arXiv:1502.05773v2 [cs.IT] 20 Apr 2015

Multipartite Monotones for Secure Sampling
by Public Discussion From Noisy Correlations

Pradeep Kr. Banerjee
Indian Institute of Technology Kharagpur
Email: pradeep.banerjee@gmail.com

Abstract—We address the problem of quantifying the cryp-  cannot increase under monopartite or local operations and
tographic content of probability distributions, in relati on to an noiseless public communication (LOPC). Monotones were firs
application to secure multi-party sampling against a passie t- introduced in [5] as classical counterparts of entangldroen
adversary. We generalize a recently introduced notion of assisted | occ (local operations and classical communication) mono-
&ommon infordmgti]?n of ? pe_}ir Off correltated s?urce; to t_h?jt of 4 tones to study the asymptotic rate of resource conversidarun

sources and define a family of monotone rate regions indexe .
by K. This allows for a simp)fe characterization ofgall t-private LOPC.' Sugh rates are limited by the amoy_nt O.f resources

contained in the source and target probability distritugio

distributions that can be statistically securely sampled \ithout ; 2 , .
any auxiliary setup of pre-shared noisy correlations. We ao give ~Monotones based on Gacs and Korner's notion ofctiramon

a new monotone called the residual total correlation that achits part of a pair of correlated sources [8] were introduced in [1]
a simple operational interpretation. Interestingly, for sampling ~ and later extended to the statistical case in [4]. Compéthirg
with non-trivial setups (K > 2) in the public discussion model, value of the monotone on the setup and protocol output random
our definition of a monotone region differs from the one by  variables gives an upper bound on the rate of secure 2-party
Prabhakaran and Prabhakaran (ITW 2012). . sampling. Prabhakaran and Prabhakaran [2] developedtartigh
. Keywords—assisted common information, monotones, uncondi-  ypper bound technique using the concept of@notone region
tional security, secure multi-party sampling. based orassisted common informatipa generalization of the
Gacs-Korner common information [8]. In [3], the same auth
| INTRODUCTION explored the power of different setups (or its lack theréof)

Suppose two parties, Alice and Bob working in distant labsthe multi-party scenario for different communication misce
have access to a certain set of nonlocal resources (e.gy noiviZ., the private channels model (parties linked via a catepl
correlations or channels) and wish to simulate or realize thn€twork of bilateral secure channels) and the public disions
functionality of a target resource (e.g., oblivious tramsfa ~Model. A related work on the private channels model [7] gave a
noiseless secret key, etc.). Information-theoretic agmphy —Weak characterization of the classtedrivatedistributions that
is concerned with the questions tdasibility and efficiency ~ are securely realizable from scratch, by reducing the probl
or rate of such reductions against computationally-undedn t0 the 2-party case via a partition argument. o
adversaries. Given a set &f parties, we focus on a restricted ~ Contributions We address both the questions of feasibility
class of resources that takes no inputs from the partie§ind efficiency of statistically secure multi-party redaos in
and following the execution of a distributed communicationrelation to sampling in the public discussion model. Thermai
protocol over a public discussion channel, generates tmtputo0! we develop is a generalization of the bivariate moneton
{Y,}X_ | that approximately simulates a pre-specified joint"€gion mtrngced in [2]. Our s_tat|st|cal impossibility sret _
distributionpy, v, . The protocol is required to keprivate, ~ When specialized to the scenario of perfectly secure sagpli
i.e., any coalition of up t@ (< K) honest-but-curious parties from scratch, recovers the characterization in [3]. Howefee
learns nothing more about the non-coalition parties’ otspu the more general problem with non-trivial setu@s > 2), our
than what they can derive from their own set of outputs. Thelefinition of a monotone region differs from the one in [3] and
problem is an instance of secure multi-party sampling (enfor €an give strictly better bounds on the rates of sediirparty
of secure multi-party computation with no inputs) that hasProtocols. We also give a new monotone called the residual
recently gained a lot of currency in the information theorytmal correlation that admits a simple operational intetation.
Iiteratu_re [1]-[4]. As a _simple example, suppose Alice and . PRELIMINARIES
Bob wish to sample pairs of the forni(Y1,Y2) : Pr{Y; = _ S
Yy} # %)_ If they try to generate such a pair by talking to each Random_ variables (RVs) and their f_lnlte alphabets are
other, they will necessarily end up violatingptivacy. On the ~ denoted using uppercase letteksand script letterst’. We
other hand, pairs of the foriri, = (U1,Q),Yz = (Q,Us) where ~ Write px to denote the distribution (pmf) of a discrete RV
U1,Us,Q are independent can be generated on the fly. Howeverf- X —Y — Z denotes thatX,Y,Z form a Markov chain

outside this class ofrivial distributions, cryptographically Satisfyingpxyz = pxypzjy. A\B denotes usual set-theoretic

useful non-trivial pairs(Y17}/2) cannot be Secure'y realized SubtraCtiOI’l._The tOtal Variationa|dis'[a£1016 betweenibistions
from scratch, i.e., without the aid of an auxiliasgtupin the ~ Px andpx: is defined asTV(px.px/) = 3lpx — px’|,. For

form of a trusted source of noisy correlations [1]-[3]. a nonnegative real coordinate sp&#, the increasing hull of
The earliest known impossibility result for secure 2-partyA € R? is defined as(A) £ {a € R : 30’ € Ast.a>a'}

sampling appears in the problem of mental poker [6]. Here twqwhere the comparison is coordinate-wise) [2].

distant parties simulate the act of randomly sampling ailitj For a pair(X,X2) ~ px,x,. let Px, x, be the set of

pair of hands from a common deck of cards without using aall RVs @ jointly distributed with (X1,X>). For pg|x, x, €

trusted arbiter. Most relevant to the current work are thekao Px, x,, (X1,X2) is said to beperfectly resolvablg2], i

on monotonesreal-valued functions of joint distributions that the residual informatioT (X1;X2|Q) = 0, and H(Q|X1)

==
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H(Q|X2) = 0. We then say thaf) perfectly resolve§X;,X5).

Gacs and Korner (GK) [8] defined common information
(Cl) of the pair (X;,X2) ~ px,x, as the maximum rate
of common randomness (CR) that Alice and Bob, observing
sequencesX] and X3 separately, carextract without any
communication.

Cor(X1:X2) 2 max  H(Q)= max  I(X1Xs:Q). First 1/
G (X1 Xo) Q:H(Q|X1)=0 (@) Q—X1—X> (X1 X2:Q) bundling 1K be
H(Q|X2)=0 Q—X2—X1 _ K
. . . (@) Second ™
CR thus defined, is a far stronger resource than correlation, bundling

in that the latter does not result in common random bits, in
general [8]. Nevertheless, when communication is an availa
resource, Alice and Bob can unlock hidden layers of poten-
tial CR. Following communication, the CR rate increases to
I(Xl,XQ)

Wyner [9] defined CI as the minimum rate of CR needed
to generate X; and X, separately using local operations
(independent noisy channel§ — X;,Q — X3) and no
communication.

Cw (X1;X3) & i I(X1X2:Q), < ||| X
w(XiXo) £ min T(XiXaiQ), Q] < 4]

. Fig. 1. (a) The generalized Gray-Wyner distributed soumging network
The three notions of ClI are related aSgx(X1;X2) < (b) The generalized assisted common information setup

I(X:1;X9) < Cw(X1;X2) with equality holding iff (X1,X5)
is perfectly resolvable, whena®g i (X1;X2) = I(X1;X2) & When the sum-rate into each decoder (second bundling) is
I(X1;X2) = Cw(X1;X2) [12]. efficient (i.e., Ry + R, = H(X,), Ya € A), the maximum

Common information duality in relation to the generalized €OMMon rate iXq (X1;...;.X k) with the inefficiency in the
Gray-Wyner NetworkConsider the generalized Gray-Wyner first bundling being given by
(GW) distributed lossless source coding network [10], [11] - K
shown in Fig. 1(a). The network jointly encod&s discrete, Ar=Ro + Zalea — H(Xa)
memoryless correlated sources using a common message and _ _ o
K private messages, and separately decodes each private — Zale(XalQ) H(X4lQ) = 1(X15..:Xk|Q) (1)
message using the common message as side information. Lghere the quantity/(X;;..;Xx) is the total correlation [5]
Xa ={Xa}taca be aK-tuple of RVs ranging over finite sets 54 is defined a$( X1 Xk) 2 YK H(X,) - H(X4) =
X, where A is an index set of sizé. K-1 _ a=1

Zi:l I(Xl...Xi,Xi+1).

When the sum-rate out of thE encoders (first bundling)
is efficient (i.e., Ry + ZleRa = H(X4)), the minimum
common rate iCw (X5;...;X k) with the inefficiency in the

Theorem 1([11]). The optimal rate regiofRgw (X 4) for the
generalized GW network is given by

({Ra} ), Ro) € RET : 3pgix, € Pxas second bundling being given by
Rew (Xa) = { st Ry > (X 4;,Q), K
R, > H(X,|Q) Va € A, Az = Za:l(RO +Ra = H(Xa))
K
where Px, is the set of all conditional pmfgg|x, s.t. the = Zazl(I(XAQ) + H(X4|Q) — H(Xa))
cardinality of the alphabe@ of the auxiliary R\ is bounded @K K
as|Q[ < H§:1|Xa| +2. _)Za:1I(XA\“;Q|Xa) - Za:lAza (2)

A trivial lower bound toRqw (X 4) follows from basic ~ Where Ay, = I(X.4\,;Q|Xa) captures the inefficiency of
information-theoretic considerations [10]. th(e a-th d)eco?er an|d () )f0”0\EVS ffO;“ W(”“”Q(XA|;Q))35
I(X 4\p:Q) +I(Xp;Q| X a\p) = I(Xa:Q) + (X a\ab: Q| Xa) +
X4) C X \ \ \
Rawlba) & San ) e a X501 X ) = 1(X0iQ) + (X 0:QIXa). Ay aNAA, are
B (Ra,Ro) : Ro + Ra > H(X,) Ya € A, functions fromPy, — RX*!. In particular for K = 2, the
- Ry + ZK R, > H(X.) inefficiencies in the first and second bundlings are given by
a=1 -
Existing notions of Cl can be viewed as extreme points Ar = 1(X1;4|Q)
for the corresponding common rafg, in the GW network Ag = Aoy + Aoy = I(X2:Q[X1) + I(X1:QX2)  (3)
(for K = 2 see Problem 16.28-16.30, pg. 394 in [12]).  \aximum efficiency of the first bundling occurs when
For the generalized GW network, the CI duality is explicit Ay =0, ie,Q— X, — X g0,a € A Similarly, maximum

when considering the complementary efficiency requirementeﬁiciency of the second bundling occurs whédn = 0, i.e.,
of the first and second rate bundlings shown in Fig. 1(a). They. _ Q= X;,i+7j, Vijec A ltis easy to see that
inefficiency is manifest in the gap betwe®a (X 4) and the ’ 7 T ’

J XXk Q)

lower boundCeaw (X 4). g;lznoAl = oox 7%;? o



=I(X1;..;XK) — max  [(X1;..;Xk|Q) tuples of the form({Aga}aeA,Al), and the rate region has

QKo Xaves the following characterization.
= I(X1;...Xk) — Car (X155 XK) (4)  Theorem 2(Generalized K +1)-dimensional assisted residual
g}i;ﬂo& _ XY_QH_lanj » Z;I(XA\a%@Xa) information reg|on.)K . A
QX i ({Ra}E1 Ro) € R s Tpgp, € P,
— Xi_Qn_l% » I(X1..Xg:Q) — I(X15..: X k) T(Xa) = (st f{o iIZizl IFXl---XiXi+1IQ) = Ay,
vigen o > I(X 4\0;Q1Xa) = Aaq, Ya € A,
= Cw (X153 X k) = 1(X15..5X k) (5)  Also,T(X4) is continuous, convex, and closed.
Clearly, Cor (X1;..: Xk) = I[(X15..5Xk) & [(X15..:XKk) We sketch the proof of Theorem 2 in the Appendix.
= Ow (X155 XK). Corollary 3 follows from Theorem 2, (4), and (5) to yield

It is interesting to note that, recently Prabhakaran andhe following expressions for the generalized Gacs-i€o1@I
Prabhakaran [2] have introduced a rate region for a 3and Wyner Cl in terms of the ARI region.
party communication problem called thassisted residual

information region T(X;;X>), which is the increasing hull Corollary 3.

of the set of all triples of the form(As;,Ass,Ay) = Cor (X155 Xk) =1(X1;..5XK) — min Ry,
(I(X2;Q1X1),I(X1;Q| X2),I(X1;X2/Q)). T enjoys a certain (O O fl0) R XA)
monotonicity property lacking in the original GW region ofn - _ - :

(3), it follows thatT(X1;X5) is the image ofRgw (X1:X>) Ow (XX ) = I Xnie s Xic) + (le.r.l,lﬁK,mZa:lRa'
under an affine map that computes the inefficiencies of the €T(Xa)

first and second bundlings. Thu$(X;;X>) formalizes the The following theorem (proven in the Appendix) gives the

complementary efficiency requirements in terms of a rateaxes intercepts of thek + 1)-dimensional ARI region.
information trade-off region. Maximum efficiency occursavh .
% (X1;X>) includes the origin, which occurs whéx,X5) is Theorem 4 (Axes intercepts of the boundary 6{X 4)).
perfectly resolvable. At all other instances when the commo ~ At(X .. .:Xx) £ min{R, : (0,...,Rq,....0) € T(X4)}
core () fails to completely resolve the dependence between  _ min H(Q|X,)

(X1,X2), T(X1;X>) is bounded away from the origin [2]. Q: H(Q|X5)=0 Vb € A\a, I(X1;..;Xx|Q)=0 “

[II. M AIN CONTRIBUTIONS AM(X1;..X k) 2 min{Ry : (0,...,0,Rg) € T(X4)}

A. The Generalized Assisted Residual Information Region o H(Q\)I?:)D:O VGGAI(X““';XMQ)
Consider the setup in Fig. 1(b). L& 4 £ {X.}aca be

a K-tuple of RVs ranging over finite setd,, where A is ; } ; ; _
an index set of size( and let{X 4,i}°, be a sequence of Il?c Ig/ilggl?;g{:)?l Regions for Secure K-party Sampling with Pub
independent copies 4 2 {Xai}aea of X4 drawn i.i.d. We establish the monotonicity properties ®f which by
~ px,. K terminals independently having access to one ofitye of being continuous and convex allows for deriving
the K components of such a source are required to producgyht outer bounds on the rate of statistically secure samgpl
RVS {W,}.c4 that must all agree with each other with high {5, the generali-party problem with setups. It is well-
probability. An omniscient geni6 having access t&; assists  known that cryptographically useful non-trivial distrifmns
the terminals by privately sending them rate-limited mgesa cannot be securely realized from scratch, i.e., without the
M, = f;(X3), a € A over noiseless links so that the i of an auxiliary setup of correlated randomness [3], [7].
terminals can independently compult€, = QIZ%I(X;I’Ma)' Trusted pre-shared noisy correlations is a simple yet piover
a € A We say that aK-tuple of rates{R,},_, enables cryprographic resource that takes no inputs from the partie
residual information rateR, > 0 for X4 if for everye > 0 54 generates samples of a given joint distribution, wittypa
andn sufficiently large, there exists deterministic mappings: ; given access to copies of theh variable. Access to such

AP X XX — {1’...72n(Ra+e)}’ a€ A, a setup is known _to_r_ealiz_e 2-party sampling [2], as \_N_eII as

" n n(Ra-te) other important primitives like b!t commitment and obllut;)
9o+ Xg ¥ {12 } 2 Zac A transfer [1], [4] in an unconditionally secure way. In light

whereZ is the set of integers, s¥i,j,a € A of the resource character of noisy correlations in enabling
nivn Af nivn as . such reductions (which are otherwise impossible to realize
Pr{gi (X', M) # g7 (X7, M)} <€ i 47, from scratch), abstracting and quantifying such resouises
LI(XTs5 s X R lgi (XY, Ma)) < Ro + e of interest. A resource is specified by a restrictignon the

full set of realizable operations. Givef, states that cannot
be created by means df naturally acquire some value and
become a resource. When distant parties wish to securely
T(X4) 2 {({R}E | Ro) : {R.}E | enables residual sample RVs by manipulating a given joint distribution, inist-
information rate R, for X 4}. ural to restrict attention to the class of LOPC operatiorte T
. resourcefulness or cryptographic content of the distiduis
Denoting byPx , as the set of all conditional pmfs, x,  a nonlocal property that cannot increase under LOPC, and can
s.t. the cardinality of the alphabé& of @ is bounded a$Q| <  be quantified using monotones. Monotones for sed(kgarty
Hf:1|)(a|+2, the boundary of (X 4) is made up of K +1)-  sampling are real-valued quantities that can never ineréas

Definition 1. The (K + 1)-dimensional assisted residual in-
formation (ARI) rate region is defined as follows.



any protocol that securely realizedsatuple of correlated RVs
Y4 using a setupX 4. As we shall see, the entire regi@nis
a monotone anét(Y,4) can be interpreted aswaitnessof the
cryptographically trivial nature of4: Y4 can be perfectly
securely realized from scratch, i#(Y4) contains the origin.

H(X1|Xl) = 0, M(Xin;...;XiXi_l;Xi;XiXi+1;...;XiXK)
D M(Xq55X555X k).

3) Monotonicity under statistically secure samplin§up-
pose, a subsef of the parties are “passively corrupted”

who retain and share their views (encapsulated in the

The closerY 4 is to the origin, the lesser cryptographic contentRV V) in an attempt to infer additional information on

it has. Conversely, the less&(Y 4) bulges towards the origin,
the more cryptographic content it has.

Consider the following simplified description of tlsemi-
honestmodel for securd(-party sampling [3], [7]. A set of{
parties engage in an interactive (randomized) communicati

protocol IT over a public discussion channel to accomplish

the distributed approximate simulation of a prescribeahtjoi

distributionpy, . The parties have access to an auxiliary setup

independent copies of jointly distributed RXs4 ~ px , , with
party« independently having access to copiesqf as well

as an infinite stream of private randomness. The protocel pr

the outputs of the non-coalition parties. W.l.o.g. [Et =

{1,....,m}, where m < t. For all jointly distributed RVs
(Ya,V7) and 67 > 0, for each such7T (cC A) if

I(VT;YA\7—|YT) < o7, then M(Y1;5..;Y ;YY) 2

MOV VY ViniYog1:3Yk) + 07, ie., statistically se-
curely sampled outputs do not have a much smaller region.
4) Additivity: M supports coordinate-wise Minkowski addition
for tensor products and is superadditive in general.

5) Continuity, Convexity and ClosureM is a continuous
function of the joint pmpx ,. Also M is convex and closed.

(0]

ceeds in rounds, where in each round each party flips privatéheorem 5. T is a (K + 1)-dimensional monotone region.

coins, and based on the messages exchanged so far, sends

Proof: The following monotonicity inequality is useful:

a message over a broadcast public communication Cha”n?{X-Y|f(X)Z) < I(X;Y|2).

to all the other parties. At the end of the protocol, party-
generates output, as a function of itsview (encapsulated in
the RV V), which consists of copies of its setup RY,, all

the private coins flipped so far, and all the communication
received over all the previous rounds. Interfering with the

interaction is a semi-honestadversarywho may choose to
“passively corrupt” a sef (cC .A) of at mostt (< K) patrties,
and learn their internal states. Compared to perfect rezhs;t

1) For the joint pmipx , zq = Px_4Pz|x:PQ|x 4, MONOtONICIty
under LO holds since,
Agi - I(X 0\i;Q| X Z) = 1(X 445Q|X:),
Agj : I(X a\;Z:Q1X;) = I(X a\5Q1X;),
J#i
@
A, I(X15 s Xkt XK ZIQ)ZT( X155 X K |Q),

3

statistical implementations are much more efficient [4]eTh \\here (a) follows from choosing= K and using the recur-

privacy and correctness requirements [3], [7] for staiisly
secure reductions can be stated as follows.

Definition 2. For ¢, 6 > 0, a protocolll is (4,t)-private if the
information leakage of the final views of the corrupted pesti
(V) satisfies

TCAT|<t

The protocol ise-correct if TV (py, ,pYA) < e. Perfect privacy
and correctness correspond o= 0 and ¢ = 0, respectively.

I(VT;YA\7—|YT) <.

(6,t)-privacy implies that any coalition of up to (< K)
parties who are honest but “curious” and leak their entiralfin

views, learns nothing more about the non-coalition parties
outputs than what they can derive from their own set of
outputs. As the views of the parties evolve along any LOPC

protocol, the region of residual total dependency of thevsie
can never shrink (away from the origin) [2]. Thuslifsecurely
realizesY 4 using a setupX 4, T(X 4) should be contained
within T(Y4). Definition 3 makes this precise.

Definition 3. Let M be a function that maps th& -tuple of
RVsX 4 to a subset ofR? s.t. if a € M anda’ > a, then
a’ € M. M is a monotone region if the following hold:

1) Monotonicity under local operations (LO$uppose party-
modifiesX; to Z by sendingX; over a channel, characterized
bypz| x,. ThenM cannot shrink, i.e., for all jointly distributed
RVs(X4,Z) with X 4\; — X — Z, M(X1;..:X:Z;...XK) D
M(X155X555X k).

2) Monotonicity under public communication (PC3uppose
party-i publicly announces the value of;. ThenM cannot
shrink, i.e., for all jointly distributed RVYX 4,X;) with

rence relationAX (X ;...; Xk |Q)=AK "1 (X1;...: Xk 1]Q) +
I(Xk;X1.. Xk-1]Q). SinceA; is symmetric in allX;’s, this
holds for all parties.

2) For the jointpmbp . ¢ = PXAPR, x,PQIXa> monotonic-
ity under PC holds since,

Ag; : I(XA\iXﬁQ)?AXi) = I(X\:Q|Xi),

Ao+ I(X 4 Xi3QX:|X; X;) < I(Xa\;5Q1 X)),
JFi
A_% FI(X 13X Xo5i X1 X k| X1Q)

K-1
= I(X1: X0 X0 X1Q) + Y I(X1 X1 X;: X1 X111 X1Q)
j=2
K-1
<I(XiXo|Q) + > I(X1.X55X;11|Q)
Jj=2

=I(X1;..:Xk|Q),

where we have chosén= 1. SinceA; is a symmetric quantity,
this holds for alli.

3) For anypg v, vy € P_YAVT’ monotonicity under statigtically
secure sampling easily holds fak;. For the coordinates
{Azi}ieT’ if I(VT;YA\7-|YT) < é7, we have

égrz IV YaisQIViYi) = I(Vr Y YamiQIViYs)
= 1Y\ 7:QVrYT) + I(V Y Q|ViYi)

IV a7:QIVrYT)

IV 7 QVrIY7) = I(VYa 7 [Y7)

I(Ya7iQIY7) = I(VrYa7!Yr)

= I(YarQIY7) < I(VrYauQIViY:) + 7.



For {8} o7 1(Ya\s3Q1Y;) < I(VrYa:QIY5) + o7

0,Vi € A = I(YA\T;Q|YT) = 0,VT C A |T| < ¢t

=1

4) Additivity on tensor products and more generally superadand A; = ZK_lf(YL..K-;}QHIQ) =0 = I(Y4:Y]Q) =

ditivity follows using arguments very similar to the ones fo
the K = 2 case [2].

0, Va e A = I(YA\T;YT|Q) =0,VT C A, |T| <t.
A 2K-dimensional characterization for thé& -variate

5) Continuity and closure follow from Theorem 2. Convexity monotone region¥2X was given in [3] (see Theorem 3 in

follows from arguments similar to théd( = 2 case (see
Theorem 2.4 and 2.5 in [2]).

[3]), by further decomposing the residual total dependency
A, into K components, viz.,

({Rn gl(:la{Riz}g:l) : EJpQ\XA S.tvi € Aa

|
i . . . . TK(y ) = {
Our generalization yields an interesting quantity (see-The (Ya) Ry, > I(Y4:Yi|Q),Ri, > I(Y0::Q|Y7).

orem 4), Al"*(Y;:..;Yx) which we call theresidual total
correlation Total correlation,/(Y;;...;Yx) is a natural gen-
eralization of the mutual information in the multipartitase
[5] that admits a simple operational interpretation: if tjes
in distant labs who share a noisy correlatign-, ) choose to
forgetall correlations between them by locally processifign
their labs (e.g., sendinyj; through a channel that completely
randomizes it), then total correlation is the minimum iree
of entropy of the local uncorrelated labs. Total correlat® a
monotone [5] as is its residual counterpart. The latterofed
from Theorem 4 and Theorem 5 sinde™ is the GK axis
intercept of the boundary of(Y,) that measures the gap
between total correlation and GK CI (see (4)). Conditioni3)
Definition 3 implies (among other things), the following dat
processing inequality for\}"': the residual total correlation

can never increase under any secure mapping from views to

outputs. Analogous to the case fé&r = 2 [1], we can state
the following result fort = 1, the weakest form of-privacy.

Proposition 6. For all jointly distributed RVYY 4,V.4), if V;—
Vi — Y, thenAP (Y55 Yi) < APV Y15 Ve Yic).

The most important consequence of Theorem 5 is fhat
can be used to derive the impossibility of samplirig from
X 4 with e-correctnessand ¢,t)-privacy—unless and until

T(X4) C T(Yy), such reductions are impossible. Further-""9 Py;|q

more, by virtue of the continuity and convexity @f one can

For independent setups, bot?X and T yield the same
characterization of thé-private distributions realizable from
scratch. With non-trivial setup§< > 2), ¥ can give strictly
tighter bounds (thar®?K) on the rates of securd-party
protocols. This follows from noting that whenever the conmmo
core( fails to completely resolve the dependence betwégn
any decomposition of\; of the form Zill(YA\i;}ﬂQ) is
bound to induce some redundant mutual information terms.
Theorem 8 gives sufficient conditions for the statisticaleca

Theorem 8. A K-tuple of RVs4 ~ py,, can be sampled from
scratch withe-correctness andd(t)-privacy, if there exists a
RV Q, jointly distributed withY 4 s.t. the following hold:

TV(pyapy,) <e (8)

> IVaTQIYr) <6 (9)
TCAITI<t

I(Y5Y]Q) =0, Va € A (10)

Proof: Consider the following protocolls satisfying
conditions (8)—(10). Partysampled/; = (Y;,Q) and publicly
discloses the value @, following which, each{party} ;c 4\,
independently sampleS; by flipping their private coins us-
[ conditioned on the receive@. Then, from (10)

it follows that Y7 are independent giver which implies

derive an upper bound on the rate of such reductions. We prove, ~ py,- Then, given (8)¢-correctness follows.

a milder version of the above statement in Corollary 7. An
analogous statement for the rate requires invoking argtanen . (b) .
related to the convexity of the monotone region which we skip— HYa\7|Q) = H(Y4\7|QUT)

The details are similar to the argument in [2].

Corollary 7. If m i.i.d copies ofY, can be statistically
securely realized from i.i.d copies ofX 4, thennZT(X 4) C
m%(Y4), (where multiplication by: refers ton-times repeated
Minkowski sum).

Proof (sketch): Let the RV V) encapsulate the view of
the parties at the end of round Let V3 = X7 and let the
final view beVy. Then the proof follows from Theorem 5 by
noting the foIIowin%. By Condition (1) and (2) of Definition
3, T(V}) 2 T(V4~1). By Condition (3),T(YF") 2 T(Vaa).
Thus, T(Y}") 2 %(X74). Finally, by Condition (4), the
required inclusion holds. ]

Given pg|y, € Py,, the set of allt-private distributions

To show ,t)-privacy, first note thatH (Y7 |Y7Q)

© 5 3

= H(Ya7rIQUTYT),
where (a) follows from (10), (b) follows from noting that
I(Y 4\ 7:U7|Q) = 0, and (c) follows since’r is a determin-
istic function of (Ur,Q). Then

IV 7QIY7) = HYa7|Y7T) — HY A\ 7|Y7Q)
= HY7|YT) = HY A\ 7|IQUTYT)
= I(Ya\7:QUTYT)
).~ NENO)
:I(YA\T;VT|YT)§§,

where (d) follows since the views comprises of private
randomnes$/; and @, the sole message broadcast by party-
at the start of the protocol, and (e) follows from (9). Then
from Definition 2, it follows thatlls is (d,t)-private. [ ]

In [13], monotone region for a channel-type modgl £ 2)

that can be sampled from scratch with perfect correctness anas defined under a restriction to the; = 0 plane to derive

privacy, are characterized by the following conditions:
Ag; = I(Y5Q1Yi) =0,Vie A (6)
K-1
Ay = I(Y1;.5YK|Q) = Zi:l I(Y1..Y;Yi1|Q) = 0 (7)
t-privacy follows from (6), (7) sinceAy; = I(Y4;;Q|Y:) =

upper bounds on the oblivious transfer capacity. Equitalen
generalizations for multiuser channels using pairwiselfsset
are of interest. Another observation of independent isteie
that recently, the Hypercontractivity (HC) ribbon, a terzing
measure of correlation [14], was derived as a dual of the GW
region [15]. Both the HC ribbon and ARI region behave mono-



tonically under local stochastic evolution and are measofe

nonlocal correlation. We leave as an open question as to how

these regions might be related.
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APPENDIX
Proof (sketch) for Theorem 2The proof for achievability

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

El
[10]

(11]

[12]
[13]

[14]

[15]

Fig. 2. Denoting thel-Measure of RVQ by p*, the only atom on which
w* is nonvanishing is shown in the-Diagram for the coordinaté\2; on the
boundary ofT(X1;X2;X3)

uniformly distributed RV independent of’; and (c) follows
from the independence of and X7}.

K-l n n n
1 (X3 XT - X Wa)

I(XP s X W,) = Zk:
K-1 n .
= D XK s XX W X5)

B=Iqmn .yn n i—1 i—1
> > Xy i X X Wa XG5 X
=nl (X, 5. X g/ 1Q)

The converse follows, sincéX,;,...,X, ;) has the same
distribution as(Xj,...,Xx). The cardinality bound o) can

be shown using the Carathodory-Fenchel theorem [12, p. 310]
The boundary off(X 4) is thus made up of K +1)-tuples of

the formA,,, = ({Aza},c 4,01), WhereA,, is a continuous
function from Py, — RX*! wherePx, is compact (i.e.,
closed and bounded). Since the image of a compact set under
a continuous function is compadtj,,, : PQIxa € Px,}is
compact. Moreover, since the increasing hull of a compdct se
is closed (see Lemma A.3, [2]F is closed. Convexity off
follows from arguments similar to th& =2 case [2]. ®

Proof (sketch) for Theorem 4:First note thatT(X 4)
intersects each of théK + 1) axes, since anyx-tuple of
coordinates can be made simultaneously zero by choosing an
appropriate Q. The case féf = 2 was already shown in [2].

For the intercepAit (X1;X2;X3),

Alnt — inf I(X2X3:Q|X
21 I(X3X11?1Q|X2):0 ( 2 37Q| 1)
I(X1X2;Q|X3)=0
I(X1;X2|Q)+1(X1X2;X3]|Q)=0
< inf H(Q|X1),
S @ Hexn=e  FEX)

which is based on a generalized lossy source coding problem I(X15X2]|Q)+1(X1X2;X3|Q)=0
(for K variables) follows similar lines as in [2] and is omitted since if H(Q|X,) = H(Q|X3) = 0, thenI(X3X1;Q|X2) =
in the interest of space. The converse follows by minorI(Xng;Q|X3) = 0 and I(X2X5:Q|X1) = H(Q|Xy). For
modifications from theX” = 2 case [2] and is provided here the converse, we want to shdiS > RHS. This holds, since
for completeness. if I(X3X1:Q|X2) = I(X1X2;Q|X3) = 0, then H(Q|X>)
n(Rq +€) > H(M,) > H(My|X]) > H(W,|X]) = H(Q|X5) = 0 and (X, X5;Q|X1) = H(Q|X1).

S I(YRWL|XD), Y 2 X In fact, under the given constraints, denoting fhleasure

= arttaltaly fa™ SA\a of RV @ by u*, the only atom on whichu* is nonvan-
ishing for both I(X,X3;Q|X;) and H(Q|X1), is the one
shown in thel/-Diagram in Fig. 2. It may be noted that for
K = 2, the proof for the converse is not trivial (see Lemma
A.1l, A.2 and the proof of Theorem 2.2 in [2]), since given
I(X1;Q|X2) = 1(X1;X2]Q) = 0, it does not trivially follow
that (X»;Q|X1) > H(Q|X1). However, just as shown above
for K = 3, for K > 3 onwards,u* is vanishing on all but
one atom, which trivially then yields the converse. Similar
arguments hold for all the other coordinates and for any géne
K. Finally the use ofnin instead ofinf in the statement of
the theorem is valid sinc&(X 4) is closed. [ |

O HYlX,) — HY WY X7)

2 ijlH(Yai|Xai) — H(Y, WY, X X5
=3 I(YaQilXa), Qi 2 WaXigie X
O o I(YariQuXasd), ps(i)2 Lie {10},

nl(Yer;Q|Xas), Q=(Qs.J),

where (a) follows from the independence of thé-tuple
Xai = {Xaitaea acrossi. In (b), J € {1,..n} is a

©
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