decomposition to matrixG we can
create an upper triangular matrixB of sizen× n which is a
generator matrix ofΛ. The columns of matrixB are basis of
Λ. We get:

B = Cholesky(G), G = BTB (5)

A lattice Λ is full rank if its Gram matrix is full-rank.

III. D IOPHANTINE APPROXIMATION FOR THE2-USER

GS-IFCAND THE GOLDEN RATIO

We use the so-called CF Transform introduced in [1]. In [2,
Theorem 2], the computation rate which is the maximal rate
at which users can transmit codewords to destinations, when
we are interested in decoding reliably the equation

∑

i aixi is
given by:

R(h, a) =
1

2
log+2

{

(

‖ a ‖2 −
SNR(hTa)2

1 + SNR‖ h ‖2

)−1
}

(6)

Wherelog+2 (x) , max(log2(x), 0), a is a vector of integers
of length n which will characterize the equation we want to
decode andh is the vector of channel coefficients. In this
contribution, we are interested to improve the behavior of
CF in thestrong and very stronginterference regimes. More
precisely, we want to limit the deep fading behavior observed
in Fig. 1 for the achievable sum-rates. In the2−user GS-IFC



for each user,h = [1, g] and the Interference-to-Noise Ratio
(INR) is INR , g2SNR. Here,g ∈ R is the channel interferer
coefficient, the direct channel coefficient is normalized tobe
1 anda = [x, y]. The computation rate expressed in (6) can
be written in this way:

R(h, a) =
1

2
log+2

{

(

1
SNR

+ (1 + g2)
)

q (x, y)

}

(7)

Whereq(x, y) is a definite positive quadratic form equal to:

q (x, y) = (xg − y)2 +
1

SNR
(x2 + y2), x, y ∈ Z (8)

From Equation (8), the Gram matrix can be found as:

G =

(

g2 + 1
SNR

−g

−g 1 + 1
SNR

)

As a definite positive integral quadratic form,q(x, y) defines
a rank2 lattice,ΛCF.

Following the method described in [1], we aim to find
the two successive minimaλ1 andλ2 of (8). As the integral
quadratic form is of dimension2, an algorithm for optimally
finding the two successive minima is the Gauss reduction
algorithm [14](which has been generalized to the LLL reduc-
tion algorithm [15] in higher dimension). Let’s define matrix
B = Cholesky(G) be a basis ofΛCF and Bred be the
reduced basis after Gauss reduction.U is the unimodular
basis change matrix. CallGred = BT

redBred the reduced Gram
matrix, then the two successive minima are the diagonal entries
of Gred. In this part of our work, we analyze the achievable
sum-rate for different values ofg.

The quadratic form of Equation (8) can be decomposed into
two terms.

• First term (xg − y)2, where x and y are integers, is
obviously related to the quality of the Diophantine ap-
proximation of the real numberg.

• Second term, 1
SNR

(x2+y2) is a penalty that disadvantages
large values ofx andy.

We perform here an asymptotic analysis of (8) for which the
Diophantine approximation term is the most important term.
Values ofg giving a high sum-rate, are those values for which
the value of the second minimumλ2 is low. But, as the product
of λ1λ2 is a constant [1], those values ofg are those for which
the value of the first minimumλ1 is high. In a highSNR
analysis, this means that the real numberg must be hardly
approximable by a rational number. In [13, Chap. 2], this
problem is considered and the Golden ratio is shown to be the
most hardly approximable number (which is intuitive since its
continuous fraction development gives only 1’s).

A. Equivalent Numbers and Diophantine approximation

The Golden ratio is the most hardly approximable real
number. Following [13], we define, for a real numberθ, and
an integerq,

‖qθ‖ = min
p∈Z

|qθ − p| (9)
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Fig. 3. Upper and lower bounds on the capacity of 2-user Gaussian symmetric
interference channel with respect to the use of perfect approximated cross-gain
g
′

equivalent number to golden ratio.

Then, for anyθ, we get

q ‖qθ‖ < 5−
1

2 (10)

Definition 1: Let φ = 1+
√
5

2
be the Golden ratio. The

conjugate ofφ will define as φ̄ = 1−
√
5

2
. A number g is

equivalent toφ if:

g =
aφ+ b

cφ+ d
, (a, b, c, d) ∈ Z and det

[

a b

c d

]

= ±1 (11)

We are ready to state one of the main results [13, Chap. I,
Theorem V].

Theorem 1:Let θ be irrational. Then there are infinitely
manyq such thatq ‖qθ‖ < 5−

1

2 . If θ is equivalent toφ, then
the constant5−

1

2 cannot be replaced by any smaller number.
This result means that, ifSNR is large enough, and ifg

is a number equivalent to the Golden Ratio, then the second
minimum of q(x, y) is small, and so, the sum-rate of the
interference channel is high.

Now we will give an example to show that this method will
give an achievable sum-rate close to the outer Bound, with a
small gap between them.

Suppose now the interfering coefficientg is equal to the
Golden Ratio, i.e.g = 1+

√
5

2
, When SNR is high enough,

then the2−dimensional vector of integers which minimizes
the quadratic formq(x, y) defined in (8) will have a length
equal to the first minimum. According to Theorem 1, this first
minimum should satisfyx2(xg − y)2 ≈ 1

5
. So we get

λ1 ≈
1

5x2
+ SNR

−1(x2 + y2) (12)

or

λ1 ≈
1

5x2
+ SNR

−1x2(1 + g2) (13)

Now, the minimum is achieved when

∂λ1

∂x
= −

2

5x3
+ 2xSNR−1(1 + g2) = 0 (14)

giving



xopt =
4

√

SNR

(5(1 + g2))
(15)

and

λ1 ≈ 2

√

1 + g2

5SNR
(16)

As λ1λ2 ≈ (1 + g2)SNR−1 [1], we will get

λ2 ≈

√

5

4
SNR

−1(1 + g2) (17)

So the final rate is

R ≈ 1
4
log+2 (SNR(1 + g2))− 1

4
log+2 (

5
4
)

≈ RUp.Bound − 0.08
(18)

Where RUp.Bound is the Upper Bound of the rate for a
SNR sufficiently large. So the gap between Upper Bound and
achievable sum-rate is very small.

Another illustration of this result which states that, at high
SNR, channel coefficients equivalent to the Golden ratio gives
a sum-rate close to the Upper Bound, consists of plotting the
same curve as in Fig. 1, but only sampling thoseg’s which
correspond to numbers equivalent to the Golden ratio.

In this method, we choose to sampleg at values of the form

g =
aφ+ b

cφ + d

Wherea, b, c, d ∈ Z, are not too big. Fig. 3 shows that the
Upper Bound is almost achievable without any fading behavior
for the strong and very strong interference regimes. The other
regimes remain untouched. For some specific values ofg
this method is not suitable, because the approximation error
between channel coefficient and its equivalent to the Golden
ratio will not be negligible. If we consider this approximation
error in the achievable sum-rate, the fractal behavior in terms
of deep fadings will appear again. We need to use a method
which could hold up for any values of channel coefficientg. In
the next section, we will introduce a new method to improve
the behavior of achievable sum-rate for any value ofg.

IV. COMPUTE-AND-FORWARD TRANSFORM WITHn TIME

SLOTS

For large values ofSNR, the best choices forg are numbers
equivalent to the Golden Ratio. The worst choices are rational
numbers as it is shown below. Suppose thatg = p

q
∈ Q.

In this case, the minimum ofq(x, y) (for a sufficiently high
SNR) is given by settingx = q, y = p which givesλ1 =
(

p2 + q2
)

SNR
−1. As

(

q2SNR−1 + p2 + q2
)2

λ1λ2

= q2
(

p2 + q2
)

SNR

we get

λ1λ2 =

(

SNR
−1 + 1 + g2

)2

(1 + g2)SNR

≈
(

1 + g2
)

SNR
−1

which giveslimSNR→∞ λ2 = 1
q2

and

lim
SNR→∞

R =
1

2
log2

(

p2 + q2
)

So the rate does not scale withSNR and rational numbers
will mainly be responsible of deep fadings at highSNR. The
choice ofp and q are important, we must choose them in a
way to havep andq as smallest possible integer.
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Fig. 4. Upper bound and achievable rate versusg for a 2−user Gaussian
symmetric interference channel for2 time-slots.

In general, transmitters want to send their own codewords to
the destinations but the inference will play an important role
on the performance of achievable sum-rates. To avoid and limit
deep fadings in interested regimes, we have decided to send
the codewords to destination by usingn different time-slots.
Our idea now is to precode for each time slot the transmitted
codewords by multiplying them, at the transmitters, by a real
numberη. Of course, there will always be values ofg such
thatη ·g is rational (the worst case). But, by using at time slot
i, a value ofηi different ofηj for j 6= i such that, ifηi ·g ∈ Q,
then,ηj · g /∈ Q, ∀j 6= i. By using this strategy, only one time
slot overn will result in a small sum-rate, for all values ofg.

By using this proposed scheme the 2-user GS-IFC will
transform to 2-user Gaussian Asymmetric Interference Chan-
nel (GA-IFC). The new GA-IFC is shown in Fig. 5.

For each user the new channel coefficients vectors are
respectively:hTs=i = [1, ηig] for i = 1, . . . , n. The quadratic
form, at time sloti is:

q′Ts=i (x, y) = (xgηi − y)2 +
1

SNR
(x2 + y2) (19)

More precisely, the Gram matrix corresponding to (19), will
beGi,

Gi =

(

(ηig)
2 + 1

SNR
−gηi

−gηi (1 + 1
SNR

)

)



In this proposed scheme, achievable sum-rate will be calcu-
lated for each time-slot separately. The final achievable sum-
rate, at the end of the last time-slot, will be the average value
of the sum rates over the time-slots.

wi,1 E1

TX1

xi,1 1

zi,1
yi,1

D1

RX1

ŵi,1

wi,2 E2

TX2

xi,2

ηi

zi,2
yi,2

D2

RX2

ŵi,2

g

ηi · g

Fig. 5. 2-User Gaussian Asymmetric Interference Channel for Ts = i.

For comparing the performance of our proposed strategy
and the strategy used in [1], we chooseSNR = 65dB. First
we decide to send codewords to destinations by using just two
different time-slots. For receiver 1 (RX1) in each time-slot the
channel coefficients vectors are respectively:hTs=1 = [1, φg],
andhTs=2 = [1, φ̄g]. At the end of the second time-slot, the
new achievable sum-rate expression and quadratic forms to
minimize are:

R′
Final =

1
2
{R′

Ts=1 +R′
Ts=2} (20)

With

R′
Ts=1 =

1

2
log+2

{

( 1
SNR

+ (1 + (ϕg)2))

(q′Ts=1 (x, y))

}

(21)

R′
Ts=2 =

1

2
log+2

{

( 1
SNR

+ (1 + (ϕ̄g)2))

(q′Ts=2 (x
′, y′))

}

(22)

And

q′Ts=1 (x, y) = (xgϕ− y)2 +
1

SNR
(x2 + y2), x, y ∈ Z (23)

q′Ts=2 (x
′, y′) = (x′gϕ̄− y′)2 +

1

SNR
(x′2 + y′2), x′, y′ ∈ Z

(24)
Indeed, withq′Ts=1 andq′Ts=2 we can create the two Gram

matricesG1 and G2 corresponding to the two positive new
quadratic forms. With these two Gram matrices we can use
the single lattice codesand lattice Han-Kobayashidescribed
in [1] for different interference regimes to find the achievable
sum-rate. The two Gram matrices are modeled as:

G1 =

(

((ϕg)2 + 1
SNR

) −gϕ

−gϕ (1 + 1
SNR

)

)

And

G2 =

(

((ϕ̄g)2 + 1
SNR

) −gϕ̄

−gϕ̄ (1 + 1
SNR

)

)

By using precoders, the twoINRs will be different in each
time-slot; we define these twoINRs, such as:

In Ts = 1 : INR1 , (ϕg)2SNR

In Ts = 2 : INR2 , (ϕ̄g)2SNR
(25)

The expression of Upper Bound defined in [12] must be
adapted for our proposed scheme. In this case for two time-
slots the Upper Bound will be:

RU.B,Final =
1

2
(RU.B,Ts=1 +RU.B,Ts=2) (26)
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Fig. 6. Upper bound and achievable rate versusg for a 2−user Gaussian
symmetric interference channel for7 time-slots.

In Fig. 1 we can see the performance of method described
in [1] for SNR = 65dB. Fig. 4 is the performance of our
proposed scheme for the same value ofSNR just by using2
time-slots.
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Fig. 7. Upper bound and achievable rate versusg for a 2−user Gaussian
symmetric interference channel for13 time-slots.

As it can be seen in Fig. 1 for strong and very strong
interference regimes, we have deep fadings. For some chan-
nel coefficients, we can have a maximum gap of order
2.5 [Bits/Channel Use]. After using precoders and2 time-
slots this gap could be reduce to1.2 [Bits/Channel Use],
this is the benefit of using two time-slots. By increasing the
number of time-slots we can limit more fadings. Figure 6 and
7 shows the achievable sum-rate when using respectively7
and13 time-slots.



For weak and intermediate interference regimes, we have
decided to send codewords to destinations by using just one
time-slot. This strategy will increase the achievable sum-rate
by using Han-and-Kobayashi method. But for strong and very
strong interference regimes, 7 and 13 time-slots were used.
The ηi are all equivalent to the Golden ratio slightly greater
than 1, in consequence this choice will help us to keep the
Upper Bound in its original form and the achievable sum-rate
will be higher. We can assume that our proposed scheme have
limited the deep fadings and improved the achievable sum-
rate.

In a future work, we are going to evaluate the influence
of using different time-slots with specific precoders for each
time-slot. We will try to define the optimum number of time-
slots and precoder coefficients for the case of 2-user GS-IFC
to eliminate deep fadings in all regimes.

V. CONCLUSION

In this work, based on, the main frame work of [1] and
[2], we have developed two different schemes for 2-user GS-
IFC. First, we have characterized what are the best (equivalent
to the Golden ratio) and the worst (rational) channels. In
order to avoid the worst-case channels, we have proposed to
use a precoder (independent of the channel values and not
using any channel side information at the transmitters) for
sending codewords to destinations in different time-slots. The
proposed scheme has shown an important reduction of the
fading behavior of the sum-rate, similar to what is obtainedin
fast fading channels when a diversity technique is used. Many
things remain to do, among which,

• The medium interference regimes.
• The optimal number of Ts to be used.
• Generalization to theK−user asymmetric interference

channel.
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