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Abstract—We are interested in understanding the neural cor-
relates of attentional processes using first principles. Here we
apply a recently developed first principles approach that uses
transmitted information in bits per joule to quantify the en ergy
efficiency of information transmission for an inter-spike-interval
(ISI) code that can be modulated by means of the synchrony in
the presynaptic population. We simulate a single compartment
conductance-based model neuron driven by excitatory and in-
hibitory spikes from a presynaptic population, where the rate
and synchrony in the presynaptic excitatory population may
vary independently from the average rate. We find that for
a fixed input rate, the ISI distribution of the post synaptic
neuron depends on the level of synchrony and is well-described
by a Gamma distribution for synchrony levels less than 50%.
For levels of synchrony between 15% and 50% (restricted for
technical reasons), we compute the optimum input distribution
that maximizes the mutual information per unit energy. This
optimum distribution shows that an increased level of synchrony,
as it has been reported experimentally in attention-demanding
conditions, reduces the mode of the input distribution and the
excitability threshold of post synaptic neuron. This facilitates a
more energy efficient neuronal communication.

Index Terms—Neuronal communication, Neuronal synchrony,
mutual information per unit cost, energy efficiency.

I. I NTRODUCTION

Selective attention is affecting early stages of sensory pro-
cessing [1] but the details of the underlying neuronal mecha-
nisms are not fully uncovered yet. One theory proposes that
the neural activity that represents the stimuli or events tobe
attended is selected through modification of its synchrony [2].
Detailed network modeling studies [3], [4] built upon the
idea that synchronous firing of neurons greatly affects the
propagation of activity in network models [5], [6] and could
dynamically modulate the signal flow [7].

The framework of information theory [8] has been suc-
cessfully applied to early sensory coding in theoretical and
modeling studies [9], [10], and the mutual information has
been used as a measure to determine the information content
of experimentally recorded responses in sensory systems [11].
We are interested in understanding the role of synchrony in
sensory information processing using a normative modeling
approach.

More specifically, we adopt the notion that synchrony may
have a modulatory role in neuronal signal processing [7]
and consider the synchrony within a presynaptic population
of neurons as an independent control parameter that adjusts

the channel characteristics of the postsynaptic neuron. In
other words, we conceptualize the postsynaptic neurons as
a dynamically configurable communication channel through
which information is communicated via an inter-spike-interval
(ISI) code. We adopt the Berger-Levy theory of neural commu-
nication, which was recently proposed [12] and goes beyond
information maximization approaches by postulating the max-
imization of capacity per unit cost (measured in bits per joule,
bpj) as the biologically relevant objective for neurons [12],
[13]. In that line, the energy-efficiency has been suggestedfor
retina [14] and cortex [15], but normative modeling studies
within the Berger-Levy theory remain rare [13], [15]–[17].
In this paper, we ask the question ”What is the best input
distribution (over inter-spike-intervalls), which the maximize
mutual information per unit cost in the said population of
neurons and how this distribution is related to the level of
synchrony?”

The role of synchrony in attention has been studied experi-
mentally, e. g. in [7], but here we apply mathematical modeling
and simulation. More specifically, we model a postsynaptic
neuron based on the Hodgkin-Huxley model [18]. Then,
we use an information theoretic cost function to derive the
optimal input distribution. We vary independently the rate
and synchrony in the presynaptic excitatory population of the
conductance-based model neuron and characterize its input-
output relation using simulations. We consider the rates of
excitatory neurons as representing the input and the ISI of
the postsynaptic neuron as the output. The probability of
the single neuron’s output (an ISI), conditioned on the input
(the rate within the population), is determined experimentally
as a function of the synchrony in the presynaptic excitatory
population and fitted with parametric distributions.

We find that this probability distribution is well-described
by a Gamma distribution for synchrony levels less than
50%, which is normally reported in experimental measure-
ments [19]. For levels of synchrony between 15% and 50%
(restricted for technical reasons) we compute the optimum
input distribution that maximizes the mutual information per
unit cost, which sheds light on how synchrony could affect
the neuronal communication energy expenditure.

The remainder of this paper is organized as follows. In
Sections II and III, the modeling of neuronal synchrony and
the neuronal communication channel are described. In Section
IV, we find the optimized input distribution for energy efficient
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communications. Finally, in Section V, we conclude the paper.

II. M ODELING NEURONAL SYNCHRONIZATION

Our model is based on a single excitatory neuron which
is driven by a homogeneous population of excitatory and
inhibitory neurons. We modeled the postsynaptic neuron as
a Hodgkin-Huxley-type (HH) model [18] with membrane
potentialV . Unlike the integrate-and-fire models, this biophys-
ical model can generate spikes intrinsically by the following
equation

Cm

d

dt
V (t) = −gL (V (t)− EL)−

∑

int

Jint (t)+Jnet(t), (1)

whereJint(t) denotes the active ionic current with Hodgkin-
Huxley type kinetics,Jnet(t) is the synaptic current of the
postsynaptic neuron,gL and EL are the leak conductance
(gL = 0.05 mS

cm2 ) and the reversal potential of the leak
current (EL = −65 mV), Cm is the membrane capacitance
(1 µF

/

cm2), andt is time. Each presynaptic neuron fires an
independent Poisson spike train. We do not model the mem-
brane potential of the presynaptic neurons, and consider their
binary spiking activities; these spikes activate the presynaptic
conductances, hence the synaptic input currents to the postsy-
naptic neuron are produced. The spike trains of the presynaptic
neurons belonging to a subpopulation (excitatory/inhibitory)
are generated with the same firing rate. To induce a controlled
level of synchronicity between the presynaptic neurons, we
model the occurrence of the synchronous events as another
Poisson process. That generates an additional spike train with
the rate determined by the synchronization rate between the
presynaptic neurons. Here, we consider only synchronization
in the excitatory subpopulation. We control the synchronicity
in each subpopulation independent from its mean spiking
activity. Therefore, in order to keep the mean activity constant
between, e. g., the spiking activities in i) the absence (’old’)
and ii) presence (’new’) of the synchronous events, the firing
rate of each presynaptic neuron needs to be lowered in the
case of synchronous spikes added to all presynaptic excitatory
neurons:λnewex = λoldex − Sλsynex , whereλoldex is the firing rate
in the absence of synchronous events,λsynex is the rate of
synchronous events, and0 < S < 1 denotes the fraction of the
presynaptic neurons that are randomly chosen to participate in
the synchronous events. This redefinition of the firing rate is
applied to all neurons of excitatory subpopulation. Finally, the
synchronized spike train can now be ’inserted’ to the new
(lower frequency) spike trains. In brief, an increase in the
synchronization level can, in principle, yield larger fluctuations
in the synaptic input currents, and thus in the postsynaptic
membrane potential.

Balanced regimes are thought to play a crucial role in
the transmission of information in cortical neurons in vivo.
For instance, recently it has been reported that these regimes
can potentially promote both coding efficiency and energy
efficiency [20]. Accordingly, we also model a balanced activity
regime of the excitatory and inhibitory neurons. We parame-
terize the model in the following way to approximate such a

balanced regime: First, we define a constant input currentJss,
which in the absence of active ionic currents (see (1)) leadsto
an asymptotic voltage of the model neuron’s RC circuit close
to the firing threshold of the full HH model neuron. Then, we
set this current equal to the summation of the means of all
presynaptic excitatory and inhibitory currents (Jss

ex and Jss
in ),

i. e. Jss = Jss
ex + Jss

in . We then find the desired parameter
values of the corresponding synaptic input currents. This
results in constant synaptic conductance values (’weights’) per
synapse, that are independent of the synchronization leveland
the firing rate of individual presynaptic neurons. Within our
derivation, we make two biologically plausible assumptions:
(i) the total firing rate of all presynaptic excitatory neurons
is equal to that of inhibitory neurons, and (ii)Jss

ex = 2Jss,
i. e. without inhibition the excitatory drive would push the
membrane potential way above the firing threshold. Then, we
fix the firing rate of the presynaptic inhibitory neurons (to
125 sp/s) and simulate the full HH-model for different rates
of the presynaptic excitatory neurons, as well as different
synchronization levels. No additional background inputs or
sources of noise were modeled or simulated.

We consider the level of the synchronization in the cell
population as a controlling parameter for the neuronal com-
munication channel. In this line, an optimization problem is
defined to find the optimum input distribution of the postsy-
naptic neuron to maximize the mutual information per unit
cost for the neuronal communication channel.

III. M ODELING NEURONAL COMMUNICATION CHANNEL

We consider the postsynaptic neuron as a communication
channel. The input of the communication channel are exci-
tatory and inhibitory postsynaptic potential (EPSP and IPSP)
intensities of neurons denoted byλex and λin. The output
of the channel is the inter-spike interval (ISI) of postsynaptic
neuron. The conditional probability of the output for given
values ofλex and λin is controlled by level of synchrony
within the excitatory population (See Fig. 1). We model
the conditional probability of ISIs,f ( t|λex, λin, s), using
simulations of the Hodgkin-Huxley model. The channel is
assumed memory less and time invariant, i. e.

fT1,...,Tn|Λex,1,...,Λex,n,Λin,1...,Λin,n,S ( t1, ..., tn|
λex,1, ..., λex,n, λin,1, ..., λin,n, s) =
n
∏

k=1

fT |Λex,Λin
( ti|λex,k, ..., λin,k).

(2)

The synchrony level is considered as a parameter of the
channel. We fixλin = 125 Hz and only varyλex. For brevity
we dropλin in f ( t|λex, λin, s) and denote it byf ( t|λex, s).

The desired conditional probability is estimated using our
simulation results. Fig.2a and Fig.2b show the normalized
histogram of ISI for different values of synchrony level. As
depicted in Fig.2, the Gamma distribution fits well to the
obtained conditional ISI histograms, fors less than 50% and
satisfies the Kolmogorov-Smirnov test with 5% significance
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Fig. 1: Illustration of the communication channel model. The excitatory and inhibitory neurons in the presynaptic population are firing spikes
with ratesλex andλin, respectively. These rates are encoded into ISIs sent through the channel (the set of synapses onto the postsynaptic
neuron). Some spikes of the excitatory neurons are synchronized (blue arrows). Like any other spike of excitatory neurons, these synchronized
spikes define ISIs, which encodeλex. For different levels of synchronization, and potentiallydifferent levels of inhibition, the channel itself
changes its characteristics as reflected by different conditional distributions, i.e.,f

(

t|λex, λ
(1)
in , s(1)

)

6= f
(

t|λex, λ
(2)
in , s(2)

)

for the same

λex but different inhibitory ratesλ(1)
in andλ

(2)
in and/or synchronicitiess(1) and s(2). Within this setting, theλex is communicated through

the channel whileλin ands control the channel characteristics.
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Fig. 2: Normalized histogram of ISI duration of simulated data and fitted Gamma distribution for different level of synchronization and
λex = 36.0991 Hz.
level. Hence, we have

fT |Λex,S( t|λex, s) =
(bgam)

mgam tmgam−1e−bgamt

Γ (mgam)
u(t) (3)

wherebgam andmgam are the scaling and shaping parameters
of Gamma distribution which are obtained from maximum
likelihood (ML) estimation. We fit polynomial functions to
the scaling and shaping parameters which are denoted by

d(b) (s, λex) (d(m) (s, λex)) and are given by

d(b)(s, λex) = d
(b)
1 (s)λex + d

(b)
0 (s) (4)

d(m)(s, λex) = d
(m)
2 (s)λ2ex + d

(m)
1 (s)λex + d

(m)
0 (s) (5)

where d(b)i (s), i ∈ {1, 2} and d(m)
i (s), i ∈ {1, 2, 3} are

coefficients of linear and quadratic functions. The choice of
these function types are due to our experiments for the best
fit to the shaping and scaling parameters. Fig.3 shows the
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Fig. 3: Fits to the dependencies of the Gamma function parameters on the input rate. A. Quadratic fits (dash-line) tomgam (Markers)(as
obtained from maximum likelihood fits to the simulated data)for s = 0%...50%. B. Linear fit (dash-line) tobgam (Markers) fors = 0%...50%.

dependencies of the parameters of the Gamma distribution
on the input rate. Fig.3a and Fig. 3b show the shaping and
scaling parameters of fitted gamma distribution to data, i.e.
mgam andbgam, and fitted polynomial functions to the shaping
and scaling parameters, i.e.d(m)(s, λex) andd(b)(s, λex). We
found thatmgam is well fit by a quadratic function. To fit
bgam a linear function is sufficient.

The synchrony level in real neurons is probably much
less than 50% [19]. Our experiments reveal that the GEV
distribution also fits well with the normalized histogram of
ISI over all range of synchrony. However, we opted for the
Gamma distribution instead, since it allows for an efficient
solution of problem (6) as we shall see below.

IV. OPTIMIZED INPUT DISTRIBUTION FORENERGY

EFFICIENT COMMUNICATIONS

We seek the optimum distribution ofλex for maximizing
the average mutual information given a synchronicity level
per unit cost in neurons. The associated optimization problem
is described as follows

Ibpj = max
FΛex|S(λex|s)

I
E(e(t)) ,

s.t.FΛex|S (λex| s) = Pr (Λex < λex|S = s) ,
(6)

alsoe(t) = C0 +C1E(T ), is the energy expenditure function
of neuron during the ISI of durationT , C0 and C1 are
constants [12]. Moreover,FΛex|S (λex| s) denotes the cumu-
lative distribution function (CDF) ofλex for given value ofs.
In (6), I is the average mutual information for given value of
synchrony level, and is given by

I =
1

N
lim

N→∞
I (Λex,1, ...,Λex,N ;T1, ..., TN |S) , (7)

where, Λex,i, Ti, i ∈ {1, ..., N} denote the EPSP intensity
and ISI, respectively, andN denotes the number of spikes
of postsynaptic neuron during timeT . For solving the op-
timization problem (6), we model a communication channel
(inputs are firing rates, outputs are ISIs) by considering the

synchrony level as control parameters of the channel. A
simpler development in the case of a leaky integrate and
fire model neuron is available in [12] without considering
synchrony and inhibitory firing rate.

In this Section, we determine an equivalent problem for
solving the optimization problem in (6), which is eas-
ier to solve than the original problem. We can find a
closed form expression for optimization problem in (6) with
fT |Λex,S( t|λex, s) in (3) and a range of synchronicity between
15% to 50%. Briefly, in this case, the equivalent problem
reduces to finding the CDF of ISIs, denoted byFT |S ( t| s),
which maximizesh (T | s) or the ISI entropy, subject to the
constraints. Upon obtainingFT |S ( t| s) for feasible values
of the constraints in (6), we then seek the corresponding
optimizedFΛex|S (λex| s). In line with [12] using (3) in (6)
and by exploiting Lagrange function and due to linearity of
d(b)(s, λex) in terms of λex (more details are omitted for
brevity), the optimization problem in (6) can be simplified
to the following optimization problem

max
FT |S( t|s)

h (T | s) , (8a)

s.t.

FT |S ( t| s) = Pr (T < t| s) , (8b)

E (T | s) = g0, (8c)

E ( logeT | s) = g1, (8d)

where the constraint onE (T | s) comes from the expression
for the energy, which is of the forme (T ) = C0 + C1T .
The constraint fromE ( logeT | s) comes from the expression
for the mutual information between two successive ISI [12].
The optimized distribution forfT |S( t| s) is a Gamma distri-
bution [21] as

fT |S( t| s) =
βκtκ−1e−βt

Γ(κ)
u(t). (9)

where β and κ are shaping and scaling parameters of the
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Gamma distribution of the ISIs obtained from the constraints
g1 = κ/β and g0 = ψ (κ) − log (β), wherelog (·) andψ (·)
are the natural logarithm and digma functions [22].

The marginal ISI distribution is obtained by marginalizing
over the input rate,

fT |S( t| s) =

∫

dλexfΛex|S (λex| s)fT |Λex,S ( t|λex, s) .

(10)

Based on this formula, we can computefΛex|S(λex| s) from
solving the following integral equation

fT |S ( t| s) =
∫

fΛex|S (λex| s)×

(d(b)(s,λex))
d(m)(s,λex)

td
(m)(s,λex)−1e−d(b)(s,λex)t

Γ(d(m)(s,λex))
u(t)dλex

= βκtκ−1e−κt

Γ(κ) u(t),
(11)

The optimum distribution ofλex is obtained by following
theorem.

Theorem 1. The optimum distribution of EPSP intensity
for a given synchrony level,s, in the context of problem (6),
is given by

fΛex|S (λex| s) = βκd
(b)
1 (s)

Γ
(

d
(m)
0 (s)

)

Γ(κ)Γ
(

d
(m)
0 (s)−κ

)

.

(

λexd
(b)
1 (s)−β+d

(b)
0 (s)

)d
(m)
0 (s)−κ−1

(

λexd
(b)
1 (s)+d

(b)
0 (s)

)d
(m)
0

(s)

.u
(

λexd
(b)
1 (s)− β + d

(b)
0 (s)

)

(12)

whereΓ (.) denotes the Gamma function.

Proof. See Appendix A.

In Fig. 4, the results of the optimization problem is shown
for s = 30%, 40% and 50% withE ( t| s) = 100msec and
E( log(T )| s) = −3.51. By increasing the synchrony level, the
mode of EPSP intensityλex, corresponding to the peak value
of fΛex|S (λex| s), is reduced. Moreover, higher synchronicity
reduces the minimum value ofλex with non-zero probability.
This shows that according to the optimized energy efficient
strategy in (6), enhanced synchrony reduces the excitation
threshold of the post synaptic neuron.

V. CONCLUDING REMARKS

We investigated the role of neuronal synchrony from a
communication-theoretic point of view by modeling a neuros
as a communication channel with synchrony as the chan-
nel’s control parameter. The excitatory post synaptic potential
(EPSP) intensity and the inter spike interval (ISI) are the input
and the output of the channel model. Our simulation results
showed that the conditional probability of the neuronal com-
munication channel is well fitted with the Gamma distribution
for synchrony levels less than 50%. The optimum distribution
of λex for a given value ofs is analytically obtained and shows
that increasing the level of synchrony reduces the mode of
EPSP intensity distribution and the threshold of excitation.

Synchrony of presynaptic neurons is observed during the
attention process. Our results now present another interpreta-
tion of this experimental observation: Instead of synchronicity
being the carrier of information, it may primarily control the
information flow in an energy efficient way.VI. A PPENDIX A. PROOF OF THEOREM 1

By replacingd(b) (s, λex) andd(m) (s, λex) from (4) and (5)
in (10), we have

∞
∫

0

fΛex|S (λex| s) t
d
(m)
2 (s)λ2

ex+d
(m)
1 (s)λex+d

(m)
0 (s)−1×

e
−
(

d
(b)
1 (s)λex+d

(b)
0 (s)

)

t
×

(

d
(b)
1 (s)λex+d

(b)
0 (s)

)d
(m)
2

(s)λ2
ex+d

(m)
1

(s)λex+d
(m)
0

(s)

Γ(d
(m)
2 (s)λ2

ex+d
(m)
1 (s)λex+d

(m)
0 (s))

dλex

= βκtκ−1e−βte
d
(b)
0

(s)t

Γ(κ) .

(13)

By a change of variablev = d
(b)
1 (s)λex, we have

1

d
(b)
1 (s)

∫

fΛex|S

(

v

d
(b)
1 (s)

∣

∣

∣

∣

s

)

e−vt×

(

v+d
(b)
0 (s)

)

d
(m)
2 (s)





v

d
(b)
1

(s)





2

+d
(m)
1 (s)





v

d
(b)
1

(s)



+d
(m)
0 (s)

Γ

(

d
(m)
2 (s)

(

v

d
(b)
1

(s)

)2

+d
(m
1 (s)

(

v

d
(b)
1

(s)

)

+d
(m)
0 (s)

) ×

t
d
(m)
2 (s)

(

v

d
(b)
1 (s)

)2

+d
(m)
1 (s)

(

v

d
(b)
1 (s)

)

+d
(m)
0 (s)−1

dv

= βκtκ−1e−βted
(b)
0 (s)t

Γ(κ) u(t).

(14)

By simplification, we have

1

d
(b)
1 (s)

∫

fΛex|S

(

v

d
(b)
1 (s)

∣

∣

∣

∣

s

)

e−vt×

(

v+d
(b)
0 (s)

)d′2(s)v2+d′1(s)v+d
(m)
0

(s)

Γ
(

d′
2(s)v2+d′

1(s)v+d
(m)
0 (s)

) td
′
2(s)v

2+d′
1(s)v+d

(m)
0 (s)−1dv

= βκtκ−1e−βte
d
(b)
0 (s)t

Γ(κ) u(t),
(15)

where, d′2 (s) = d
(m)
2 (s) /

(

d
(b)
1 (s)

)2

, d′1 (s) =

d
(m)
1 (s)

/

(

d
(b)
1 (s)

)2

. A closed form solution to the above

integral equation is illusive. Our simulation results (SeeFig. 5)
shows that fors > 15%, d(m)

2 (s) andd(m)
1 (s) are almost zero.
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Hence, we can write (15) as

1

d
(b)
1 (s)

∫

fΛex|S

(

v

d
(b)
1 (s)

∣

∣

∣

∣

s

)

e−vt×

(

v+d
(b)
0 (s)

)d
(m)
0

(s)
t
d
(m)
0 (s)−1

Γ(d
(m)
0 (s))

dv = βκtκ−1e−βte
d
(b)
0

(s)t

Γ(κ) u(t).

(16)
Noting definition of Laplace transform, we have

1

d
(b)
1 (s)

L



fΛex|S

(

v

d
(b)
1 (s)

∣

∣

∣

∣

s

)
(

v+d
(b)
0 (s)

)d
(m)
0 (s)

t
d
(m)
0

(s)−1

Γ
(

d
(m)
0 (s)

)





= βκtκ−1e−βte
d
(b)
0 (s)t

Γ(κ) u(t).
(17)

Using inverse Laplace transform, we have

1

d
(b)
1 (s)

fΛex|S

(

v

d
(b)
1 (s)

∣

∣

∣

∣

s

)

(

v+d
(b)
0 (s)

)d
(m)
0 (s)

Γ
(

d
(m)
0 (s)

) =

βκ
(

v − β + d
(b)
0 (s)

)d
(m)
0 (s)−κ−1

u
(

v − β + d
(b)
0 (s)

)

,

(18)
hence, we obtain

fΛex|S

(

v

d
(b)
1 (s)

∣

∣

∣

∣

s

)

= βκd
(b)
1 (s)

Γ(d
(m)
0 (s))

Γ(κ)Γ
(

d
(m)
0 (s)−κ

)

(

v−β+d
(b)
0 (s)

)d
(m)
0

(s)−κ−1

(

v+d
(b)
0 (s)

)d
(m)
0 (s)

u
(

v − β + d
(b)
0 (s)

)

.

(19)

Replacingv = d
(b)
1 (s)λex, we have

fΛex|S (λex| s) = βκd
(b)
1 (s)

Γ
(

d
(m)
0 (s)

)

Γ(κ)Γ
(

d
(m)
0 (s)−κ

)×

(

λexd
(b)
1 (s)−β+d

(b)
0 (s)

)d
(m)
0 (s)−κ−1

(

λexd
(b)
1 (s)+d

(b)
0 (s)

)d
(m)
0 (s)

×

u(λexd
(b)
1 (s)− β + d

(b)
0 (s))

(20)
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