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Abstract—In this paper, we investigate PN-sequences with ideal positive integer([7]. To the best of our knowledge wheis a
autocorrelation property and the consequences of this proprty  prime number only Legendre sequendés [8] and sextic residue
on the number of +1s and —1s and run structure of sequences. ,ngiryction[[9] are known. The other known sequences with

We begin by discussing and surveying about the length of PN- . . ] .
sequences with ideal autocorrelation property. From our dscus- d€@! autocorrelation property are; Jacobi symbol [10]rfer

sion and survey we introduce circulant matrix representaton of P(P+ 2), and m-sequences|[1], Gordon-Mills-Welch (GMW)
PN-sequence. Through circulant matrix representation we btain ~ sequence$[11] and miscellaneous instaricés [12]fo2X—1.

system of non-linear equations that lead to ideal autocortation . . .
property. Rewriting PN-sequence and its autocorrelation jpop- Golomb believes that the existence of miscellaneous ex-

erty in {0,1} leads to a definition based on Hamming weight and amples gives a clue for further investigating the truth of hi
Hamming distance and hence we can easily prove some resultsconjecture about Paley-Hadamard difference sets. Three of
on the PN-sequences with ideal autocorrelation property. these examples were founded in 1967 fiot 127, and a few
Index Terms—PN-sequence, ideal autocorrelation property, years later two and three examples were foundhfer255, and
balance property, run structure, circulant matrix representation. n—=511, respectively. In 1998 in [13], the authors constructed
five new classes of binary sequences with ideal autocoioalat
by exhaustive search for=2K—1 for all k < 10, and proposed
I. INTRODUCTION a few more conjectures on the general construction of these

PSEUDO noise sequences (PN-sequences) are codes $gsuences and their corresponding difference sets.
are considered to have correlation and spectrum propertieg,, many applications generalizing the length of PN-

similar to random sequences, although they are determinigqences is critical such as in spectrum fragmented éegnit

tically generated. There are many versions of PN-sequenggsio networks [14,15], where the sequences should have a
with different definitions, approaches and applicatiorsas, \ide range of lengths because of the number of available

maximal-length sequences (m-sequences) [1], Gold codes & h.carriers differ in various conditions. Hence in many ad

zero correlation zone sequences (ZCZ) [3], etc. In generghnceq communications systems, codes with various lengths
m-sequences are among the most important PN-SeqUeNges caded.

since they satisfy randomness postulates stated by Golomb
[4], namely,ideal autocorrelation propertybalance property ~ In generalizing the length of PN-sequences we begin by
and run property In further work by Golomb he makesProposing the circulant matrix representation of PN-seqes.
the following conjecture[]4], which is still considered ope The idea of using circulant matrix representation to carstr
“The only binary sequences satisfying the three randomn@sélesired sequence was first used by Alem and Salehi in
postulates are m-sequencefd]. [16] in order to represent Optical Orthogonal Code (OOC).
The correlation between all non-zero cyclic shifts of an nin [16] the search space is spectrally classified using kintu
sequence is almost zero (ideal autocorrelation propétysp Mmatrix representation of OOCs, followed by a group action
they can be used as sequences with excellent autocorrelafitat introduces an efficient partitioning algorithm.

function. Sequences with ideal autocorrelation propery a e rest of this paper is organized as follows; in Section I,
in one-to-one correspondence with Paley-Hadamard dift&e oicjant matrix representation of PN-sequences is pregos
sets[6]. A general algorithm for constructing these classe |, gection 111, based on circulant matrices representation
sequences for any arbitrary lengitis not known so far. system ofn non-linear equations is proposed that can be

Golomb states another conjecture on the existence of Palg¥zq tq justify ideal autocorrelation property of PN-setpes.
Hadamard difference sets that isnif the length of Paley- 1hen 5 new perspective arises by transferring circulantimat
Hadamard difference sets, is equal t443, then it should ot pn_sequences tg0,1} domain which leads to a better
be either a prime number, or must bekthe product of twin ,nqerstanding of these sequences discussed in Section IV,
primes or it should be in the form off2-1, wherek is & The ryn structure of the desired sequences are investigated

Part of this paper was supported by Iran National Sciencendration 1N Section V. Finally, Section VI, summarizes the results an
(INSF). concludes the paper.
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Il. CIRCULANT MATRIX REPRESENTATION OF and
PN-SEQUENCES

+3 -1 -1
Lets denote a PN-sequence via a codeword= AAl=| -1 43 -1 | =33+ (-&+13) (7)
(X0,X1,-..,X—1). In most technical literature a codeword -1 -1 +3
is said to have ideal autocorrelation property if it has the
following autocorrelation function [4,13] IIl. PROPERTIES OFCIRCULANT MATRICES AND THE
R(D) = n for t=0 modn W CORRESPONDINGNON-LINEAR SYSTEM OF EQUATIONS
AT -1 otherwise The properties of circulant matrices are well known and
_ _ easily derived in[[20]. The matrix in (3) has eigenvectorg] a
whereRy(1) is defined as eigenvalues that are as follows;
n-1 ) .
1 —j2rmm —j2mm(n—-1)
R(1) = . 2 =—(Len ,...e ) 8
X( ) I;XIXIST ( ) Vm \/ﬁ( ) ) 9 ( )

and® is n-module addition. h1
Herein, we recognize that in bipolar codewordsls av- Ay = %Xlesznmﬁ' (9)
erage out each other in order to construct an impulse shape =
autocorrelation function [17]. In general PN-sequenceth wi
wherem=0,1,...,n—1.

ideal autocorrelation property are similar to OOCs, since : . .
. : L . If Up is ann x n matrix that has the eigenvectors as columns
both have cyclic structure with cyclic ideal autocorredati . . . . .
placed in order (Fourier unitary matrix) antdl = diag(Ax.,)

property. The idea of using outer product matrix to deS|gnt en A — UnW;U,:. Also matrices that have this eigenvector

new searching algorithm to obtain OOC codewords was first_, . i
. . . matrix are circulant [21].
proposed in[[18] by Charmchi and Salehi, where the authors -
In order to proceed further we need one more prop-

attempt, successfully, remove the bottleneck of desigaimd X .

generating OOCs with certain code lengths.[In| [16], in ordgty about circulant matrix. Ik = (xo,x1,...,%-1) andy =
to develop search algorithm in designing OOCs the authors 88 Y1+ Yn-1) then

an in depth search for finding appropriate types of matrices AAy = AJA, = UpWU;: (10)
to representing the characteristics of OOCs. In the folhgwi

definitions, the circulant matrix representation of PNtsmtpe  where,W = diag(Ax,Ay,,) andAcAy is also circulant matrix. If
is introduced, as i [16], whereby displaying all possilylelic  y = (Xo,Xn—1,...,X1), then

shifts of a codeword in a circulant matrix.

T _
Definition 1: The circulant matrix representation of every Ay = Ady (11)
codewordx = (Xg, X1, . . - ,>§n71) as a binary PN-sequence € So by [10)
{£1} for 0<I<n-1)is defined as follows
AAY = U WU (12)
X X1 ... Xn-1 and Ay, x Ay, calculated in[(Ib). Froni14) anf{12) we have
Xn—-1 X0 ... Xn-2
A= A(xo,xl,...,xn,l) = : : : : (3)
1 2 ... (13)
Every row of a circulant matrix is a cyclic shift of it's above ) ) ) i
row [IS]. From (1), (2) and (3) it becomes evident that th&iNc@Un is unitary matrix YU* =1) so
condition of ideal autocorrelation for= (xp,Xy,...,%n—1) and % %
. . . . Lt Y =U;(nlh+En)Un =nlp+ U EU
its circulant matrixAy is presented as follows; n (Ml =+ En)Un = Nl + U EnUn
l'IJ - nln == UI'T EnUn (14)

T
Ao =+ En=An-1..-) @ W—nly, (the left hand side of{14)) is obtained as [@l(16), and

where, represents the identity matrix of ordarand if J, (7).

denotes am x n all-ones matrix (every element df is equal  There is a fact about orthogonality of the complex expo-

to 1) then nentials [20]

= (18)

En=—Jn+In. (5) nfei%"“' {n | mod n=0
m=0

0 otherwise
Example 11f x=(—1,—1,41) (m-sequence of length 3) then

So if nis a prime number then we can easily rewrite the

-1 -1 +1 right hand side of[(14) by substituti from
A=l 1 -1 1 6 " [(14) by rgh ()



_j2m ,-2"'"(2>
(Xo+x1€ 10 xe 1T

-1) (1)

Mnhym = 1€ ) (0 X 1e’n Fxn 2 R el
X G 1+2z>qxrcos(—(lfr)) (15)
I>r
n-1
S XR+23 X% —n 0 0
1=0 I1>r
n-1
0 T XR+23 xxco T —r))—n ... 0
W_nl, = 1=0 I>r (16)
0 0 iY»HZercos(”“(lfr))fn
1=0
23 XX 0 0
I>r
) 23 xxcog Z(l —r)) 0
_ I>r (17)
0 0 Zlexrcos(z"” Ya-r)
thus, Example 2 As an example fon =7 equations in[(22) for
di wherei=1,...,6 are as follows
1-n O 0
won 0 1 ..0 20 d1 = X6X5 + XeX4 + XaX3 + XaX2 + X2X1 + X1X0
—nly, =
" oo (20) d = XeX4 + X5X3 + XaXz + XaX1 + X2Xo
O 0 .. 1 d3 = XgX3 + X5X2 + X4X1 + X3X0

which leads to the following system of non-linear equations

3% =

2 X % cog 21 (Il>r—r)) 0.5

(21)

2x|xcos(2"”l( r)):. 0.5

dg = XX + X5X1 + XaXo

ds = XgX1 + X5X0
ds = XeXo (24)
reduce to;
coy &) cog6 x &) dy 0.5
cog(6 x &) cog36x ) ds 0.5

Considering the properties of cosine function, these non-

linear equations are dependent, hence, there is no neel¥éo so

more than(n+ 1)/2 equations as follows

IngIXr N %
y xxcog & (l—r))= 05
I>r . (22)
S >qxrcos( ( -r)= 05

I>r

Considering the following equation

n—-1
(I;XI)Z - |>rXIXr i %Xi

the first equation in[(22) is equivalent tg X = +1.

(23)

Due to the property of cosine function, the first, second, and
third columns and rows of abovex6 matrix are respectively
equal to sixth, fifth and fourth columns and rows. Therefore,
(29) is rewritten as follows

cog %) cog ¥ 87 cog En) dy+ds 0.5

cog ) cog¥) cogif dr+ds | =| 05

cog &) cog 1 1%" cog 1™ 1§” d3+ds 0.5
(26)

Multiplying the inverse of the % 3 matrix on the left of[(Z26);
we obtain the following expressions;

d1 + ds = XeX5 + X5X4 + X4X3 + X3X2 + XoX1 + X1X0 + XeXo = —1

(27)
d2 + ds = XgX4 + X5X3 + X4X2 + X3X1 + X2X0 + XgX1 + XsX0 = —1
d3 + dg = XgX3 + X5X2 + X4X1 + X3X0 + XgX2 + X5X1 + XaXo = —1

Corollary: The ideal autocorrelatlon property leads to Solving for [27), #?) and (7?) in balancen-tuples is suffi-

balance property.

cient for finding sequences with ideal autocorrelation prop

In order to find sequences with ideal autocorrelation pro@n the other hand, this equations are the multiplication of
erty, we need to search balancgtt1}" and find codewords codeword with first, second and third circular shift, respec

satisfying equations il (22).

tively.



_ L TABLE |
Corollary: As expected the sequences with ideal autoCol.sequENCES WITH IDEAL AUTOCORRELATION PROPERTY OF LENGTH

relation property are solutions to the following non-linea LESS THAN31
equation system in balancedtuples of{+1}

[(n] Sequence [ Type |
ot 3 (1,1-1) m-sequence
onlxlel =1 7 (-1-1-11-1,1, 1) m-sequence
B (-1,-1,-1,1,1,-1, 1) m-sequence
(28) |11 (111,1,1-1,1-1, 1,1, 1) Legendre
n-1 ' (1-1-1,1-1,1,1,-1,1, 1, 1) Legendre

> XX yno1 = -1 15 (-1,-1-1,-1,1,1,1,-1,1,1,-1,-1,1,-1, 1) m-sequence|

=0 © 7 (-1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1, 1,1, 1) m-sequence
. . 19 | (1,1,1,1,1,1,1,1,1, 1,1, 1,-1,-1, 1,-1,-1, 1, ) Legendre
Examples of PN-sequences with ideal autocorrelation prap- - | (.1-1,-1,-1, 1,-1, 1,-1, 1, 1, 1, 1,-1-1, 1, 1,-1, 1, 1) Legendre
erty can be find in Table I. 23| C111-11-1,1,1,1-111,-1,-1,1,-11-13k%-1I) | Legendre
(,-11,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,1,1,1,-13%1 -1) | Legendre

IV. TRANSFORMATION TODOMAIN OF {0,1}

In this section, we investigate PN-sequences by transfgerri = il ) ) .
the {+1} to {0,1}, and then discuss the corresponding conveighting 5= that are cyclic shifts of each other with Ham-

: ; 1
sequences. If we define the following mapping; ming distances equals &> amongst each other.
0:{-1,1}"— {0,1}"
(X5 s X s X 1) = B(X0, -+ Xis -+, Xn1) V. RUN STRUCTURE
= (l_xo,,,,vl_xiv.,,, 1_X“) (29) Consider the codeword= (xp,Xa,...,%1—1), & run of length
2 2 2 f is a block of consecutive 1s efls in codeword that is not
Then the autocorrelation function of can be written as contained in a larger block of 1s erls, and is denoted by
follows [13,22]; Ry. Furthermore, leN(R;) to denote the number of the runs
n-1 n-1 Cix of length f. The codewordk has the run property [4], if
R(1) = ijqem = %(—1) et (30) . .
= = =1 | <N(Rf) < [5e - 33
:n_zw(XI@TT(X/)) L2f+1J — ( )— (2f+11 ( )
where w(x') denotes the Hamming weight of, and T' The ideal autocorrelation property and the run property are
represents cyclic shift to the left. Hence known to be independent for more than few decades until in

2009 Cai [[22] by thinking about autocorrelation run by run
(31) instead of symbol by symbol proved that these two properties
are related. The main result of his work can be presented in
thus, every two different rows oy in &21 columns have this relation [22]
different value and ir?;—l columns have the same valuexH

0 fort=0 modn
/ T —
WX &T(X)) = { nsl otherwise

(Xo0,X1,...,%,1) satisfies ideal autocorrelation property, therR«(t) =n—2ty—4 (-1)' (1= i)N(R;,Ry, ... Ry)

the sequencey = (Yo,Y1,---,¥n-1) = (—X0, —X1,---,—Xn_1) fitfot i<t

also satisfies this property. So without loss of generality (34)
n—1

suppose 3 xi = —1. Hence in the columns of every twowherei = f;+ fo+...+ f|, y is the total number of runs

i=0 .
different rows ofA,, the (1,1) pairs appears once more thar?Nd Rei; Ry, ..., Ris represent consecutive runs of lengths

(0,0) pairs. Eventually there a2 pairs of(0,0) in columns "% f2,..., s i.n X , _
of every two different rows of\,. Two special cases that can be obtained easily and would

Example 3:1f x = (-1,-1,-1,1,—1,1,1), then X = give us some understanding of run structureRy@) = n—2y
(1,1,1,0,1,0,0) and TX = (0,1,1,1,0,1,0) have four pairs @"dR(2) =n—4y+4N(Ry). Therefore, sequences with ideal
of (1,0), two pairs of (1,1) and one pair of(0,0) in their autocorrelation property hav&s= number of runs in which
columns. %1 number of them are of length one. With this in mind,

From the above discussion the following results can Bemay be true that the only sequences with ideal autocorre-
obtained. lation property that satisfy[ (B3) are m-sequences (Golemb’
Corollary 1: There is no sequences with ideal autocorrel&Onjecture about m-sequences) but all the sequences et ha
tion property of the lengthkRor 4k+ 1. ideal autocorrelation property are not too far from saiisfy
Corollary 2: The ideal autocorrelation property is given byhe conditions in[(3B3).
Example 4:
n+1 n+1
ARG = —5In+ —5—(h—1n) If n=11 then[[3B) implies that £ N(Ry) <3, 1< N(Ry) <
. (32) 2, and 0< N(Rf) <1 for f =3,...,10. The codeworck =
=) (-1,-1,-1, 1,-1,-1, 1,—1, 1, 1, 1), which has the ideal
corollary 3: A PN-sequence of length with ideal Au- autocorrelation property follows (38) in all cases exceépt3
tocorrelation can be seen as a family of codewof@s1}", (this codeword has two run of length three).

=Ansl nit
410l



VI. CONCLUSION

We investigated PN-sequences with ideal autocorrelation
property and the consequence of this property on the number
of +1s and—1s and run structure of sequences. A new per-
spective was introduced using circulant matrix repregimta
of PN-sequences. We derived a system of non-linear eqation
which led to ideal autocorrelation property from this poaft
view. Rewriting PN-sequence and its autocorrelation prype
in {0,1} led in a definition based on Hamming weight and
Hamming distance and easily proved a number of results on
PN-sequences with ideal autocorrelation property.
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