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Abstract—We address the problem of quantifying the cryp-
tographic content of probability distributions, in relati on to an
application to secure multi-party sampling against a passive t-
adversary. We generalize a recently introduced notion of assisted
common information of a pair of correlated sources to that of
K sources and define a family of monotone rate regions indexed
by K. This allows for a simple characterization of all t-private
distributions that can be statistically securely sampled without
any auxiliary setup of pre-shared noisy correlations. We also give
a new monotone called the residual total correlation that admits
a simple operational interpretation. Interestingly, for sampling
with non-trivial setups (K > 2) in the public discussion model,
our definition of a monotone region differs from the one by
Prabhakaran and Prabhakaran (ITW 2012).

Keywords—assisted common information, monotones, uncondi-
tional security, secure multi-party sampling.

I. I NTRODUCTION

Suppose two parties, Alice and Bob working in distant labs
have access to a certain set of nonlocal resources (e.g., noisy
correlations or channels) and wish to simulate or realize the
functionality of a target resource (e.g., oblivious transfer, a
noiseless secret key, etc.). Information-theoretic cryptography
is concerned with the questions offeasibility and efficiency
or rate of such reductions against computationally-unbounded
adversaries. Given a set ofK parties, we focus on a restricted
class of resources that takes no inputs from the parties,
and following the execution of a distributed communication
protocol over a public discussion channel, generates outputs
{Ya}

K
a=1 that approximately simulates a pre-specified joint

distributionpY1,...,YK
. The protocol is required to bet-private,

i.e., any coalition of up tot (< K) honest-but-curious parties
learns nothing more about the non-coalition parties’ outputs
than what they can derive from their own set of outputs. The
problem is an instance of secure multi-party sampling (a form
of secure multi-party computation with no inputs) that has
recently gained a lot of currency in the information theory
literature [1]–[4]. As a simple example, suppose Alice and
Bob wish to sample pairs of the form,((Y1,Y2) : Pr{Y1 =
Y2} 6= 1

2 ). If they try to generate such a pair by talking to each
other, they will necessarily end up violating 1-privacy. On the
other hand, pairs of the formY1 = (U1,Q),Y2 = (Q,U2) where
U1,U2,Q are independent can be generated on the fly. However,
outside this class oftrivial distributions, cryptographically
useful non-trivial pairs(Y1,Y2) cannot be securely realized
from scratch, i.e., without the aid of an auxiliarysetupin the
form of a trusted source of noisy correlations [1]–[3].

The earliest known impossibility result for secure 2-party
sampling appears in the problem of mental poker [6]. Here two
distant parties simulate the act of randomly sampling a disjoint
pair of hands from a common deck of cards without using a
trusted arbiter. Most relevant to the current work are the works
on monotones, real-valued functions of joint distributions that

cannot increase under monopartite or local operations and
noiseless public communication (LOPC). Monotones were first
introduced in [5] as classical counterparts of entanglement or
LOCC (local operations and classical communication) mono-
tones to study the asymptotic rate of resource conversion under
LOPC. Such rates are limited by the amount of resources
contained in the source and target probability distributions.
Monotones based on Gács and Körner’s notion of thecommon
part of a pair of correlated sources [8] were introduced in [1]
and later extended to the statistical case in [4]. Comparingthe
value of the monotone on the setup and protocol output random
variables gives an upper bound on the rate of secure 2-party
sampling. Prabhakaran and Prabhakaran [2] developed a tighter
upper bound technique using the concept of amonotone region
based onassisted common information, a generalization of the
Gács-Körner common information [8]. In [3], the same authors
explored the power of different setups (or its lack thereof)in
the multi-party scenario for different communication models,
viz., the private channels model (parties linked via a complete
network of bilateral secure channels) and the public discussion
model. A related work on the private channels model [7] gave a
weak characterization of the class oft-privatedistributions that
are securely realizable from scratch, by reducing the problem
to the 2-party case via a partition argument.

Contributions. We address both the questions of feasibility
and efficiency of statistically secure multi-party reductions in
relation to sampling in the public discussion model. The main
tool we develop is a generalization of the bivariate monotone
region introduced in [2]. Our statistical impossibility result
when specialized to the scenario of perfectly secure sampling
from scratch, recovers the characterization in [3]. However, for
the more general problem with non-trivial setups(K > 2), our
definition of a monotone region differs from the one in [3] and
can give strictly better bounds on the rates of secureK-party
protocols. We also give a new monotone called the residual
total correlation that admits a simple operational interpretation.

II. PRELIMINARIES

Random variables (RVs) and their finite alphabets are
denoted using uppercase lettersX and script lettersX . We
write pX to denote the distribution (pmf) of a discrete RV
X . X − Y − Z denotes thatX,Y,Z form a Markov chain
satisfyingpXY Z = pXY pZ|Y . A\B denotes usual set-theoretic
subtraction. The total variational distance between distributions
pX andpX′ is defined asTV(pX ,pX′) , 1

2‖pX − pX′‖1. For
a nonnegative real coordinate spaceR

d
+, the increasing hull of

A ∈ R
d
+ is defined asi(A) , {a ∈ R

d
+ : ∃a′ ∈ A s.t. a ≥ a′}

(where the comparison is coordinate-wise) [2].
For a pair(X1,X2) ∼ pX1X2

, let PX1,X2
be the set of

all RVs Q jointly distributed with (X1,X2). For pQ|X1X2
∈

PX1,X2
, (X1,X2) is said to beperfectly resolvable[2], if

the residual informationI(X1;X2|Q) = 0, andH(Q|X1) =
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H(Q|X2) = 0. We then say thatQ perfectly resolves(X1,X2).
Gács and Körner (GK) [8] defined common information

(CI) of the pair (X1,X2) ∼ pX1X2
as the maximum rate

of common randomness (CR) that Alice and Bob, observing
sequencesXn

1 and Xn
2 separately, canextract without any

communication.

CGK(X1;X2) , max
Q:H(Q|X1)=0

H(Q|X2)=0

H(Q) = max
Q−X1−X2

Q−X2−X1

I(X1X2;Q).

CR thus defined, is a far stronger resource than correlation,
in that the latter does not result in common random bits, in
general [8]. Nevertheless, when communication is an available
resource, Alice and Bob can unlock hidden layers of poten-
tial CR. Following communication, the CR rate increases to
I(X1;X2).

Wyner [9] defined CI as the minimum rate of CR needed
to generateX1 and X2 separately using local operations
(independent noisy channels:Q → X1,Q → X2) and no
communication.

CW (X1;X2) , min
Q:X1−Q−X2

I(X1X2;Q), |Q| ≤ |X1||X2|.

The three notions of CI are related as,CGK(X1;X2) ≤
I(X1;X2) ≤ CW (X1;X2) with equality holding iff (X1,X2)
is perfectly resolvable, whenceCGK(X1;X2) = I(X1;X2) ⇔
I(X1;X2) = CW (X1;X2) [12].

Common information duality in relation to the generalized
Gray-Wyner Network. Consider the generalized Gray-Wyner
(GW) distributed lossless source coding network [10], [11]
shown in Fig. 1(a). The network jointly encodesK discrete,
memoryless correlated sources using a common message and
K private messages, and separately decodes each private
message using the common message as side information. Let
XA , {Xa}a∈A be aK-tuple of RVs ranging over finite sets
Xa whereA is an index set of sizeK.

Theorem 1 ([11]). The optimal rate regionℜGW (XA) for the
generalized GW network is given by

ℜGW (XA) =





({Ra}
K
a=1,R0) ∈ R

K+1
+ : ∃pQ|XA

∈ P̂XA ,

s.t.R0 ≥ I(XA;Q),

Ra ≥ H(Xa|Q) ∀a ∈ A,

where P̂XA is the set of all conditional pmfspQ|XA
s.t. the

cardinality of the alphabetQ of the auxiliary RVQ is bounded
as |Q| ≤

∏K
a=1|Xa|+ 2.

A trivial lower bound toℜGW (XA) follows from basic
information-theoretic considerations [10].

ℜGW (XA) ⊆ LGW (XA)

=

{
(RA,R0) : R0 +Ra ≥ H(Xa) ∀a ∈ A,

R0 +
∑K

a=1
Ra ≥ H(XA)

}
.

Existing notions of CI can be viewed as extreme points
for the corresponding common rateR0 in the GW network
(for K = 2 see Problem 16.28–16.30, pg. 394 in [12]).
For the generalized GW network, the CI duality is explicit
when considering the complementary efficiency requirements
of the first and second rate bundlings shown in Fig. 1(a). The
inefficiency is manifest in the gap betweenℜGW (XA) and the
lower boundLGW (XA).

Fig. 1. (a) The generalized Gray-Wyner distributed source coding network
(b) The generalized assisted common information setup

When the sum-rate into each decoder (second bundling) is
efficient (i.e.,R0 + Ra = H(Xa), ∀a ∈ A), the maximum
common rate isCGK(X1;...;XK) with the inefficiency in the
first bundling being given by

∆1 = R0 +
∑K

a=1
Ra −H(XA)

=
∑K

a=1
H(Xa|Q)−H(XA|Q) = I(X1;...;XK |Q) (1)

where the quantity,I(X1;...;XK) is the total correlation [5]
and is defined asI(X1;...;XK) ,

∑K
a=1H(Xa)−H(XA) =∑K−1

i=1 I(X1...Xi;Xi+1).
When the sum-rate out of theK encoders (first bundling)

is efficient (i.e.,R0 +
∑K

a=1Ra = H(XA)), the minimum
common rate isCW (X1;...;XK) with the inefficiency in the
second bundling being given by

∆2 =
∑K

a=1
(R0 +Ra −H(Xa))

=
∑K

a=1
(I(XA;Q) +H(Xa|Q)−H(Xa))

(a)
=
∑K

a=1
I(XA\a;Q|Xa) =

∑K

a=1
∆2a (2)

where ∆2a = I(XA\a;Q|Xa) captures the inefficiency of
the a-th decoder and (a) follows from writingI(XA;Q) as
I(XA\b;Q)+I(Xb;Q|XA\b) = I(Xa;Q)+I(XA\ab;Q|Xa)+
I(Xb;Q|XA\b) = I(Xa;Q)+ I(XA\a;Q|Xa). ∆1 and∆2 are
functions fromP̂XA → R

K+1
+ . In particular forK = 2, the

inefficiencies in the first and second bundlings are given by

∆1 = I(X1;X2|Q)

∆2 = ∆21 +∆22 = I(X2;Q|X1) + I(X1;Q|X2) (3)

Maximum efficiency of the first bundling occurs when
∆2 = 0, i.e., Q −Xa − XA\a,∀a ∈ A. Similarly, maximum
efficiency of the second bundling occurs when∆1 = 0, i.e.,
Xi −Q−Xj , i 6= j, ∀i,j ∈ A. It is easy to see that,

min
∆2=0

∆1 = min
Q−Xa−XA\a,∀a∈A

I(X1;...;XK |Q)



= I(X1;...;XK)− max
Q−Xa−XA\a,

∀a∈A

I(X1;...;XK |Q)

= I(X1;...;XK)− CGK(X1;...;XK) (4)

min
∆1=0

∆2 = min
Xi−Q−Xj ,i6=j,

∀i,j∈A

∑K

a=1
I(XA\a;Q|Xa)

= min
Xi−Q−Xj ,i6=j,

∀i,j∈A

I(X1...XK ;Q)− I(X1;...;XK)

= CW (X1;...;XK)− I(X1;...;XK) (5)

Clearly, CGK(X1;...;XK) = I(X1;...;XK) ⇔ I(X1;...;XK)
= CW (X1;...;XK).

It is interesting to note that, recently Prabhakaran and
Prabhakaran [2] have introduced a rate region for a 3-
party communication problem called theassisted residual
information region, T(X1;X2), which is the increasing hull
of the set of all triples of the form(∆21,∆22,∆1) =
(I(X2;Q|X1),I(X1;Q|X2),I(X1;X2|Q)). T enjoys a certain
monotonicity property lacking in the original GW region. From
(3), it follows thatT(X1;X2) is the image ofℜGW (X1;X2)
under an affine map that computes the inefficiencies of the
first and second bundlings. Thus,T(X1;X2) formalizes the
complementary efficiency requirements in terms of a rate-
information trade-off region. Maximum efficiency occurs when
T(X1;X2) includes the origin, which occurs when(X1,X2) is
perfectly resolvable. At all other instances when the common
core Q fails to completely resolve the dependence between
(X1,X2), T(X1;X2) is bounded away from the origin [2].

III. M AIN CONTRIBUTIONS

A. The Generalized Assisted Residual Information Region
Consider the setup in Fig. 1(b). LetXA , {Xa}a∈A be

a K-tuple of RVs ranging over finite setsXa, whereA is
an index set of sizeK and let{XA,i}

∞
i=1 be a sequence of

independent copiesXA,i , {Xa,i}a∈A of XA drawn i.i.d.
∼ pXA . K terminals independently having access to one of
the K components of such a source are required to produce
RVs {Wa}a∈A that must all agree with each other with high
probability. An omniscient genieG having access toXn

A assists
the terminals by privately sending them rate-limited messages
Ma = fn

a (X
n
A), a ∈ A over noiseless links so that the

terminals can independently computeWa = gna (X
n
a ,Ma),

a ∈ A. We say that aK-tuple of rates{Ra}
K
a=1 enables

residual information rateR0 ≥ 0 for XA if for every ǫ > 0
andn sufficiently large, there exists deterministic mappings:

fn
a : Xn

1 × ...×Xn
K → {1,...,2n(Ra+ǫ)}, a ∈ A,

gna : Xn
a × {1,...,2n(Ra+ǫ)} → Z, a ∈ A,

whereZ is the set of integers, s.t.∀i,j,a ∈ A

Pr{gni (X
n
i , Mi) 6= gnj (X

n
j , Mj)} ≤ ǫ, i 6= j,

1
nI(X

n
1 ;...;X

n
K |gna (X

n
a , Ma)) ≤ R0 + ǫ.

Definition 1. The (K + 1)-dimensional assisted residual in-
formation (ARI) rate region is defined as follows.

T(XA) , {({Ra}
K
a=1,R0) : {Ra}

K
a=1 enables residual

information rateR0 for XA}.

Denoting byP̂XA as the set of all conditional pmfspQ|XA

s.t. the cardinality of the alphabetQ of Q is bounded as|Q| ≤∏K
a=1|Xa|+2, the boundary ofT(XA) is made up of(K+1)-

tuples of the form
(
{∆2a}a∈A,∆1

)
, and the rate region has

the following characterization.

Theorem 2(Generalized(K+1)-dimensional assisted residual
information region).

T(XA) =





({Ra}
K
a=1,R0) ∈ R

K+1
+ : ∃pQ|XA

∈ P̂XA ,

s.t.R0 ≥
∑K−1

i=1 I(X1...Xi;Xi+1|Q) = ∆1,

Ra ≥ I(XA\a;Q|Xa) = ∆2a, ∀a ∈ A,

Also,T(XA) is continuous, convex, and closed.

We sketch the proof of Theorem 2 in the Appendix.
Corollary 3 follows from Theorem 2, (4), and (5) to yield
the following expressions for the generalized Gács-Körner CI
and Wyner CI in terms of the ARI region.

Corollary 3.

CGK(X1;...;XK) = I(X1;...;XK)− min
(0,...,0,R0)∈T(XA)

R0,

CW (X1;...;XK) = I(X1;...;XK) + min
(R1,...,RK,0)

∈T(XA)

∑K

a=1
Ra.

The following theorem (proven in the Appendix) gives the
axes intercepts of the(K + 1)-dimensional ARI region.

Theorem 4 (Axes intercepts of the boundary ofT(XA)).

∆int
2a (X1;...;XK) , min{Ra : (0,...,Ra,...,0) ∈ T(XA)}

= min
Q: H(Q|Xb)=0 ∀b ∈ A\a, I(X1;...;XK |Q)=0

H(Q|Xa)

∆int
1 (X1;...;XK) , min{R0 : (0,...,0,R0) ∈ T(XA)}

= min
Q: H(Q|Xa)=0 ∀a∈A

I(X1;...;XK |Q)

B. Monotone Regions for Secure K-party Sampling with Pub-
lic Discussion

We establish the monotonicity properties ofT, which by
virtue of being continuous and convex allows for deriving
tight outer bounds on the rate of statistically secure sampling
for the generalK-party problem with setups. It is well-
known that cryptographically useful non-trivial distributions
cannot be securely realized from scratch, i.e., without the
aid of an auxiliary setup of correlated randomness [3], [7].
Trusted pre-shared noisy correlations is a simple yet powerful
cryptographic resource that takes no inputs from the parties,
and generates samples of a given joint distribution, with party-
i given access to copies of thei-th variable. Access to such
a setup is known to realize 2-party sampling [2], as well as
other important primitives like bit commitment and oblivious
transfer [1], [4] in an unconditionally secure way. In light
of the resource character of noisy correlations in enabling
such reductions (which are otherwise impossible to realize
from scratch), abstracting and quantifying such resourcesis
of interest. A resource is specified by a restriction,C on the
full set of realizable operations. GivenC, states that cannot
be created by means ofC naturally acquire some value and
become a resource. When distant parties wish to securely
sample RVs by manipulating a given joint distribution, it isnat-
ural to restrict attention to the class of LOPC operations. The
resourcefulness or cryptographic content of the distribution is
a nonlocal property that cannot increase under LOPC, and can
be quantified using monotones. Monotones for secureK-party
sampling are real-valued quantities that can never increase in



any protocol that securely realizes aK-tuple of correlated RVs
YA using a setupXA. As we shall see, the entire regionT is
a monotone andT(YA) can be interpreted as awitnessof the
cryptographically trivial nature ofYA: YA can be perfectly
securely realized from scratch, iffT(YA) contains the origin.
The closerYA is to the origin, the lesser cryptographic content
it has. Conversely, the lesserT(YA) bulges towards the origin,
the more cryptographic content it has.

Consider the following simplified description of thesemi-
honestmodel for secureK-party sampling [3], [7]. A set ofK
parties engage in an interactive (randomized) communication
protocol Π over a public discussion channel to accomplish
the distributed approximate simulation of a prescribed joint
distributionpYA . The parties have access to an auxiliary setup:
independent copies of jointly distributed RVsXA ∼ pXA , with
party-a independently having access to copies ofXa as well
as an infinite stream of private randomness. The protocol pro-
ceeds in rounds, where in each round each party flips private
coins, and based on the messages exchanged so far, sends
a message over a broadcast public communication channel
to all the other parties. At the end of the protocol, party-a
generates output̂Ya as a function of itsview (encapsulated in
the RV Va), which consists of copies of its setup RVXa, all
the private coins flipped so far, and all the communication
received over all the previous rounds. Interfering with the
interaction is a semi-honestt-adversarywho may choose to
“passively corrupt” a setT (⊂ A) of at mostt (< K) parties,
and learn their internal states. Compared to perfect reductions,
statistical implementations are much more efficient [4]. The
privacy and correctness requirements [3], [7] for statistically
secure reductions can be stated as follows.

Definition 2. For ǫ, δ ≥ 0, a protocolΠ is (δ,t)-private if the
information leakage of the final views of the corrupted parties
(VT ) satisfies

∑

T ⊂A:|T |≤t

I(VT ;ŶA\T |ŶT ) ≤ δ.

The protocol isǫ-correct if TV(pYA ,pŶA
) ≤ ǫ. Perfect privacy

and correctness correspond toδ = 0 and ǫ = 0, respectively.

(δ,t)-privacy implies that any coalition of up tot (< K)
parties who are honest but “curious” and leak their entire final
views, learns nothing more about the non-coalition parties
outputs than what they can derive from their own set of
outputs. As the views of the parties evolve along any LOPC
protocol, the region of residual total dependency of the views
can never shrink (away from the origin) [2]. Thus, ifΠ securely
realizesŶA using a setupXA, T(XA) should be contained
within T(ŶA). Definition 3 makes this precise.

Definition 3. Let M be a function that maps theK-tuple of
RVsXA to a subset ofRd

+ s.t. if a ∈ M and a′ ≥ a, then
a′ ∈ M. M is a monotone region if the following hold:

1) Monotonicity under local operations (LO):Suppose party-i
modifiesXi to Z by sendingXi over a channel, characterized
bypZ|Xi

. ThenM cannot shrink, i.e., for all jointly distributed
RVs(XA,Z) with XA\i −Xi −Z, M(X1;...;XiZ;...;XK) ⊇
M(X1;...;Xi;...;XK).
2) Monotonicity under public communication (PC):Suppose
party-i publicly announces the value of̃Xi. ThenM cannot
shrink, i.e., for all jointly distributed RVs(XA,X̃i) with

H(X̃i|Xi) = 0, M(X̃iX1;...;X̃iXi−1;Xi;X̃iXi+1;...;X̃iXK)
⊇ M(X1;...;Xi;...;XK).
3) Monotonicity under statistically secure sampling:Sup-
pose, a subsetT of the parties are “passively corrupted”
who retain and share their views (encapsulated in the
RV VT ) in an attempt to infer additional information on
the outputs of the non-coalition parties. W.l.o.g. letT =
{1,...,m}, where m ≤ t. For all jointly distributed RVs
(ŶA,VT ) and δT ≥ 0, for each suchT (⊂ A) if
I(VT ;ŶA\T |ŶT ) ≤ δT , then M(Ŷ1;...;Ŷm;Ŷm+1;...;ŶK) ⊇

M(Ŷ1V1;...;ŶmVm;Ŷm+1;...;ŶK) + δT , i.e., statistically se-
curely sampled outputs do not have a much smaller region.
4) Additivity: M supports coordinate-wise Minkowski addition
for tensor products and is superadditive in general.
5) Continuity, Convexity and Closure:M is a continuous
function of the joint pmfpXA . AlsoM is convex and closed.

Theorem 5. T is a (K + 1)-dimensional monotone region.

Proof: The following monotonicity inequality is useful:
I(X ;Y |f(X)Z) ≤ I(X ;Y |Z).
1) For the joint pmfpXAZQ = pXApZ|Xi

pQ|XA
, monotonicity

under LO holds since,

∆2i : I(XA\i;Q|XiZ) = I(XA\i;Q|Xi),

∆2j
j 6=i

: I(XA\jZ;Q|Xj) = I(XA\j ;Q|Xj),

∆1
i=K

: I(X1;...;XK−1;XKZ|Q)
(a)
=I(X1;...;XK |Q),

where (a) follows from choosingi = K and using the recur-
rence relation∆K

1 (X1;...;XK |Q)=∆K−1
1 (X1;...;XK−1|Q) +

I(XK ;X1...XK−1|Q). Since∆1 is symmetric in allXi’s, this
holds for all parties.
2) For the joint pmfpXAX̃iQ

= pXApX̃i|Xi
pQ|XA

, monotonic-
ity under PC holds since,

∆2i : I(XA\iX̃i;QX̃i|Xi) = I(XA\i;Q|Xi),

∆2j
j 6=i

: I(XA\jX̃i;QX̃i|XjX̃i) ≤ I(XA\j ;Q|Xj),

∆1
i=1

: I(X1;X̃1X2;...;X̃1XK |X̃1Q)

= I(X1;X̃1X2|X̃1Q) +

K−1∑

j=2

I(X̃1X1...Xj;X̃1Xj+1|X̃1Q)

≤ I(X1;X2|Q) +
∑K−1

j=2
I(X1...Xj;Xj+1|Q)

= I(X1;...;XK |Q),

where we have choseni = 1. Since∆1 is a symmetric quantity,
this holds for alli.
3) For anypQ|ŶAVT

∈ PŶAVT
, monotonicity under statistically

secure sampling easily holds for∆1. For the coordinates
{∆2i}i∈T , if I(VT ;ŶA\T |ŶT ) ≤ δT , we have

∆2i
i∈T

: I(VT \iŶA\i;Q|ViŶi) = I(VT \iŶT \iŶA\T ;Q|ViŶi)

= I(ŶA\T ;Q|VT ŶT ) + I(VT \iŶT \i;Q|ViŶi)

≥ I(ŶA\T ;Q|VT ŶT )

= I(ŶA\T ;QVT |ŶT )− I(VT ;ŶA\T |ŶT )

≥ I(ŶA\T ;Q|ŶT )− I(VT ;ŶA\T |ŶT )

⇒ I(ŶA\T ;Q|ŶT ) ≤ I(VT \iŶA\i;Q|ViŶi) + δT .



For {∆2j}j /∈T , I(ŶA\j ;Q|Ŷj) ≤ I(VT ŶA\j ;Q|Ŷj) + δT .
4) Additivity on tensor products and more generally superad-
ditivity follows using arguments very similar to the ones for
theK = 2 case [2].
5) Continuity and closure follow from Theorem 2. Convexity
follows from arguments similar to theK = 2 case (see
Theorem 2.4 and 2.5 in [2]).

Our generalization yields an interesting quantity (see The-
orem 4), ∆int

1 (Y1;...;YK) which we call the residual total
correlation. Total correlation,I(Y1;...;YK) is a natural gen-
eralization of the mutual information in the multipartite case
[5] that admits a simple operational interpretation: if parties
in distant labs who share a noisy correlation(pYA) choose to
forgetall correlations between them by locally processingYi in
their labs (e.g., sendingYi through a channel that completely
randomizes it), then total correlation is the minimum increase
of entropy of the local uncorrelated labs. Total correlation is a
monotone [5] as is its residual counterpart. The latter follows
from Theorem 4 and Theorem 5 since∆int

1 is the GK axis
intercept of the boundary ofT(YA) that measures the gap
between total correlation and GK CI (see (4)). Condition (3)in
Definition 3 implies (among other things), the following data
processing inequality for∆int

1 : the residual total correlation
can never increase under any secure mapping from views to
outputs. Analogous to the case forK = 2 [1], we can state
the following result fort = 1, the weakest form oft-privacy.

Proposition 6. For all jointly distributed RVs(YA,VA), if Vi−
Yi − YA\i, then∆int

1 (Y1;...;YK) ≤ ∆int
1 (V1Y1;...;VKYK).

The most important consequence of Theorem 5 is thatT

can be used to derive the impossibility of samplingYA from
XA with ǫ-correctnessand (δ,t)-privacy—unless and until
T(XA) ⊆ T(YA), such reductions are impossible. Further-
more, by virtue of the continuity and convexity ofT, one can
derive an upper bound on the rate of such reductions. We prove
a milder version of the above statement in Corollary 7. An
analogous statement for the rate requires invoking arguments
related to the convexity of the monotone region which we skip.
The details are similar to the argument in [2].

Corollary 7. If m i.i.d copies ofYA can be statistically
securely realized fromn i.i.d copies ofXA, thennT(XA) ⊆
mT(YA), (where multiplication byn refers ton-times repeated
Minkowski sum).

Proof (sketch): Let the RVV r
A encapsulate the view of

the parties at the end of roundr. Let V 0
A = Xn

A and let the
final view beVA. Then the proof follows from Theorem 5 by
noting the following. By Condition (1) and (2) of Definition
3, T(V r

A) ⊇ T(V r−1
A ). By Condition (3),T(Y m

A ) ⊇ T(VA).
Thus, T(Y m

A ) ⊇ T(Xn
A). Finally, by Condition (4), the

required inclusion holds.
Given pQ|YA

∈ PYA , the set of allt-private distributions
that can be sampled from scratch with perfect correctness and
privacy, are characterized by the following conditions:

∆2i = I(YA\i;Q|Yi) = 0, ∀i ∈ A (6)

∆1 = I(Y1;...;YK |Q) =
∑K−1

i=1
I(Y1...Yi;Yi+1|Q) = 0 (7)

t-privacy follows from (6), (7) since∆2i = I(YA\i;Q|Yi) =

0, ∀i ∈ A ⇒ I(YA\T ;Q|YT ) = 0, ∀T ⊂ A, |T | ≤ t,
and∆1 =

∑K−1
i=1 I(Y1...Yi;Yi+1|Q) = 0 ⇒ I(YA\i;Yi|Q) =

0, ∀a ∈ A ⇒ I(YA\T ;YT |Q) = 0, ∀T ⊂ A, |T | ≤ t.
A 2K-dimensional characterization for theK-variate

monotone region,T2K was given in [3] (see Theorem 3 in
[3]), by further decomposing the residual total dependency,
∆1 into K components, viz.,

T
2K(YA) =

{
({Ri1}

K
i1=1,{Ri2}

K
i2=1) : ∃pQ|XA

s.t.∀i ∈ A,

Ri1 ≥ I(YA\i;Yi|Q),Ri2 ≥ I(YA\i;Q|Yi).

For independent setups, bothT2K and T yield the same
characterization of thet-private distributions realizable from
scratch. With non-trivial setups(K > 2), T can give strictly
tighter bounds (thanT2K) on the rates of secureK-party
protocols. This follows from noting that whenever the common
coreQ fails to completely resolve the dependence betweenYA,
any decomposition of∆1 of the form

∑K
i=1I(YA\i;Yi|Q) is

bound to induce some redundant mutual information terms.
Theorem 8 gives sufficient conditions for the statistical case.

Theorem 8. AK-tuple of RVsYA ∼ pYA can be sampled from
scratch withǫ-correctness and (δ,t)-privacy, if there exists a
RVQ, jointly distributed withŶA s.t. the following hold:

TV(pYA ,pŶA
) ≤ ǫ (8)

∑

T ⊂A:|T |≤t

I(ŶA\T ;Q|ŶT ) ≤ δ (9)

I(ŶA\i;Ŷi|Q) = 0, ∀a ∈ A (10)

Proof: Consider the following protocolΠS satisfying
conditions (8)–(10). Party-i samplesUi = (Ŷi,Q) and publicly
discloses the value ofQ, following which, each{party-j}j∈A\i

independently samplesUj by flipping their private coins us-
ing pŶj |Q

conditioned on the receivedQ. Then, from (10)

it follows that Ŷj are independent givenQ which implies
ŶA ∼ pŶA

. Then, given (8),ǫ-correctness follows.
To show (δ,t)-privacy, first note thatH(ŶA\T |ŶT Q)

(a)
= H(ŶA\T |Q)

(b)
= H(ŶA\T |QUT )

(c)
= H(ŶA\T |QUT ŶT ),

where (a) follows from (10), (b) follows from noting that
I(ŶA\T ;UT |Q) = 0, and (c) follows sincêYT is a determin-
istic function of(UT ,Q). Then

I(ŶA\T ;Q|ŶT ) = H(ŶA\T |ŶT )−H(ŶA\T |ŶT Q)

= H(ŶA\T |ŶT )−H(ŶA\T |QUT ŶT )

= I(ŶA\T ;QUT |ŶT )

(d)
=I(ŶA\T ;VT |ŶT )

(e)
≤δ,

where (d) follows since the viewVT comprises of private
randomnessUT andQ, the sole message broadcast by party-i
at the start of the protocol, and (e) follows from (9). Then
from Definition 2, it follows thatΠS is (δ,t)-private.

In [13], monotone region for a channel-type model (K = 2)
was defined under a restriction to the∆21 = 0 plane to derive
upper bounds on the oblivious transfer capacity. Equivalent
generalizations for multiuser channels using pairwise setups
are of interest. Another observation of independent interest is
that recently, the Hypercontractivity (HC) ribbon, a tensorizing
measure of correlation [14], was derived as a dual of the GW
region [15]. Both the HC ribbon and ARI region behave mono-



tonically under local stochastic evolution and are measures of
nonlocal correlation. We leave as an open question as to how
these regions might be related.
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APPENDIX

Proof (sketch) for Theorem 2:The proof for achievability
which is based on a generalized lossy source coding problem
(for K variables) follows similar lines as in [2] and is omitted
in the interest of space. The converse follows by minor
modifications from theK = 2 case [2] and is provided here
for completeness.

n(Ra + ǫ) ≥ H(Ma) ≥ H(Ma|X
n
a ) ≥ H(Wa|X

n
a )

≥ I(Y n
a ;Wa|X

n
a ), Ya , XA\a

(a)
=
∑n

i=1
H(Yai|Xai)−H(Yai|WaY

i−1
ai Xn

a )

≥
∑n

i=1
H(Yai|Xai)−H(Yai|WaY

i−1
ai XaiX

i−1
a )

=
∑n

i=1
I(Yai;Qi|Xai), Qi , WaX

i−1
k+1...X

i−1
1

(b)
= nI(YaJ ;QJ |XaJJ), pJ(i) ,

1
n ,i ∈ {1,...,n},

(c)
= nI(YaJ ;Q|XaJ), Q , (QJ ,J),

where (a) follows from the independence of theK-tuple
XA,i = {Xa,i}a∈A across i. In (b), J ∈ {1,...,n} is a

Fig. 2. Denoting theI-Measure of RVQ by µ∗, the only atom on which
µ∗ is nonvanishing is shown in theI-Diagram for the coordinate∆21 on the
boundary ofT(X1;X2;X3)

uniformly distributed RV independent ofXn
A and (c) follows

from the independence ofJ andXn
A.

I(Xn
1 ;...;X

n
K |Wa) =

∑K−1

k=1
I(Xn

k+1;X
n
1 ...X

n
k |Wa)

=
∑K−1

k=1

∑n

i=1
I(Xk+1,i;X

n
1 ...X

n
k |WaX

i−1
k+1)

≥
∑K−1

k=1

∑n

i=1
I(Xk+1,i;X

n
1,i...X

n
k,i|WaX

i−1
k+1...X

i−1
1 )

= nI(X1J ;...;XKJ |Q).

The converse follows, since(X1J ,...,XKJ) has the same
distribution as(X1,...,XK). The cardinality bound onQ can
be shown using the Carathodory-Fenchel theorem [12, p. 310].
The boundary ofT(XA) is thus made up of(K+1)-tuples of
the form∆m =

(
{∆2a}a∈A,∆1

)
, where∆m is a continuous

function from P̂XA → R
K+1
+ , where P̂XA is compact (i.e.,

closed and bounded). Since the image of a compact set under
a continuous function is compact,{∆m : pQ|XA

∈ P̂XA} is
compact. Moreover, since the increasing hull of a compact set
is closed (see Lemma A.3, [2]),T is closed. Convexity ofT
follows from arguments similar to theK = 2 case [2].

Proof (sketch) for Theorem 4:First note thatT(XA)
intersects each of the(K + 1) axes, since anyK-tuple of
coordinates can be made simultaneously zero by choosing an
appropriate Q. The case forK = 2 was already shown in [2].
For the intercept∆int

21 (X1;X2;X3),

∆int
21 = inf

I(X3X1;Q|X2)=0
I(X1X2;Q|X3)=0

I(X1;X2|Q)+I(X1X2;X3|Q)=0

I(X2X3;Q|X1)

≤ inf
H(Q|X2)=H(Q|X3)=0

I(X1;X2|Q)+I(X1X2;X3|Q)=0

H(Q|X1),

since if H(Q|X2) = H(Q|X3) = 0, then I(X3X1;Q|X2) =
I(X1X2;Q|X3) = 0 and I(X2X3;Q|X1) = H(Q|X1). For
the converse, we want to showLHS ≥ RHS. This holds, since
if I(X3X1;Q|X2) = I(X1X2;Q|X3) = 0, then H(Q|X2)
= H(Q|X3) = 0 andI(X2X3;Q|X1) = H(Q|X1).

In fact, under the given constraints, denoting theI-Measure
of RV Q by µ∗, the only atom on whichµ∗ is nonvan-
ishing for both I(X2X3;Q|X1) and H(Q|X1), is the one
shown in theI-Diagram in Fig. 2. It may be noted that for
K = 2, the proof for the converse is not trivial (see Lemma
A.1, A.2 and the proof of Theorem 2.2 in [2]), since given
I(X1;Q|X2) = I(X1;X2|Q) = 0, it does not trivially follow
that I(X2;Q|X1) ≥ H(Q|X1). However, just as shown above
for K = 3, for K ≥ 3 onwards,µ∗ is vanishing on all but
one atom, which trivially then yields the converse. Similar
arguments hold for all the other coordinates and for any general
K. Finally the use ofmin instead ofinf in the statement of
the theorem is valid sinceT(XA) is closed.
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