arXiv:1604.04818v1 [cs.IT] 17 Apr 2016

1

Secrecy Capacity in Large Cooperative Networks in

Presence of Eavesdroppers with Unknown Locations

Amir Hossein Hadavi, Narges Kazempour, Mahtab Mirmohsexi Mohammad Reza Aref
Information Systems and Security Lab (ISSL)
Department of Electrical Engineering, Sharif UniversifyTechnology, Tehran, Iran

Email: {ah_hadavi,nargekazempouf@ee.sharif.edimirmohseni,aréf@sharif.edu

Abstract

In this paper, an extended large wireless network under #ueesy constraint is considered. In contrast to
works which use idealized assumptions, a more realistisvorlt situation with unknown eavesdroppers locations
is investigated: the legitimate users only know their owrafel State Information (CSI), not the eavesdroppers CSl.
Also, the network is analyzed by taking in to account theafef both fading and path loss. Under these assumptions,
a power efficient cooperative scheme, narstthastic virtual beamforming, is proposed. Applying this scheme, an
unbounded secure rate with any desired outage level is\aahiprovided that the density of the legitimate users tends
to infinity. In addition, by tending the legitimate users di to the infinity, the tolerable density of eavesdroppers

will become unbounded too.

. INTRODUCTION

Nowadays, secrecy is an essential quality of service wtidmarder to meet in wireless networks, because their
broadcast nature increases the possibility of eavesdigp@ommon methods rely on using algorithms with high
computational complexity that are hard to break for an ashwgr[1]. Another field which focuses on the attackers
with unlimited computational power is information-theticgphysical layer secrecy. Wiretap channel, the basic mode
for information-theoretic secrecy, was introduced by Wyime[2] through which reliable and secure transmission is
possible if the channel between the transmitter and thesdavpper is the degraded version of the direct channel,
i.e., between the transmitter and the receiver.

There are many research works on wireless networks with fedes[[3], but wireless systems are getting larger
and larger and their exact performance analysis is gettorgptex, actually impossible. This leads the research

community to turn into the scaling laws and analyzing thengstptic behavior. Large wireless networks was first
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investigated in[[4] by Gupta and Kumar from the scaling lawspof view. They considered an ad hoc large network
with n randomly located nodes and the total rate that they achisved./n). Effects of secrecy on large wireless
networks was investigated inl[5] for the first time, where adawireless network has been investigated that the
distributions of the legitimate and eavesdropper nodesaacerding to the Poisson point processes with densities
A, and )\, respectively. The result of [5] is that the secure commativa with total rate ofO(y/n) is possible, as
long as\./\; = O((logn)?), wheren is the number of the legitimate nodes. These works showedttisapossible

to achieve the total rate that scales lik&» under per node power constraint, with and without secrecoyvéver,
their main limiting assumption was considering a poinptoat multihopping communication which excludes the
possibility of cooperation using relays.

Authors in [6] proposed a cooperative scheme to achieveshrate with near linear scaling under per node power
constraint in a large wireless network without secrecy tramgs. In addition, they showed the possibility of zerstco
communication, i.e., unbounded total rate for fixed totav@oconstraint. In[[[7] using active cooperative relaying
based schemes and with a bound on the number of the eavestspfipe authors showed that zero cost secure
communication is also possible. Recent developments ielegs technology (e.g., self interference cancellation,
power allocation scheme at the PHY layer, proper MAC pratdoo the efficient implementation of the full-
duplex transmission modg![8]) support the relaying basegemtive models, in contrast to the traditional multi-hop
interference limited networks.

In the model of [[5], [7], the Channel State Information (C&)known to the legitimate transmitter. However,
knowing CSI leads to the knowledge of the location of the passavesdroppers; that is not reasonable in many
practical cases. So the natural questions here are thatdfcost secure communication is possible under unknown
CSI. And, how should the cooperative strategies changeh@ee this result? In addition, another important aspect
of wireless network, ignored in many works, is fading. Howlifay affects the secrecy rate in wireless systems is a
challenging question.

The secrecy rate in large networks withknown CSl is investigated in some recent works. In [9], [10], the total
rate of order 1 was achieved in a large wireless network vétlinig when CSI is not known. The authors [inl[11]
took the advantage of path diversity to achieve the total ohtorder % in the case of unknown CSlI, by limiting
the number of the eavesdroppers that can be tolerated. daditwork coding has improved this result in[12] to a
scheme in which any number of eavesdroppers could be teteraithout any change in the total achievable rate.
The unknown CSI assumption is also taken into account inratlveks such as [13]/[14]. However, to the best of
our knowledge, none of the existing works uses relaying tdese zero cost secure communication with unknown
CSI and/or fading.

In this paper, we answer the above question affirmatively top@sing a scheme that achieves zero cost secure

communication in a fading network and in the case of unknov@i (hcluding the eavesdroppers location). We



consider a network with; legitimate nodes and. eavesdroppers that are distributed according to the Rozsiot
processes with densities and \.. In contrary to the existing works, we achieve zero cost sEcommunication,
I.e., unbounded total secrecy rate, by using cooperatidndastributed beamforming. In order to overcome the lack
of CSI knowledge, we propose a new scheme caldtmthastic virtual beamforming. In this 2-stage scheme, we
benefit from the fading diversity by exploiting some relayimodes near the transmitter. Actually, we design a decode
and forward scenario to direct the majority of the power tavhe receiver location. To make this possible, at the
first step the transmitter sends the secure message to akltngng nodes by using wiretap coding. The security
of this transmission step is provided by using the distarth@m@tage of the relaying nodes in comparison with the
eavesdroppers. So we leverage the path-loss effect in @veosiay. Then, at the second step, the relaying nodes
accomplish a distributed beamforming by setting theirdraission coefficients proportional to the complex conjagat

of their channel gains to the receiver.

[I. NETWORK MODEL AND PRELIMINARIES

Throughout the paper, use upper case letters are used fotintethe random variables and lower-case letters for
their realizations. Also, superscriptsand e are used for denoting legitimate users and eavesdropgssectively.
We note the desired secure rate and outage levekpyand ¢, respectively. Also, we defin€ to be equal tos.
Considering both path loss and fading effects, we use a cammualel for characterizing the power attenuation in
wireless mediums as [15}% = C'a?101d =7, in which, Py is the received powerPr is the transmitted power;
is a constanty is the fading coefficient10i denotes the shadow fading wheke ~ N (0,02%); d is the distance
between the transmitter and the receiver; ani$ the path loss exponent which depends on the environmeht an
normally v >= 2. « is assumed to have Rayleigh distribution with paramgtdfor simplicity, we ignore the effect
of shadow fading comparing with path loss effect (we remhgk the shadowing effect is a random variable varying
with location not with time). Also, because of different astdchastic paths between the transmitter and the receiver,
the phase of the received signal (shown#é)yis modeled by a uniform distribution 00, 27]. The lettersh andd
with appropriate subscripts and superscripts are usednfiicating fading coefficients and distances, respectively
So, the channel gain from th¢h legitimate user to thgth legitimate user and also, to tii¢h eavesdropper can be

characterized by:
Gl =hi ;(d} ;)% 1)
G j=he  (dS )T/ 2e%, 2
We assume that the environment is isotropic. Hence the dastitistics is the same between every two nodes. We
consider a network with; legitimate nodes and. eavesdroppers that are distributed according to the Rojssiot

processes with densitieg and \.. We consider the eavesdroppers as passive attackers witbllusion between

them. In addition, we assume that neither the location nerfalding coefficient of any eavesdropper channel is not



known to the legitimate users. We consider an extended agisehetwork. In order to establish consistency between
the density of legitimate users,) and their total numbern(,), we consider the network as a square with the side
equal to, /5. Also, for the sake of simplicity we let the transmitter to Ioeated at the center of the square. The

Rayleigh assumption for fading results Iilh[Hﬂ = 2u. Also, for simplicity we assume that the noise variances of

all the channels, either legitimate or non-legitimate, thie same and equal to unity.

I11. M AIN RESULTS

The main result of this paper is summarized in the followingarem. This theorem states that the zero-cost secure
communication is possible by using our proposed scheme whgasdroppers CSI is not known to the legitimate
users. The rest of this section is devoted to the proof ofréssilt, where we analyze the scheme in detail and derive
six constraints for different parameters of the networkegehconstraints are consistent and can be selected step by
step.

Theorem 1: In the extended network with fading and unknown eavesdnep@&! (defined in Sectionlll), under
the constant power constraint and by letting the legitimetters density to be sufficiently large, any desired pair of
secure rate and outage level denoted Ry,€) is achievable.

Proof: We propose a scheme which achieves the desired result. Oof Ipgis two steps: (i) In the first step, we
consider the transmission from the transmitter (sourcéfearelaying nodes and guarantee a specific securdate
with high probability for this transmission. Our technigisebased on defining two circles, denoted By and B.,
centered at the transmitter and ragiianda,., while a; < a. (see Fid.ll). Then\;, A, a;, anda, are chosen such that
the following three requirements are provided. First, with probability greater thah— ¢/, no eavesdropper lies in
B.. Second, with the probability greater thar- ¢ at leastn, legitimate users lie imB;. Third, the difference of the
worst legitimate channel and the best eavesdropper chaergdeater thaig with a probability greater thah— ¢’

(i) In the second step, we analyze the rate from the relayeadd the receiver and guarantee the second rate using
the cooperation of,. relaying nodes. Actually, we make this distributed Multiphput Single-Output Single-antenna
Eavesdropper (MISOSE) situation to concentrate the moghefiransmitted power in a neighboring region of the
receiver. It can be deduced from our following calculatitimst by increasing:,, both R¢ ande can be improved,

i.e., increased and decreased, respectively.

A. Sep 1: First rate analysis

In this step, we guarantee a secure rRfe for the transmission from the transmitter to the relayinglem with
an outage level o2¢’. To make this possible, we choose the radius of the citBleand B, in a way that even with
considering possible exacerbating effects of the fading,difference between the capacities of the worst legigmat

channel and the best eavesdropper channel be greateRRhavhich is done by obtaining proper upper and lower



bounds orw; anda., respectively. Hence, the following constraint must hold:

Cl —C% > Ry (3)

min
1<i<n,, 1<j<n.
whereC! is the rate of the link from the transmitter to tixh legitimate user and’; is the rate of the link from the
transmitter to the-th eavesdropper. To simplify the analysis, we work with Baptimum problem and we guarantee

the following two inequalities:

min C} > (1+ p)Rs, (4)
1<i<n,

max Cf < pRg. (5)
1<j<ne.

in which, p is an arbitrary positive constant and the problem can bevaptid overp. Now, to establish (4) andl(5),
we present appropriate upper and lower bounds;oanda., respectively, where each bound holds with an outage
level of €.

1) Thelegitimate rate analysis: In the following theorem, considering the constraint@nwe derive an appropriate
upper bound ony;.

Theorem 2 (Upper bound on ¢;): A sufficient condition for having[{4), with an outage level &f is:

—Prpuln (1—£)\2
a; < ( 20+ Rs — 1 > . (6)

Proof: Using the union bound we guarantee the outage Iev%[:dbr the rate of each of the, relaying nodes

in By, to guarantee the outage leveld&ffor the minimum of these rates. We write for one of them, chaabitrarily:

log (1 4 Prh®d; ") > log (1 + Prh*a; ") > (1 + p)Rg =

2
a] < %. (7)
whered; andh are the distance and the channel gain (respectively) battietransmitter and the chosen relay, so
d; < a;. We require the validity ofi{7) with a probability more than- ;— With respect to the Rayleigh distribution
assumption forh, the distribution ofh? is exponential with parametefy. Hence, with the probability of — fL— we

’

have:h? > —pln (1 — +—). Thus, if q; satisfies the bound i (6), the inequalify (7) holds with abatality more
thanl — <. |

2) Network Layering scheme and eavesdropper rate analysis: To analyze the eavesdroppers rates, one can follow
a similar approach to what presented in the previous panveder, the eavesdroppers are distributed in all around
the network and their distances from the transmitter vaoynf, to the radius of the network. Hence, following
the same approach would yield a loose boundugnFor deriving a tighter bound we propose a network layering
scheme. In this scheme, as shown in Eig. 1, the network isiefivio a number of layers and the eavesdroppers rates
in each layer is analyzed separately. To be precisekitielayer is defined as the region of the network between

the radii2*~'a, and2*a,. We repeat this procedure till the boundary of the netwankthke following, we propose
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Fig. 1. The inner and outer circles and the two first layershannetwork layering scheme

a lower bound oru. using this idea. We denote the number of layersiyy and thek-th layer by L. The area of
Ly, denoted bySy, is equal toSy, = m (22 — 22(k=1)) 2 = 3722k=1a2. To bound the number of eavesdroppers in
each layer we present two following lemmas.

Lemma 1 (Number of eavesdroppersin each layer): For any positive constartt,, definet, as:

s B L 3

Then, with a probability larger thah — g—;, the number of eavesdroppersin (denoted as:. ;) satisfies:
Ne g < (1 + tk))\eSk. (9)

Proof: Considering Poisson distribution of eavedroppers locatiave use Chebyshev’s inequality for ; to

write:
Pr {n@k > NSk + tkAeSk}

< Pr{]n&k — AeSk| > tk\/@\/@}
<
2 Xe S
[ |
Lemma 2: If in Lemmall, we sep3;s such thatz,;’{;1 é < 1 holds, then, the inequality](9) will be valid for all
the layers, with a probability larger than— €.

Proof: Using the union bound for the undesired event in each layercan bound the global undesired event.

Therefore, the probability that the inequalify (9) does hold in at least one layer is bounded by:
K. Ky
Se=d> 3
— — € —_—.
— Pk — B

Assuming the condition introduced in the lemma @ys, this quantity will be less thad. [ |



Now we derive a proper bound arp using the above lemmas. In fact, each layer imposes a lowandona,
and the largest lower bound is the main constraingnOur technique of deriving these bounds is summarized in
the following. We divide the tolerable erref between all the layers, dedicating the tolerable eegoe 25—,0 to the
L, and we find a proper lower bound to guarantee the outage lpfitpaf ¢, for this layer. In the analysis of each
layer we apply the union bound for the eavesdroppers in #yarl Finally, we apply the union bound on the outage
events of these layers to find a bound on the probability oftéi@ outage event. This total outage probability is
less thare’, because of how;s are allocated.

Using Lemmas]l arld 2, we work with +t;) . Sx as the maximum number of eavesdropperginThe following
lemma gives the constraint an concluded fromL,.

Lemma 3: Given the inequality[(9), a sufficient condition to have,
max Cf < pRg (10)
JELy
with a probability greater thah — ¢, is the following constraint om..:
/

—P € -~
(k) & 9—(k=1) TH 4 7 11
(e = e <2PRS -1 n(2kAe(1 + tk)Sk)> 1D

Proof: To guarantee the outage level 9; for the validity of [10), relying on the union bound, we guatee
the outage level o% for the validity of the following inequality:

C% < pRs (12)

for each of the eavesdroppers, e.g., jhth eavesdropper, in this layer. Considering the condif@non n. , it
suffices to guarantee the outage Ievelm for each of the eavesdroppers. For one of the eavesdroppers,

arbitrarily chosen, we write:
log (1 + Ph%d;") < log (1 + Ph?(27%"Ya,)™) < pRs.

The first inequality is deduced from, < 2¥~'a., in which d,. is the distance between the transmitter and the chosen
eavesdropper. For simplicity, the other indices are elidd. We want the second inequality to be valid with a

probability greater tham — . With the same probability, for the coefficielt, considering its exponential

72%(11@)@
distribution, the following inequality holds:

/
IO s P . —
< Mmax " nv(QkAe(l—Ftk)S%
Hence, to provide the desired outage level, it suffices taapiae the inequality
log (1 + P2 (2~ % Va,)™) < pRg,

by proper choice of.. With a little algebraic efforts and displacing the varidl the recent inequality can be

converted to[(111). [ |



Now, we put all the results together in the following theorérhen, from this theorem and by some substitutions
and calculations, we conclude the Corollafy 1 in which anrappate lower bound is finalized far,.

Theorem 3: Given the coefficient$; and 5, consistent with the assumptions presented in Lemimas Ilamd 2 a
by choosing

(k)
ae > 1;1}32}}(@ ag”’, (13)

the rate inequality[{5) holds with an outage probabilitysiésan2e’.
Proof: Note that the inequality {5) is valid if and only if the one [B0) is valid. We define the binary random

variableO;, as

0 if ier, C5 < pRg,
Ok _ { maXj;er, j plirs (14)

1 if maxjer, CF > pRs.

In addition, we define the binary random varialjle as

0 if Ne ke < (1 + tk)AeSk,
Qr = _ (15)
1 if ney > (1 + tg)AeSk-

Now, using the union bound, we write:

1<j<n.

Lx
Pr{ max C7 > pRS} < ZPr {O = 1}. (16)
k=1
Also, we expand the occurrence probability@f in @, as the following:

Pr{Oy =1} = > Pr{Q =i} Pr{O) = 1|Q = i}
i=0.1

(%) Pr{O, =1|Qr =0} + Pr{Qp = 1}. (17)

Considering that the value of the probability function ig never more than the unity, the terfs {Q, = 0} and
Pr{Ox = 1|Qx = 1} in the inequality (a) are replaced by 1. First, we invesedaie first term of[(17). Giver (13),

the offered sufficient condition presented in the Lenithd 3)))(holds for all the layers. So, considering this lemma,

we have:
6/
Pr {Ok|Qk = 0} < ok (18)
By summing up in all the layers, we write:
Lx Ly 6/
D Pr{OpQr=0} <> o< (19)
k=1 k=1
Now we consider the second term [n17). For the summatiomede terms, according to the Lemila 2, we have:
Ky
> Pr{Qr=1}<¢. (20)
k=1

Now the proof is completed by applying (17) in{16) and themaghe inequalities (19) and (R0). [ |



Corallary 1: By choosing

 (Prp)” —In(1—¢€)° 2/
© (20Rs —1)5 i € i \/(— In(1- e/)3)3)’ D

the outage probability of{5) is less thad.
Proof: We start from the right side of the constraintl(13) in the rtdbeorem and insert the value mgf) from
(@I). Also, we replace,, by its calculated value froni{8) and for any< k < K, we set:

B, = 2F. (22)

It's clear that by this choice, the required condition in ttemmal2 forg,s is established. Furthermore, we replace

Ae by its value from[(4B). Now, we can write:

ae = max a®
1<k<K.
Pu > ¢

— I S G D P S

(2pRs 1) 1dkek, Mo NSE(1 1+ tr)

1 3k—2 / 4 3 ot
B P//L ~ _(k;_l) _3 X 2 ln (1 — € ) + <—3E’ 11’1(1—6’)) /Bk
= max 2 X In
20Rs — 1) 1<k<K. €

2=

max 2~ D n <0123k + 0225)

)
)
e 1)
)

i max 2~ (1) lncl23k <1 + 6—2275k>

1<k<K[ c1
(2) QPR};M_ | i | nax 2= (3kIn2 +Ine; + Z—i2_gk)
© 72/)}5#_ 1>% <31n2 +Incl + ﬁ%)
In the equation (a), the following definitions are used:
o 2 #61,_6/)7 (23)
¢ £ -3¢ ln4(1 —€)’ @)

Inequality (b) is deduced frormx < x — 1 for x > 0 andx # 1. The inequality (c) is obtained by considering
that the argument of maximization is a decreasing functiph, iso it takes its maximum &t = 1. Substituting this
value for k, the last line is obtained. [ |
By replacingc; andc, by their values we reach to the same value in the relatioh (&) we seta. equal to this
value. Hence, the desired condition in the theotém 3 will &kdy too.

Remark 1: We remark that the proposed idea for layering the networked@ly effective. In fact, as it's clear

from (21), the final constraint on. is independent of the number of the eavesdroppers (and so tfie size of
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the network). Therefore, by extending the network and sceging the total number of the eavesdroppers, it's not

necessary to limit the eavesdropper-free region anymore.

B. Sep 2: Second rate analysis

In this subsection we analyze the second rate, i.e., forwated and from it we derive the proper constraintrgn
1) Fading calculations: In this part we pick arbitrarily one of the eavesdroppers dodhe calculations for it. We

denote the channel gain vector between the source and tiienkg and the non-legitimate users, respectively, as:

g = () 2Rhe™, (), ) (25)

g¢ = ((d5)™2h5ei% L (de ) TV2hE el (26)

We assume that the distance between every two users is mgtieatehalf of the wavelength. This assumption yields
the uncorrelation of different fading gains and phases. [ establish a virtual and distributed MISOSE situation
using adequate relaying nodes. This scheme has two adeactagparing with conventional Multiple-Input Multiple-
Output (MIMO) schemes. First, it does not need the devicdsetequipped with multiple antennas. Second, as noted
in [1], the maximum number of antennas in practical MIMO sys$ has physical limitation. But, in this scheme
we can exploit more relaying nodes and benefit more from obladimersity. In [17], for MISOSE situation with
ergodic capacity criterion and known CSI and only for legéte users, it has been proved that the efficient strategy
for the beamforming of the transmission vector is to aligimithe direction of the fading vector. Thus, by a similar
technique, we align the beamforming vector in the directboomplex conjugate of channel gain vector, i(g.l,)*,
to maximize the correlation between these two vectors. teroto control the total consumed power, we set the
beamforming vector equal tg;l Given only legitimate users CSlI, it is a reasonable styateg

M essage transmission scheme: For the message séf = [1 : 2"%] and for anym € M, a proper codeworc”
generated from Wyner wiretap coding is chosen and transtniiy the transmitter. We denote the average power of
the transmitter byPr. The relaying nodes decode their received sequence tonadifiaitransmitted message. In

the next step, the-th relaying node uses the same codebook to send the Squﬁﬁce\/lT_r(dé)_V/zhiX"e_jeé in

n transmission intervals. So the power consumed byitterelaying node and the total consumed power equal to:
R CAR

Pi= s Y () TRIX WP = Lpy, 27)
T tzl T
[ 1 [ B
PR =3 Pi= (o 3 (d) T h) Pr. (28)
i=1 i=1

Furthermore, the received signals at the end ofttlte transmission interval are:

e 37 (@)X ),
" i=1

1 & e o
(d)™2(d$) 2Rl hged U0 X (1),

OB

Z(t) = (
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Finally, the received powers at the legitimate user and #dwesdroppers are:

1 &
P = ()~ 7h3)? Pr, (29)
1L N /2 ey a2 L (002
8_‘mz(d") VE(dF) T P hhi e T P, (30)
i=1

Now we consider these two recent random variables (Pe.P.) and give bounds on their expected values and
variances. Having these in hand, we can use a bounding iligquike Chebyshev’s inequality, to predict the
behavior of these two quantities with high probability.
Praobabilistic results: Based on the assumptions we noted previously about thedadiefficients, we proved the
following bounds for the expected value and variance®,cdnd P.. The proof is provided in appendixl A.
Theorem 4: By appropriate choices faf and v, the following bounds hold:
E[P)]

——= > g, (drr + a) ™, (31)
Pr
E[P, _ _
< e — ) (e — ), (32
T
2
P
z (zl) < I/Z’I’Lr(dTR - al)_4’y> (33)
Pr
o2(P, _ _
}()2 ) < V2(CL€ — al) 27(dTR — al) 2, (34)
T

where,drr is the distance between the transmitter and the receivisraksumed that the receiver is out of the inner
circle (By).

To continue, we look for the sufficient number of relaying esdn order to attain the secure rag with outage
probability less thare’. We use Chebyshev’s inequality to establish proper boundgrobability of the undesired
events defined on the amount Bf and P.. We wish to haveC; — max;cg Cf > Rg with a probability greater than

1 — €. But, for the sake of simplicity, we guarantee the followingunds, each with the probability af— ¢’

Cy > (14 k)Rs, (35)
max Cf < kRg. (36)
i€
where, x is an arbitrary positive constant which can be optimizede€assary. Now, we derive the proper bounds
on the network parameters by analyzing the above limitatidnstead of[(36), using a union bound approach, we

consider the following constraint for each eavesdropper:
Cf < kRg (37)

with the probability of1 — <.
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2) Legitimate rate analysis: The constraint in[(35) implie®r {C; =1log (1 + P,) < (14 xk)Rg} < €, or equiva-
lently:
1%{H<:%HMRS—1}<EC (38)

Now, we apply Chebyshev’s inequality and drive a lower boand:, which guarantees (88). Noting the expected
value and the variance df by n; andv?, respectively, we apply the inequalities of Theofém 4 farsthtwo values.

First, we write:

Pr {Pl < oUm)Rs _ 1} (2) Pr{P <n — oy}

(b) 1 (C)
<Pr{|P—m| > an} < — <.

where, (b) follows from Chebyshev’s inequality,for (¢) wet:sy = \/GI and for (a), it's sufficient to have{+#)fs
1 < m — awy, or equivalently; < L (n — 2(+r)Es 4 1. Considering[(31) and_(33), it's sufficient to establish the
following chain:

(d)
v < V\/nr(dTR — CLl) 2'YPT

(e) 1
(nnT(dTR +a;)” 27PT _ 9(+r)Rs 4 1)

® 1
< a(m - 2(1+I€)RS 4 1).

where, (d) and (f) are deduced from Theorem 4. We establistbyechoosingn, sufficiently large. After some

algebraic calculations, (e) can be written as the followdgdratic inequality in/n,.:

ne(n(drr + a)) ' Pr) — v/n(av(drr — @)~ Pr)

—o(+m)Rs 4 1 5,

in which only one of the two roots is positive and so accegtaBl choosing.,. greater than the square of this root,
we reach a constraint om. presented in the following theorem.
Theorem 5 (Lower bound for n,.): A sufficient condition om,. for guaranteeind (35) with an outage levelcdis

to have:

(drr — al)_47
An?(drr + a;)~ 7! + VO©, 39)

v? (drr +a))” 27
—Y 44 o(I+m)Rs _ 1y,
¢ € 77PT(dTR —al)—‘”( )

In order to get an intuition from the behavior of this consttawe put a simplifying assumption ar, which makes

this constraint independent af. For this, we assume:

a; < dTR/Q. (40)
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We justify this assumption by noting that if the receiversli| B, it is not necessary to exploit thetochastic
virtual beamforming scheme. Actually in this situation, based on the calcutatifor the first rate, the message can
be delivered securely to the receiver by direct transmisditere, for the sake of simplicity, after choosing a valid
value forqy, i.e., a value which satisfies the constraint[ih (6), we diviidby two. By this choice, we can send the
secure message directly to the receiver whenever the srcsivn the distance of at mo&t;. Therefore, we use
our proposed scheme, i.e., th®chastic virtual beamforming, only when [(40) holds. Using this, constraint1(39) is
turned to the following simplified version. The proof is sim@nd is completed by boundingy-r + a; properly.

Corallary 2: A simplified sufficient condition om, to guarantee (35) with the outage levelefis to have:

81 / v v:i oAy oy oo 2
— (= _ 4t +r)Rs _
w> (a7 E e - ) (41)

3) Eavesdropper rate analysis: Now, we proceed in a similar way to obtain another constr@irguarantee (37)
for the eavesdropper rate with high probability. As noteevjrusly, for the arbitrarily chosen eavesdropper, we wish
to have:Pr {log(1 + P.) > kRg} = Pr{P. > 2¢fs — 1} < £ Similar to the previous part, we usg and? to
denote the expected value and the varianc®&.0fWe start with:

Pr {Pe > orfls 1} (2) Pr{P. > ne + av.}

(b)

© ¢
< Pr{|P. —ne| > av.} < <

19¢<

a2 T ng’

where (b) follows from Chebyshev’s inequality and for (c) weta = \/’Z: Similar to the previous part, for
establishing (a), it's sufficient to have < 5(2“555 —n. — 1). Now, considering[(32) and (B4), it is sufficient to
establish the following chain,

(d) _ _
Ve < v(ae —a;)” "(drr — a;)" " Pr

©1

< a (QHRS — 7’](&6 — al)_y(dTR — al)_VPT — 1)
M1
< 5(2*@’%5 —ne—1).

By some substitution and assuming the other parameters twigtant, the inequality (e) can be converted to a
constraint om,., as follows:

268 p(ae — )V (drr —a)) ™Y — 1)2
v(ae — a)) ™ (drr — @) Pr

Ne < € ( (42)

C. Poisson calculations

1) Constraint related to the inner circle: We must have at least, legitimate relaying nodes in the circlg;,
wheren,. is chosen appropriately regarding the former constrairf88). In the following, we start by bounding the

probability of undesirable event, i.e., having less thamodes inB;, using Chebyshev’s inequality. Then, using this
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bound, we derive a sufficient condition fay, in order to keep the probability of undesirable event Iésst’. By

defining thek; as the number of legitimate nodes i), we write:

Pr{k; <n,} <Pr {|k:l — \mad| > Nma? — nT}

>\ — Ny
=Pr ‘kl )\mal\ > \/)\l CLl lﬂ-al
\//\nml

)\ma%
(Niraj —np)?

To satisfy the outage probability constraint, it sufficeséb [43) less than or equal & In the equality case, we

(43)

reach the following equation from which a lower bound fnis deduced. By satisfying this constraint, we have at

leastn, legitimate nodes in the inner circld;, with probability larger than — ¢'.

M (m%a}) — \(2n, + 1)7Tal +n2=0=

n,. + ,:I:\/n —, 2 _ 2
N=—2 -, : (44)

7T(1l

Note that the smaller solution if_(44) is not acceptableabse it yields values fok; which are lower than’=.
l
So we work with the greater solution. As a sufficient conditizve can choosg,; to be greater than this solution.

Therefore,

nr+§+\/(nr+ 5e7)? — n?

At > a2 =

Ny 1 1

—(1+ —— 1 2_1). 45

7Tal2( + 2¢/'n, + \/( + 26/7’LT) ) (45)
Bi(e)

By the above definition ofj;(¢), we summarize the constraint as:

N> Bile)—

. (46)
7Tal

2) Congtraint related to the outer circle: As mentioned previously we need the cirel® to be free of eaves-
droppers, with probability larger thah— ¢. By defining k. as the number of eavesdroppersi, we want to

have:
Prike=0}>1—¢ = e ™ > 1 ¢ (47)

which results in the constraint:
—In(1—¢)

a2
The main six constraints fat;, a., n,, ne, \; and\, are given in[(6),[(21),[(41)[(42)[ (46) and {48), respedyive

To achieve any desired pair 0Rg,¢), we proceed as follows. First, we set satisfying [41), which just depends

A < (48)
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on Rg ande and not the other five parameters. Knowing we chooser; properly from its constraint i .{6). Then,
the required)\; is calculated by inserting the value of anda; in (46). In addition, minimum of:. is computed

by knowing Rg and e from (21). Then, the maximum tolerable amount)qfis derived from [(4B). It is seen that
by tending); to infinity, the maximum tolerable density of eavesdroppgergls to infinity, too. This completes the

proof. |

APPENDIX

PROOF OF THEORENZ

First, we consider the problem without the path loss effext analyze the four desired quantities for this case.
Then, we add the effect of path loss and update the previousdsofor this case.
The following fading vectors are in fact the simplified verss of channel gain vectorgl, and g¢, when all the

coefficients related to path loss effect are substituted rity:u

Bt = (hhe?® ... bl el (49)

n

he = (hSe% ... R

elm). (50)
In the following lemma, the values of the four desired qu&giare given when the path loss effect is eliminated.
Lemma 4: Under the assumptions noted in the paper for the fading caaifs, the mean and the variancelof

and P, satisfy the following constraints, when the path loss éffeeliminated:

ElR] _
ol U DE? [H?] +E [H*]
> (n, — 1)E? [H?] + E* [H?] = n,E* [H?], (51)
ElP] _
Py B [H7], (52)
) _ g, (2 1B [12) — B [17]) + -+ = O, 3
T
o?(P,
;%)Z%EA‘[HQH“':O(U- (54)

Proof: Analysis for mean ofP;:

2
B (1,
P E[(WZ;UI))]
22(%)?(%)1

i=1 k=1

- ni (nE [H'] + np(n, — 1)E? [H?))

s

= (n — DE* [H*] +E [H']

> (n, — 1)E? [H?] + E* [H?] = n,E* [H?].
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Analysis for mean ofP,:

E[P] 1 &
Pr E{x/n—r =

2
Z hlheed Oi=0) ]
iihlhehlheeje 9 9+9)]

i=1 k=1

Ny

@ LS g0 E ()] —Y Z > E Wi | E %] B [0 -00
i3 i=1 ki ~——
0
N2 11727 _ w2 [ 172
= ZTE? (A7) = B? [HY].
where (a) is deduced from the uniform distribution assuampfor the random phases and the independence of the
fading coefficients and also the phases of the legitimateramdlegitimate channels.

Analysis for variance of?;:

02;? =E [(W — (B [HY] + (n, — DE2 [HQD> ]

ny
- 2
1
:mE th—l—ZZh%ﬁ—nr ] —nr(nf—l)IE2 [H2])
r k=1 gk
—_ 2_

28

:%E Zh?—E[HﬂJriZh%hz—Ez [H?]

r i=1 k=1 q#k

N

51 S2

= (E[S}] +2E[5,5:] + E [53)),

ny

where
E[$1S2] = 4n,(n, — VE [(H{ — E [H*])(H{H} — E* [H?])]
= 4n,(n, — 1)(E [H®| E [H?] - E [H*] E? [H?]),
E[St] =nE[(H' - E [H"])’]
=n,(E [H®] — E* [H"]),
E [S3] = n,(n, — 1)(E* [H*] — E* [H?]) + 4n,(n, — 1)(n, — 2)E [(H{H3 — E? [H?])(H{Hj — E* [H?])]

= ny(n, — 1)(E* [H'] — E* [H?]) + 4n,(n, — 1)(n, — 2) (E [H*] E* [H?] — E* [H?]) .
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Hence:
0,2
JE?) = % (nr(E [H®] — E* [H"]) + ny(n, — 1)(E? [H'] — E* [H?])

+4n,(n, — 1)(n, — 2) (E [H*] E? [H?] — E* [H?])
21

+4n,(n, — 1)(E [H°] E [H?] ~E [H'|E Hzm
+

_ 4(ny — 1)(n, — 2) (E [Hﬂ F2 [H2] _[E4 [Hz] )

Analysis for variance ofP,:
2 2 ?
o (Pe) _ NN e @0 g2 (g2
P2 =E (m;hihie E* [H?]
— 2_.
= B || D0 (2005 B2 [H2) D0 7 gl he h i)
r i=1 k=1 q#k
_ A A _
1
=2 (E [A}] + 2E [A1As) + E [A3)),
where
E[A}] = nE | (B30} ~ B [1%))*] = n, (B2 [H*] - E* [H7]),
E [A3] = n,(n, — 1)E* [H?],
2E[A1A] = 0.
results in:
UZ(Pe)_”r—14 2 1 2 [ 74 417721\ — 4 [ 172
T E [H]Jrn—r(E [H'] —E* [H?]) =E* [H?] +....
[ |
Corollary 3: There are positive coefficientsand v, such that for the without path loss case, we have:
E[P]
o > g, (55)
E[P] _
P—T =n (56)
UZ(PI) 2
< v’n,, (57)
Pp
02(Pe) 2
(58)
Pi

Proof: Forn we just set
n=E*[H?] = 44°. (59)
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The existence of is proved by considering (53) arld {54) and the final expressiobtained for these two quantities
and the finiteness of the Rayleigh distribution moments. Bysstuting the required moments in that final expressions,
this coefficient can be chosen and it can be shown that it igamtarge. Note that these coefficients just depend
on the statistical behavior of Rayleigh distribution arglparameter and are chosen independent of other parameters
of our scheme likeRg, ¢ and Pr. [ |

Now, we prove the main results proposed in the Thedrem 4 the.results for the complete model when the path
loss effect is taken in to account. First, we provel (31) arff).(Bhe proofs of[(33) and_(B4) are more elaborate and
needs two lemmas to be proved.

Proof of (31) and B2). Considering the geometry of the network, we have the folhgniommon bounds for

all d's andd¢s:
drr —a; <dj < drg + a, (60)
ae — ap <d5. (61)

By using these bounds, we extract the quantities relatechéopith loss effect from the summations in the
expressions of (29) an@ (B0), so that the remaining termhérstimmations change to the same expressions related
to the case without considering the path loss effect. Nowmguthe results stated in Corollaky 3 and by considering
the linearity and monotonicity of the expected value fumeti(31) and[(32) are simply concluded. [ |

Now we prove the two variance results {(33) ahdl (34)). First,present the following lemmas.

Lemma 5: For any non-negative random variabig with positive mean, the following inequality is true:

E[H?| > E[H?|E[H]. (62)

Proof: Since H > 0, by using Cauchy-Schwartz inequality for the two randomiaes H: and H, we can

write:
E [H%E[H] =E [(H:W 2)] E [(Hlﬂﬂ
> E? [H?] > E [H?] E? [H].
Now, considering its positivity, we divide the above redat byE [H] to obtain the inequality (62). [ |

Lemma 6: For every two i.i.d. random variable§ andY with positive mean and variance and for any two positive

constants: andb such thata < b, the following inequality is true:

Var{(aX + bY)?] < b*Var[(X 4+ Y)Z. (63)
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Proof: By expanding the left side, we show that substitutingy b will increase the variance.
Var[(aX + bY)?] =Var[a®X? + b*Y? + 2abX Y]
—E [(a2(X2 —E[X?]) + B2(Y2—E[Y?]) + 2ab(XY — E [XY]))Q}
=E [o"(X* —E [X?])’] + E p"(Y* = E [Y?])?] + E [4a*»*(XY — E[XY])?]
+20°V°E [(X? - E [X?])(Y? - E[Y?])] + 4a°0E [(X* — E [X?])(XY —E[XY])]
+4ab’E [(Y? - E[Y?])(XY —E[XY])].

In the last equality, the three first terms are clearly nogatige and increasing the coefficients, will increase the
total result. So, substituting by b increases the Variance. According to the independencergtin, the forth term
can be decomposed to two expected value terms, which botieof are zero. The fifth and the sixth sentence have

a similar form. We show below that the fifth term is always gesi A similar argument is true for the sixth term.

E[(X*—E[X*])(XY —E[XY])] & [X*|E[Y] - E [X*] E[X]E[Y]
=E[Y] (E [X°] - E [X?] E[X]) 2o,

where (a) is deduced from the independence assumptions @ricluded from Lemmia 5 and the positivity of the
mean ofY". So, the fifth and also the sixth sentence are positive andftre all the six sentences have a non-negative
value. Hence, replacing by b will increase the amount of the variance and the validitylgH)(is established. =
proof of (33)and (34). Using induction, the recent lemma can be generalized to amper of random variables.
Considering the independence of the fading coefficientsthet Rayleigh distribution and using the inequalities
(€0d) and [(611), the generalization of Lemfda 6 resultd id (38) &4). [ |
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