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Abstract—We are interested in understanding the neural cor- the channel characteristics of the postsynaptic neuron. In
relates of attentional processes using first principles. He we other words, we conceptualize the postsynaptic neurons as
apply a recently developed first principles approach that ues 5 gynamically configurable communication channel through

transmitted information in bits per joule to quantify the en ergy hich inf tion i cated Vi int ike-intd
efficiency of information transmission for an inter-spikednterval ~WNICN INformation 1S communicated via an inter-spike-m

(IS1) code that can be modulated by means of the synchrony in (ISI) code. We adopt the Berger-Levy theory of neural commu-
the presynaptic population. We simulate a single compartmet  nication, which was recently proposed [12] and goes beyond

conductance-based model neuron driven by excitatory and i jnformation maximization approaches by postulating the-ma
hibitory spikes from a presynaptic population, where the rade ni-ation of capacity per unit cost (measured in bits pefgou

and synchrony in the presynaptic excitatory population may - . . L
vary independently from the average rate. We find that for bpj) as the biologically relevant objective for neurons][12

a fixed input rate, the ISI distribution of the post synaptic [13]. In that line, the energy-efficiency has been suggefsted
neuron depends on the level of synchrony and is well-descritdl  retina [14] and cortex [15], but normative modeling studies
by a Gamma distribution for synchrony levels less than 50%. within the Berger-Levy theory remain rare [13[, [15]-17].
For levels of synchrony between 15% and 50% (restricted for | ihis paper, we ask the question "What ié tﬁe-be_st input

technical reasons), we compute the optimum input distribuibn . . Lo . L
that maximizes the mutual information per unit energy. This distribution (over inter-spike-intervalls), which the rimize

optimum distribution shows that an increased level of synctony, ~Mutual information per unit cost in the said population of

as it has been reported experimentally in attention-demanig neurons and how this distribution is related to the level of
conditions, reduces the mode of the input distribution and be  synchrony?”

excitability threshold of post synaptic neuron. This faciltates a  ~ Thg rgle of synchrony in attention has been studied experi-
more energy efficient neuronal communication. . : :

Index Terms—Neuronal communication, Neuronal synchrony, mentally, €.9.in 7], but here_ we apply mathematical madgli .
mutual information per unit cost, energy efficiency. and simulation. More specifically, we model a postsynaptic
neuron based on the Hodgkin-Huxley modEel][18]. Then,
we use an information theoretic cost function to derive the
optimal input distribution. We vary independently the rate

Selective attention is affecting early stages of sensony prand synchrony in the presynaptic excitatory populatiorhef t
cessing([1] but the details of the underlying neuronal mecheonductance-based model neuron and characterize its-input
nisms are not fully uncovered yet. One theory proposes thaitput relation using simulations. We consider the rates of
the neural activity that represents the stimuli or eventbdo excitatory neurons as representing the input and the ISI of
attended is selected through modification of its synchri@hy [ the postsynaptic neuron as the output. The probability of
Detailed network modeling studies![3].][4] built upon thehe single neuron’s output (an ISI), conditioned on the tnpu
idea that synchronous firing of neurons greatly affects tiighe rate within the population), is determined experiratint
propagation of activity in network models|[5]./[6] and couldas a function of the synchrony in the presynaptic excitatory
dynamically modulate the signal flow![7]. population and fitted with parametric distributions.

The framework of information theory [8] has been suc- We find that this probability distribution is well-describe
cessfully applied to early sensory coding in theoretical atby a Gamma distribution for synchrony levels less than
modeling studies[[9],[[10], and the mutual information haS0%, which is normally reported in experimental measure-
been used as a measure to determine the information contaents [19]. For levels of synchrony between 15% and 50%
of experimentally recorded responses in sensory systefi}s [Xrestricted for technical reasons) we compute the optimum
We are interested in understanding the role of synchrony imput distribution that maximizes the mutual informatioer p
sensory information processing using a normative modelin@it cost, which sheds light on how synchrony could affect
approach. the neuronal communication energy expenditure.

More specifically, we adopt the notion that synchrony may The remainder of this paper is organized as follows. In
have a modulatory role in neuronal signal processing [Bections Il and lll, the modeling of neuronal synchrony and
and consider the synchrony within a presynaptic populatidime neuronal communication channel are described. In@ecti
of neurons as an independent control parameter that adjustsve find the optimized input distribution for energy eféait

I. INTRODUCTION
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communications. Finally, in Section V, we conclude the papdalanced regime: First, we define a constant input cutfént
which in the absence of active ionic currents ($ée (1)) leads
an asymptotic voltage of the model neuron’s RC circuit close
Our model is based on a single excitatory neuron whigh the firing threshold of the full HH model neuron. Then, we
is driven by a homogeneous population of excitatory angt this current equal to the summation of the means of all
inhibitory neurons. We modeled the postsynaptic neuron gfesynaptic excitatory and inhibitory current&’{ and J:*),
a Hodgkin-Huxley-type (HH) model [18] with membrang. e. j** = Js5 4 J25. We then find the desired parameter
potentialV. Unlike the integrate-and-fire models, this biophysyalues of the corresponding synaptic input currents. This
ical model can generate spikes intrinsically by the follogvi results in constant synaptic conductance values (‘weighés
equation synapse, that are independent of the synchronization dencel
d the firing rate of individual presynaptic neurons. Withinrou
ConyV (1) = =g (V () = EL)=Y  Jint () +Inet(t); (1) derivation, we make two biologically plausible assumpsion
int (i) the total firing rate of all presynaptic excitatory nenso
where J;,,.(t) denotes the active ionic current with Hodgkinis equal to that of inhibitory neurons, and (iig: = 2J°%,
Huxley type kinetics,J,..:(t) is the synaptic current of thei. e. without inhibition the excitatory drive would push the
postsynaptic neurorny;, and E; are the leak conductancemembrane potential way above the firing threshold. Then, we
(9 = 0.05 %) and the reversal potential of the leakix the firing rate of the presynaptic inhibitory neurons (to
current & = —65 mV), C,, is the membrane capacitancel25 sp/s) and simulate the full HH-model for different rates
(1 uF/ch), andt is time. Each presynaptic neuron fires anf the presynaptic excitatory neurons, as well as different
independent Poisson spike train. We do not model the meaynchronization levels. No additional background inputs o
brane potential of the presynaptic neurons, and consi@ér thsources of noise were modeled or simulated.

binary spiking activities; these spikes activate the pmegyic ~ We consider the level of the synchronization in the cell
conductances, hence the synaptic input currents to theypospopulation as a controlling parameter for the neuronal com-
naptic neuron are produced. The spike trains of the presignapnunication channel. In this line, an optimization problesn i

neurons belonging to a subpopulation (excitatory/inbiylf  defined to find the optimum input distribution of the postsy-
are generated with the same firing rate. To induce a contioligaptic neuron to maximize the mutual information per unit

level of synchronicity between the presynaptic neurons, w@st for the neuronal communication channel.

model the occurrence of the synchronous events as another

Poisson process. That generates an additional spike tithin w

the rate determined by the synchronization rate between th. M ODELING NEURONAL COMMUNICATION CHANNEL

presynaptic neurons. Here, we consider only synchrooizati

in the excitatory subpopulation. We control the synchritpic  We consider the postsynaptic neuron as a communication

in each subpopulation independent from its mean spikimpannel. The input of the communication channel are exci-

activity. Therefore, in order to keep the mean activity cans tatory and inhibitory postsynaptic potential (EPSP andAPS

between, e. g., the spiking activities in i) the absenced{Jol intensities of neurons denoted by, and \;,. The output

and ii) presence ('new’) of the synchronous events, thedfirirof the channel is the inter-spike interval (1SI) of postgytha

rate of each presynaptic neuron needs to be lowered in theuron. The conditional probability of the output for given

case of synchronous spikes added to all presynaptic exgitatvalues of \.,, and \;, is controlled by level of synchrony

neurons:A”e? = \old _ gxsvn where A9 is the firing rate within the excitatory population (See Figl 1). We model

in the absence of synchronous eventg’™ is the rate of the conditional probability of ISISf (¢ Az, Ain,s), USING

synchronous events, afd S < 1 denotes the fraction of the simulations of the Hodgkin-Huxley model. The channel is

presynaptic neurons that are randomly chosen to parteipat assumed memory less and time invariant, i. e.

the synchronous events. This redefinition of the firing rate i

applied to all neurons of excitatory subpopulation. Fipahe I, T"‘g\”’l’“'/’\A'-’Iv""Ai"’)i“"Ai"v""f (1, st

synchronized spike train can now be ’inserted’ to the new ye2 Ly ey Aem,my A, 1y e inn: 8) = 2)

(lower frequency) spike trains. In brief, an increase in the IT friace Aun (Bil ez ey -os Ainke)-

synchronization level can, in principle, yield larger fluations k=1

in the synaptic input currents, and thus in the postsynapfibe synchrony level is considered as a parameter of the

membrane potential. channel. We fix\;,, = 125 Hz and only vary)\.... For brevity
Balanced regimes are thought to play a crucial role M€ dropXi, in f (| Aex, Ain, s) and denote it byf (¢] Az, s).

the transmission of information in cortical neurons in vivo The desired conditional probability is estimated using our

For instance, recently it has been reported that these esgirmimulation results. Fig.2a and Higl2b show the normalized

can potentially promote both coding efficiency and enerdystogram of I1SI for different values of synchrony level. As

efficiency [20]. Accordingly, we also model a balanced attiv depicted in Fig.R, the Gamma distribution fits well to the

regime of the excitatory and inhibitory neurons. We paramebtained conditional ISI histograms, ferless than 50% and

terize the model in the following way to approximate such satisfies the Kolmogorov-Smirnov test with 5% significance

II. MODELING NEURONAL SYNCHRONIZATION



Pre-Synaptic Neuron 1

Ypikes | Axon Terminal Synapse
I i 1 I Diffusion . .
\ Excitatory Neuro -Transmitter
Inhibitory Neuro -Transmiter .@

Dendrite | |

Pre-Synapti(l Neuror‘ 2

Ypikes | Axon Terminal Synapse

Post-Synaptic Neuron

Diffusion

\/‘\_,

Spikes

I
I
I
Dendrite |
I
|
Synchronized Spikes
I I
I I

Pre—Synaptij: Neur0||1j

Ypikes | Axon Terminal Synapse
Diffusion
Lﬁ—T—L NG

Dendrite

Dendrite
Fig. 1: lllustration of the comrlnunication channel modeleTéxcitatory and inhibitory neurons in the presynaptic patan are firing spikes
with rates\., and \;,, respectively. These rates are encoded into I1SIs sentghrthe channel (the set of synapses onto the postsynaptic
neuron). Some spikes of the excitatory neurons are synidaeaiiblue arrows). Like any other spike of excitatory nesrchese synchronized
spikes define ISIs, which encode,. For different levels of synchronization, and potentiaijferent levels of inhibition, the channel itself

changes its characteristics as reflected by different tiondi distributions, i.e.f (t| )\ez,)\(.l) s(”) #f (t| Aez, A2 3(2)) for the same

wmn mn

Aea: but different inhibitory rategy), and A and/or synchronicities) and s>, Within this setting) the\., is communicated through
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Fig. 2: Normalized histogram of ISI duration of simulatedadand fitted Gamma distribution for different level of syrahization and
Aex = 36.0991 Hz.

level. Hence, we have d® (s, Xez) (d™ (s, \er)) and are given by
boqm ) o4 tMgam —1e—bgamt b _ () (b)
Frin s(t) Aeg, ) = Laam) o € u) @) d® (s, M) = A" (5)Aew + ) (5) 4)
gam
, , A (s, Aer) = dS™ ()A2, + d\™ (8) Aew + 5™ 5
wherebg,,, andm, are the scaling and shaping parameters (s ) 2 (A + () +dy(s) )
of Gamma distribution which are obtained from maximurwhere dEb) (s), i € {1,2} and dz(.m) (s), i € {1,2,3} are
likelihood (ML) estimation. We fit polynomial functions to coefficients of linear and quadratic functions. The choite o
the scaling and shaping parameters which are denoted thgse function types are due to our experiments for the best
fit to the shaping and scaling parameters. [Fig.3 shows the
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Fig. 3: Fits to the dependencies of the Gamma function passen the input rate. A. Quadratic fits (dash-lineyng... (Markers)(as
obtained from maximum likelihood fits to the simulated ddta)s = 0%...50%. B. Linear fit (dash-line) thy... (Markers) fors = 0%...50%.

dependencies of the parameters of the Gamma distribut&ymchrony level as control parameters of the channel. A
on the input rate. Fig.Ba and Fig.13b show the shaping asitnpler development in the case of a leaky integrate and
scaling parameters of fitted gamma distribution to data, ifire model neuron is available in_[12] without considering

Mgam aNdby,.,, and fitted polynomial functions to the shapingynchrony and inhibitory firing rate.

i jdm) (b) . . . .
and scaling parameters, i€ (s, \,.) andd® (s, \c.,). We In this Section, we determine an equivalent problem for

Zound t?atmg?m 'S We_” fit f?y_ a quadratic function. To fit solving the optimization problem in[](6), which is eas-
gam @ lin€ar function is sufficient. ier to solve than the original problem. We can find a

The synchrony level in real neurons is probably mucfinseq form expression for optimization problem [ (6) with

less than 50%[[19]. Our experiments reveal that the GE /. s(t| Mex, 5) in @) and a range of synchronicity between
distribution also fits well with the normalized histogram of me=*: .

5% to 50%. Briefly, in this case, the equivalent problem

ISI over all range of synchrony. However, we opted for th Lo
Gamma distribl?tion in)s/tead s)i/nce it allows forpan eﬁicierf\fquces to_flr_ldlng the CDF of 1Sls, denoted Ey—‘s (1),
) ' hich maximizesh (T|s) or the ISI entropy, subject to the
solution of problem[(6) as we shall see below. constraints. Upon obtaining’rs (¢|s) for feasible values
IV. OPTIMIZED INPUT DISTRIBUTION FORENERGY of the constraints in[{6), we then seek the corresponding
EFFICIENT COMMUNICATIONS optimized F'x_, |s (Xez| s). In line with [12] using [(3) in [(6)
We seek the optimum distribution of,, for maximizing Z(rz];()j(; y)\:;pliﬂltltr;?mL: gor:\ ;ie (f#qgigoge?gi(ljs dalljrz tgr:i?tee%”?(l)r()f

the average mutual information given a synchronicity Iev%lrevity) the optimization problem ir[{6) can be simplified
per unit cost in neurons. The associated optimization prabl to the f(')IIowing optimization problem

is described as follows

C— I max h(T|s), 8a
Tvp; = FAEII‘I;?);%\S) E(e(t))’ ©6) Foris(tls) (T]s) (8a)

st Fn, 15 (Aex|8) = Pr(Acx < Aex| S = 5), s.t.
alsoe(t) = Co + C1E(T), is the energy expenditure function Fris (t]s) =Pr(T <t|s), (8b)
of neuron during the ISI of duratiod’, Cy and C; are E(T|s) = go, (8c)
constants[[12]. Moreover;y s (Aez| s) denotes the cumu- E (log,T|s) = g1, (8d)

lative distribution function (CDF) of., for given value ofs.

In (), I is the average mutual information for given value ofthere the constraint o’ (7’| s) comes from the expression
synchrony level, and is given by for the energy, which is of the form (T') = Cy + C1T.

1 The constraint from¥ (log,T'| s) comes from the expression
I=— lim I(Aepa, o Aexn;Th,., | S), (7) for the mutual information between two successive [SI [12].
N=reo The optimized distribution forf s (t| s) is a Gamma distri-

where, Ac, i, Ti,i € {1,..,N} denote the EPSP intensitypution [21] as
and ISI, respectively, andv denotes the number of spikes Gl o—bt
of postsynaptic neuron during tim&. For solving the op- fris(t]s) = —=——u(t). 9)
timization problem[{(6), we model a communication channel (%)
(inputs are firing rates, outputs are 1SIs) by considerirg thvhere 8 and x are shaping and scaling parameters of the
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Fig. 4: Optimum distribution off,_ s (Aez|s) for optimization
problem [) with different values of synchrony level.

V. CONCLUDING REMARKS

We investigated the role of neuronal synchrony from a
communication-theoretic point of view by modeling a neuros
as a communication channel with synchrony as the chan-
nel’s control parameter. The excitatory post synaptic iptigé
(EPSP) intensity and the inter spike interval (ISl) are tiygut
and the output of the channel model. Our simulation results
showed that the conditional probability of the neuronal eom
munication channel is well fitted with the Gamma distribatio
for synchrony levels less than 50%. The optimum distributio
of A\, for a given value of is analytically obtained and shows
that increasing the level of synchrony reduces the mode of
EPSP intensity distribution and the threshold of excitatio

Synchrony of presynaptic neurons is observed during the
attention process. Our results now present another irgerpr

Gamma distribution of the ISIs obtained from the constgintion of this experimental observation: Instead of synchaion

g1 = /B and gy = ¥ (k) — log (5), wherelog () and) ()
are the natural logarithm and digma functions! [22].

The marginal ISI distribution is obtained by marginalizing

over the input rate,

fT\S(tl S) = /dAemfACzLS' ()\ew| S)fT\ACz.,S (t| )\ewa S) .
(10)

Based on this formula, we can compuftg | s( Aez| s) from
solving the following integral equation

T|S AeI|S Aex

fris(tls)= [ f | 5) %

(d(b)(&)\ _))d(m)(s )\ex)td(m)(S,Acz)fle—d(b)(s,)\ex)t
r(d™) (s,Aex))

u(t),

w(t)dAey

_ 6Nt~7187~t
T T
(11)

The optimum distribution of)\., is obtained by following

theorem.

Theorem 1 The optimum distribution of EPSP intensity
for a given synchrony levek, in the context of probleni{6),

is given by

e ) r(4g" )
= prdy” (s) F(R)F(dgm)(s)fn)

d(()m)(s)—n'—l

fACI\S (/\e;n| S)

(Aead” () =B+ ()
(Read” ()45 ()

u(Aead” (5) = 8+ dff) (5))

whereT (.) denotes the Gamma function.

(12)

a§™ ()

Proof. See Appendix A.

In Fig.[4, the results of the optimization problem is shown

for s = 30%, 40% and 50% withF (t| s) = 100msec and
E(log(T)| s) =

reduces the minimum value of, with non-zero probab|I|ty

—3.51. By increasing the synchrony level, the
mode of EPSP intensity.,, corresponding to the peak valuewhere, d, (s) =
of fa..1s (Aez| 8), is reduced. Moreover, higher synchronicity

being the carrier of information, it may primarily contrdlet
informatign fleWHBNa) EREIRIHGRM WEYREM 1

By replacingd® (s, A.,) andd™ (s, A, ) from @) and[(5)
in (I0), we have

TfAemws(/\
0

b b
R CRONE IO

eo| ) 198" (AL A () hewtdg™ ()1 3¢

(13)

(d<b> () New+d? (s)) a§™ ()22, +a{™ () xeq+af™ (2)
1 er 0

D(dS™ ()22, +d{™ (5)Aea+d5™ (5))
5Nt~71875ted0b (s)t

= T(x)

By a change of variable = d(b) (8) Az, We have

(b)( ) ffAemIS < (b)( )‘S> e*'Utx

2
(m) v (m) v
dg (S)( ) ) (S)( )
(v+d? () ™ () d" ()

P
(m) v (m v (m)
F<d2 (5)(dgb)(s)> +d (5)<dgb)(s)>+do (S)>
2

d;m)(s) (bi)] +d§m) (S) (bi)} +d[()m)(s)—l
dy (s) dy (s) d'U

dAex

>+d§f”)(s)

(14)

ntmflefﬁted(()b)(s)t

= ) u(t).
By simplification, we have

)d’z ()02 +d’ 1 ()vtdi™ ()

(v+dy” (s)

r (d’g(s)u2+d’1 (s)v+dS™ (s))
B Bmtm—le—ﬂtedéb) (s)t
- T'(k)

2 ()02 +d'1 ()v+dS™ (s)-1 g,

u(t),

i (15)
A" () /(47 () L di(s) =

) ®) () ;
(s) (dl (s)) . A closed form solution to the above

This shows that according to the optimized energy efflCIGFﬂtegral equation is |IIu5|ve Our simulation results ($ég.[5)

strategy in [(6), enhanced synchrony reduces the excitatigiows that fos > 15%, d

threshold of the post synaptic neuron.

™) (s) andd{™ (s) are almost zero.
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Hence, we can writd (15) as

1 v —vt
0 ffAem\S <—d<b)(s) s) eVt
™) (m)
(o4 () 73 -

r(d5™ (s))

(b)
R leBtgdy ) ()t
p=£21t ¢ _€°%

d T'(k)

u(t

e

Noting definition of Laplace transform, we have

( )¢
S> (o4 ()"

(70)
Using inverse Laplace transform, we have

(m)
d (s)
(erd(()b)(s)) 0
S =

Ty heels ( d” (s) r(d5™ ()

g (v B+ d(()b) (S))dé’”(s)w—lu (v sy d((Jb) (s)) |

)td[()n)(s)—l

rormill RESIE < D)

ﬁmtmflefﬂted[()b) ()t
= T(r) u

(17)

(18)
hence, we obtain
"q® (d§™ (s))
fAmIS ( (b)( ) B ( ) F(K)F(dém)(s)fli)
al™ (s)—r—1 (29)
vfﬁer(b)(s) o ()
( 0 ) U (v -8+ dgb) (5)) .
(erd(()b)(s)) 0
Replacingv = dgb) (8) Aez, We have
r d“")(s))
Aez| 8) = "d(b) s (O—x
fAez\S( | ) B 1 ( )F(n)F(dém)(s)fn)
(m) .
(Aeed® (5)-pta ()0 7 (20)
Gm)
(Amdﬁb)(s)ergb)(s))d“ (s)
uQrerdy” (s) = B+ dy” (5))
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