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Abstract—We study the problem of joint information and
energy transfer in a two-hop channel with a Radio frequency
(RF) energy harvesting relay. We consider a finite battery size at
the relay and deterministic energy loss in transmitting energy. In
other words, to be able to send an energy-contained symbol, the
relay must receive multiple energy-contained symbols. Thus, we
face a kind of channel with memory. We model the energy saved
in battery as channel state with the challenge that the receiver
does not know the channel state. First, we consider the problem
without any channel noise and derive an achievable rate. Next, we
extend the results to the case with an independent and identically
distributed noise in the second hop (the relay-receiver link).

I. INTRODUCTION

Nowadays energy consumption becomes an important de-
sign factor in communication systems instead of traditional
parameters like throughput because of financial reasons and
environmental concerns. There would be many equipments
with large energy consumption in next generation (5G) net-
works, so energy efficiency will play an important rule in these
networks [1].

One of alternative techniques used for energy consumption
management is energy harvesting. Energy harvesting enables
wireless networks to use environmental energies to increase
energy efficiency, so required energy for communication nodes
in wireless networks decrease noticeably. This promising
method is introduced in two main directions: (i) in the first
direction, energy is harvested from environmental sources like
wind and sunlight. The main characteristic of this setup is the
sporadic nature of the harvested energy which makes the exact
analysis rather difficult; (ii) in the second direction, known as
Radio frequency (RF) energy harvesting, energy is harvested
from the radio waves in space. This technique is promising
with an increasing demand profile and some commercialized
products [2]. Due to less randomness in obtaining the har-
vested energy, the analysis and strategies could be simpler
compared with the harvesting from the environment.

The RF energy can be transferred concurrently with the
information signal in a wireless system, proposed as simul-
taneous wireless information and power transfer (SWIPT)
[1], [2]. A useful scenario in this case is to use received
energy for future transmissions. In this scenario, the design
of encoder and decoder is a new open problem, because
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of the memory now appeared in the system. In addition,
the existing works show an inherent trade-off in transmitting
energy and information simultaneously [2]. Thus to understand
the interplay among energy and information and also to obtain
the optimal coding structure in this scenario, an information
theoretic model works. Because of complexity of models
(especially channels with memory), fundamental limits in this
system are not noticed widely. In particular, it is not clear what
are the properties of an optimal code in this system(the code
which transmits information and energy simultaneously).

One of the encoding methods for the joint energy and
information transfer uses a finite state Markov source to
generate codewords [3]. The energy reception constraint can
be modeled with a channel with constraint on output, whose
capacity was derived by Gastpar in [4]. He also extended this
result to multiple access and Gaussian relay channels [4]. The
problem of transmission of optimal rate with constraint on
minimum received energy was studied by Varshney in [5],
where the capacity-energy function was introduced and some
of its features were characterized. A channel with stochastic
power restriction was studied by Ozel and Ulukus [6]. They
showed that the capacity of the AWGN channel with random
power available at the transmitter is the same as the capacity
of an AWGN channel with an average power constraint equal
to the average recharge rate. Capacity of a multiple access
channel with constraint on received power was derived by
Fouladgar and Simeone [7]. They also studied the multi-hop
channel with energy harvesting relay and introduced capacity-
energy function. However, they did not consider a finite battery
at the relay [7]. The capacity of a point to point channel
with an energy harvesting transmitter was determined by
Tutuncuoglu et. al. [8], where the battery size was assumed to
be one.

The problem of interactive communication with energy
transfer (re-transmit the received energy) with finite battery
sizes (i.e., finite energy units available in the system) was
studied by Popovski et. al. [9]. They derived the inner and
outer bound for a two way orthogonal channel with finite
energy units. In their system model, two nodes have a constant
sum of energy units. If a node wants to send symbol ”1”, it has
to cost one energy unit, but sending symbol ”0” does not cost
any energy unit. Similarly if a node receives symbol ”1”, it can
save one energy unit and receiving symbol ”0” does not have
any energy unit [9]. One of the important challenges which

ar
X

iv
:1

70
4.

04
14

9v
1 

 [
cs

.I
T

] 
 1

3 
A

pr
 2

01
7



is not considered in [9] is that the receiver node cannot save
energy of received signal entirely and an energy loss occurs.
This energy loss can be modeled by assuming that the receiver
has to receive m energy-contained symbols for sending a
symbol with energy. Another interactive scenario that can be
studied to understand the nature of the optimal codes in a joint
information and energy transfer is relay channel.

In this paper, we consider a two-hop channel with an RF
energy harvesting relay, where the transmitter jointly transfers
information and energy to the relay. The harvested energy
at the relay is used to re-transmit the data to the receiver.
We assume finite battery size at the relay. The energy loss
in transmitting energy is modeled with a fixed deterministic
reduction in energy. In fact, the relay must receive multiple
energy-contained symbols to be able to send one energy-
contained symbol. These limitations at the relay turn the
problem to the transmission over a channel with states, where
the state shows the energy level at the relay’s battery. Hence,
we face a kind of channel with memory. Thus, the main
questions are which rates would be achievable in these models
and what the structure of the coding techniques are that
achieve those rates. One of the main challenge in the code
design is to make the receiver be able to decode the message
without knowing the sequence of states. We model the energy
stored in relay’s battery as channel state with the challenge
that the receiver does not know the channel state. First, we
consider the problem without any channel noise and derive an
achievable rate. We propose a new block Markov coding based
achievability scheme in which the random codebooks are
generated for each state. We show that the received codewords
in the receiver form Markov sources. We use this property and
Asymptotic Equipartition Property (A.E.P) Theorem [10] to
propose a new decoding strategy which does not need state
sequence at the receiver. Next, we consider the problem with
an independent and identically distributed noise in the second
hop (the relay-receiver link) and find a coding scheme which
works in the noisy condition. Thus, we extend our achievable
results to the noisy case, where we modify the decoding
strategy at the receiver by using typical decoding with the
capability of decoding without knowing state sequence.

II. SYSTEM MODEL

We consider a binary and noiseless two-hop relay channel
illustrated in Fig. 1, in which the relay node has energy
restriction (i.e., the relay must harvest energy from its received
signal to be able to transmit). Also, we assume a finite battery
at the relay which can save finite number of energy units. Thus,
the transmitted symbol depends on the harvested energy from
received symbols.

Notation: Upper-case letters (e.g., X) denote Random Vari-
ables (RVs) and lower-case letters (e.g., x) their realizations.
The probability mass function (p.m.f) of a RV X with alphabet
set X is denoted by pX(x); occasionally, subscript X is
omitted. Xj

i indicates a sequence of RVs (Xi, Xi+1, ..., Xj);
we use Xj instead of Xj

1 for brevity. The channel inputs at the
transmitter and the relay are shown by {X1,1, X1,2, X1,3, ...}

and {X2,1, X2,2, X2,3, ...}, respectively. The output at the
relay and the receiver’s are denoted by {Y2,1, Y2,2, Y2,3, ...}
and {Y3,1, Y3,2, Y3,3, ...}, respectively. The channel input at
the transmitter and the channel outputs at the relay and the
receiver have binary alphabets, i.e., X1 = Y2 = Y3 = {0, 1}.
The alphabet of channel input at the relay is shown by X2 (will
be introduced later). {U1, U2, U3, ...} show the level of battery
storage in the i-th transmission which are used to model the
channel state. Si are considered as: S1 = (U1, U2), S2 =
(U2, U3), S3 = (U3, U4), . . . which are used in further proofs.
πu denotes the steady state probability of the u-th state of the
Markov chain.

In our system model transmitting symbol ”1” needs m
energy units, while symbol ”0” can be sent with no energy (the
transmitting symbol ”1” costs m energy units for the relay).
However, receiving symbol ”1” at the relay charges the battery
with only one energy unit. This consideration shows the energy
loss in the channel. The transmitter does not have energy
restriction and it can transmit any symbol in each channel
use. The transmitter sends a message M ∈ [1, 2nR] to the
relay node in n channel uses (by transmitting Xn

1 ). Then, the
relay decodes this message and sends it to the receiver (by
transmitting Xn

2 ). The X2,u is the set of symbols which can
be transmitted by relay when channel state is u. The channel
state u shows the energy units stored in the relay’s battery and
U is the maximum battery size. Energy restriction in the relay
node is described as:

u < m→ X2,u ∈ {0} (1)

u ≥ m→ X2,u ∈ {0, 1} (2)

where u ∈ [0 : U ]. We call this system as noiseless two-
hop relay channel with finite battery (Noiseless THRC-FB).
Because of the noiseless channel property, the outputs are
equal to inputs in each hop, i.e., Y2 = X1, Y3 = X2, where
Y2, Y3 are the received symbols at the relay and the receiver.

The main difficulty here is that the system has memory due
to the energy restriction and finite battery size at the relay. Our
approach is to model the energy units (in the relay’s battery)
as the state of the system. Also, we assume that the receiver
does not know the state sequence, which is another difficulty
we face. The state diagram of the channel is shown in Fig. 2.
As seen in Fig. 2, when the battery is in state u in the current
transition, the following cases occur in the state diagram: i)If
the relay receives symbol 1 and transmits symbol 0, the state in
the next transition would be u+1 (except when u = U , where
the next state won’t change); ii)If the relay receives symbol 0
and transmits symbol 1, the state in the next transition would
be u−m (in this case we must have u > m− 1, otherwise it
does not occur); iii)If the relay receives symbol 1 and transmits
symbol 1, the state in the next transition would be u−m+1
(in this case we must have u > m− 2, otherwise it does not
occur); iv)If the relay receives symbol 0 and transmits symbol
0, the next state would be the same as the current state.

Now, to insert the noise in to the problem, we consider
a binary memoryless channel between the relay and the



Fig. 1. Noiseless two-hop relay channel with finite battery (Noiseless THRC-
FB)

Fig. 2. State diagram of noiseless THRC-FB

receiver (the second hop). In this case, noise has the ability
to change the transmitted symbol, and of course its energy,
randomly. This means that if channel converts symbol ”1”
into symbol ”0”, it would not have energy and if channel
converts symbol ”0” into symbol ”1”, it would contain one
energy unit. However, this change does not affect the channel
state diagram, and thus it is not important in the channel
memory. This system model is illustrated in Fig.3. All of other
considerations are exactly as same as previous model. We call
this system as noisy two-hop relay channel with finite battery
(Noisy THRC-FB).

Encoding and decoding functions depend on battery size U ,
so we have to include this parameter in our code definition. A
(2nR, n, U) code for (Noiseless/Noisy) THRC-FB consists of
a message set [1 : 2nR], an encoder function which maps m ∈
[1 : 2nR] to xn1 (m), a set of relay encoder functions which map
each past received sequence xi−11 to x2,i(xi−11 ) for i ∈ [1 : n],
and a decoder function which estimates m̂ from the received
sequence yn3 in receiver. We define the average probability
of error P (n)

e = P{M 6= M̂}. A rate R is achievable for
(Noiseless/Noisy) THRC-FB, if there exists a (2nR, n, U) code
such that lim

n→∞
P

(n)
e = 0

III. NOISELESS THRC-FB

In this section we propose an achievable rate for the noise-
less THRC-FB. First we provide a lemma (to be used in the
achievability proof), where we state a sufficient condition for

Fig. 3. Noisy two-hop relay channel with finite battery (Noisy THRC-FB)-
noise between the relay and the receiver

existence of steady state probabilities in a finite state Markov
chain. Next, we prove an achievability theorem based on block
Markov coding. We used superposition coding for codebook
generation for each state. The novel part of our work is in the
decoding at the receiver without knowing the state sequence.
We use backward decoding and A.E.P Theorem [10, Theorem
6.6.1] for message decoding in receiver.

Lemma 1: Consider an indecomposable Markov chain with
r possible states. The steady state probabilities exist, if there
exists a state S̃ in the state diagram which is accessible from
itself in one transition (the probability of returning to itself in
next transition is nonzero).

Proof: It is known that a sufficient condition for existence
of the steady state probabilities is that there exist a state Ŝ
and a positive number n such that beginning from any state
we can reach state Ŝ in n steps [10, Theorem 6.3.2.]. Now,
we show these conditions hold by choosing Ŝ to be S̃ and
n to be maximum distance between S̃ and any other states
in state diagram. Let Sk be the states which has distance k
from S̃ and m be the maximum distance, i.e., m = max k.
One can reach S̃ from Sk in l steps, where l is an arbitrary
integer number that l ≥ k. Because, after first arrival to S̃, we
can stay there (due to the assumption of lemma). Therefore,
beginning from any state we can reach S̃ in at least m steps.

Theorem 1: The following rate, R, is achievable for Noise-
less THRC-FB:

R < max
p(x1|u ,x2|u )

min{
U∑
u=0

πuH(X2|u ),

U∑
u=0

πuH(X1|u
∣∣X2|u )}

(3)
where p(x1|u, x2|u) is chosen such that the state diagram of
channel satisfies assumptions of Lemma 1. This means that
the state diagram is indecomposable and there exists a state
S̃ in the state diagram which is accessible from itself in one
transition. For simplicity, from now on, we call this class of
p.m.f.s indecomposable. Note that for u ∈ [0 : m−1] we must

have p(x2|u ) =
{

1 x2|u = 0
0 x2|u = 1

.

Proof: Our scheme uses block Markov coding, where the
B blocks of transmissions (each of n symbols) are sent to the
relay node to transmit a sequence of B − 1 independent and
identically distributed (i.i.d) messages Mb, b ∈ [1 : B − 1]
while the message of the last block is deterministic. Similarly,
the relay node sends B blocks to the receiver in which the
message of the first block is deterministic and the messages of
the remaining blocks are the same as the transmitter’s message
with one block delay. At the end of each block, the relay
decodes the message and sends it to the receiver in the next
block. Thus, the relay sends a deterministic message in the first
block and the transmitter sends a deterministic message in last
block. Since the state space is finite, we can control the initial
state in each block with at most U transmissions. Thus, we
assume that the initial state in each block can be adjusted and
for simplicity we do not contain these U transmissions in our
further discussions. In fact, by including these transmissions,



Fig. 4. Superposition coding for each state with joint p.m.f p(x1|u , x2|u )

each block contains n+ U bits instead of n bits.
Codebook generation: For each state u ∈ U , fix an indecom-

posable p.m.f p(x1|u, x2|u). Now, for each state u ∈ U and for
each block b ∈ [1 : B−1], we generate randomly and indepen-
dently 2nR sequences xnu+δ

2|u (mb−1), where mb−1 ∈ [1 : 2nR],

each according to
nu+δ∏
i=1

pX2|u(x2|u,i). For each mb−1 ∈ [1 :

2nR], we generate randomly and conditionally independently
Ku sequences xnu+δ

1|u (mu,b,mb−1), where mu,b ∈ [1 : Ku],

each according to
nu+δ∏
i=1

pX1|u|X2|u(x1|u,i|x2|u,i(mb−1)), where

Ku is the size of the transmitter’s codebook of state u and
mu,b is the message of the transmitter’s codebook of state u
in block b. We have m0 = mB = 1. In fact, we do a kind
of rate splitting in transmitter in which Ku = 2nRu and Ru
is the rate of each codebook. The codewords are shown in
Fig. 4.

In addition, we generate 2nR i.i.d random variables
U(mb−1), where mb−1 ∈ [1 : 2nR], with p.m.f πu. These
random variables will be used as initial state of channel in
block b.

We remark that only the first nu bits (in each codeword)
contain message and we find nu for each state such that the
error probability tends to zero. Other δ bits are generated
to protect channel’s statistical properties (Markovity) from
change. This means that we generate δ joint random bits from
the p.m.f p(x1|u, x2|u) for each message set (mu,b,mb−1).
Thus, if nu bits of codeword of state u are sent completely
before the codewords of other states, sending these δ bits
would prevent the changing of statistical properties of channel
state diagram. δ can be chosen as large as n − min(nu)
to satisfy the above condition. The transmission strategy is
described in the following.

Encoding (at the beginning of block b)

Transmitter: To send message mb ∈ [1,
U∏
u=0

Ku] in

block b, transmitter maps the message into a message vec-
tor [m0,b,m1,b, ...,mU,b], mu,b ∈ [1 : Ku]. Then, it se-
lects the codeword xnu+δ

1|u (mu,b,mb−1) from the codebook
corresponding to state u. In addition, we set a vector as:
[l0,b = 1, l1,b = 1, ..., lU,b = 1]. For encoding in block b,

Fig. 5. Flowchart of encoding block b in transmitter and relay

starting from the beginning of the block with u1 as initial state,
we send x1|u1,lu1,b

(mu1,b,mb−1) and we set lu1,b = lu1,b+1.
We repeat this procedure for next transmissions. Encoding
procedure is shown completely in Fig 5. This procedure is
similar to the encoding introduced in [9].

Relay: The relay sends message mb−1 in block b, so it
selects codeword mb−1 from each codebook as the message
of that codebook and chooses U(mb−1) as initial state. The
next stages are the same as the encoding at the transmitter and
are shown in Fig. 5.

Decoding (at the end of block b)
Relay: The state sequence in block b, unb , is known at the

relay, because it knows its battery storage. Thus, for each u ∈
[0 : U ], the relay makes a set Au = {i |ui = u}. If |Au| ≥ nu,
the relay looks for an m̂u,b = {mu,b

∣∣x2|u,k (mu,b) = x2,b,ik },
k ∈ [1 : nu] and i1 ≤ i2 ≤ ... ≤ inu

. This procedure is
shown in Fig. 6. In the error probability analysis, we find
the conditions which guarantee the m̂u,b to be unique. Then,
the relay forms the vector [m̂0,b, m̂1,b, ..., m̂U,b] and by the
inverse of mapping used in encoding, it can decode m̂b. This
procedure is like the decoding introduced in [9].

Receiver: The receiver uses backward decoding. In the last
block, the transmitted message is fixed, i.e., mB = 1. Assume
that the relay transmits the message m′B−1 in last block, where
m′B−1 ∈ [1 : 2nR]. The receiver runs the flowchart shown in
Fig. 5 for each m′B−1 and computes the sequence generated at
the relay for each m′B−1. We call these sequences Xn

2 (mB =
1,m′B−1).Indeed, Xn

2 (mB = 1,m′B−1) is the sequence which
is received at the receiver if the relay sends message m′B−1 in
last block. To perform the above decoding, the receiver does
not need the state sequence, because: 1)the codebooks and
initial states are shared; 2)there is not any noise; 3)as we see
in the flowchart of Fig. 5, since the transmitter’s message (in
last block mB = 1), relay’s message (m′B−1) and the initial



Fig. 6. Flowchart of decoding block b in relay

state are known, after every transmission the next state can
be determined and Xn

2 (mB = 1,m′B−1) could be derived
for each m′B−1 ∈ [1 : 2nR]. Then, the receiver looks for a
unique m̂B−1, such that its computed sequence is equal to
the received sequence. We show that 2nR probable received
sequences are not equal with probability 1. When message
mB−1 is decoded, the transmitter’s message in block B − 1
is known and the above procedure can be repeated to decode
the previous blocks messages.

Error probability analysis: The probability of error is upper
bounded by the sum of probabilities of error in the relay and
the receiver. The error events at the relay in each block are:

• ε(1) = Relay does not receive the codeword of at least one
of the codebooks (corresponds to a state u) completely.
We define ε(1)u as the event in which the relay does not
receive the codeword of codebook u completely.

• ε(2) = There are more than one equal codewords with
received sequence in at least one of codebooks. We define
ε
(2)
u as the event in which there are more than one equal

codewords with the received sequence of codebook u.

where it is seen that P (ε(i)) ≤
∑
u
P (ε

(i)
u ), i ∈ {1, 2}.

First, we consider the ε(1). Recall that the state sequence
has steady state by Lemma 1. In addition, based on a result
in [10, Theorem 6.6.3.], in a finite Markov chain with steady
state, the relative frequency of being in a state u converges
to the steady state probability πu, in probability. Thus, if we
choose nu = n(πu − ε), the event ε(1) does not occur with
probability 1 and P (ε(1)) goes to zero for large enough n.

Based on Lemma (2), the probability of the second error
event (ε(2)) goes to zero if:

log(Ku)

nu
< H(X1|u

∣∣X2|u )− ε (4)

Lemma 2: Fix a joint p.m.f p(u, x) and generate a random

sequence Un according to
n∏
i=1

pU (ui), then generate randomly

and conditionally independently 2nR sequences Xn(m),m ∈
[1 : 2nR], each according to

n∏
i=1

pX|U (xi|ui). If we have

R < H(X |U ), then probability of the event {Xn(m) =
Xn(m′),m 6= m′}, would tend to zero.

Proof: Based on packing lemma [11], if the sequence
Xn(1) is passed through a discrete memoryless channel
n∏
i=1

pY |X (yi|xi) and the sequence Y n is constructed and if

R < I(X;Y |U ), then we would have P ((Un, Xn(m), Y n) ∈
Anε (p(u, x, y))) → 0,m 6= 1. Now we consider a p(y |x )
such that p(y = x |x ) = 1, p(y 6= x |x ) = 0, so we
obtain Y n = Xn(1). Now we determine Anε (p(u, x, y)). By
definition we have:

Anε (p(u, x, y)) = {(xn, un, yn) ||π(x, u, y |xn, un, yn )− p(u, x, y)| ≤

εp(u, x, y),∀u ∈ U ,∀x ∈ X ,∀y ∈ Y} (5)

in which π(x, u, y |xn, un, yn ) is the percentage of repetition
of u, x, y in the sequence xn, un, yn.

For conditional distribution described above, we have
p (u, x, y 6= x) = 0, p (u, x, y = x) = p (u, x) p (y |x ) =
p (u, x), and thus:

π (u, x, y 6= x |un, xn, yn ) = 0 (6)

π (u, x, y = x |un, xn, yn ) = π (u, x |un, xn ) (7)

By inserting (6) and (7) in (5), we get:

Anε (p (u, x, y)) = {(un, xn, yn) |(un, xn) ∈ Anε (p (u, x)) , xn = yn}
(8)

which results in:

P ((Un, Xn(m), Y n) ∈ Anε (p(u, x, y)))

= P ((Un, Xn(m)) ∈ Anε (p(u, x)) ∩Xn(m) = Xn(1))

So by packing lemma [11] for m 6= 1, we have:

P ((Un, Xn(m), Y n) ∈ Anε (p(u, x, y))) < ε′

P ((Un, Xn(m)) ∈ Anε (p(u, x)) ∩Xn(m) = Xn(1)) < ε′

And by complementing above equation we have:

P ((Un, Xn(m)) /∈ Anε (p(u, x)) ∪Xn(m) 6= Xn(1)) > 1− ε′ (9)

we apply union bound to obtain:

P ((Un, Xn(m)) /∈ Anε (p(u, x)) ∪Xn(m) 6= Xn(1))

≤ P ((Un, Xn(m)) /∈ Anε (p(u, x))) + P (Xn(m) 6= Xn(1)) (10)

In addition, by Joint A.E.P Theorem [12, Theorem 7.6.1],
we have:

P ((Un, Xn(m)) /∈ Anε (p(u, x))) < ε′′ (11)

By combining (9)-(11) we obtain:

P (Xn(m) 6= Xn(1)) > 1− ε′ − ε′′ = 1− ε′′′



So by packing lemma [11] and discussions given in the first
paragraph of proof and the fact X = Y , if we have:

R < I (X;Y |U ) = I (X;X |U ) = H (X |U )

then we can derive inequality (12):

P (Xn(m) = Xn(1)) < ε′′′,m 6= 1 (12)

Where ε′′′ could take every small value for large enough
n. Repeating this argument for each Xn(m),m ∈ [1 : 2nR],
completes the proof.

If we substitute nu = n(πu − ε) in (4), we obtain:

nu = n (πu − ε)→ nu < n (πu)→
1

nu
>

1

n (πu)
(13)

R =
log2

∏U
u=0Ku

n
=

U∑
u=0

πulog2Ku

nπu

<

U∑
u=0

πulog2Ku

nu
(14)

R <

U∑
u=0

πuH(X1|u
∣∣X2|u ) (15)

where equation (14) is derived by equation (13) and equation
(15) is derived by equations (4) and (14).

For error probability analysis in receiver, recall that in the
last block, the transmitter’s message is deterministic and so
the receiver derives Xn

2 (mB = 1,m′B−1), m
′
B−1 ∈ [1 : 2nR].

Since we assume that relay sends Xn
2 (mB = 1,mB−1 = 1),

If at least one Xn
2 (mB = 1,m′B−1 6= 1) becomes equal to

Xn
2 (mB = 1,mB−1 = 1), the error occurs in the receiver.
Lemma 3: For each m′B−1 ∈ [1 : 2nR], the Xn

2 (mB =
1,m′B−1) is an independent regular Markov source.

Proof: Independency can be easily deduced from the
codebook generation because the initial states and all code-
words in each codebook are generated independently. To
show that these sequences are regular markov sources, we
define a new Markov chain as: denoting the state sequence as
U1, U2, U3, . . ., the new Markov chain is S1 = (U1, U2), S2 =
(U2, U3), S3 = (U3, U4), . . ., as we described in section (II).
Since X2i is determined by Ui, Ui+1, we have X2,i = f(Si),
where f is a deterministic function. Thus, X2,i is a markov
source. Moreover, the assumptions of Lemma 1 are also
satisfied by the new Markov chain Si and so steady state
probabilities exist. This shows that X2,i is a regular Markov
source.

Since a regular Markov source is ergodic [10, Theorem
6.6.2], X2,i satisfies conditions of Asymptotic EquiPartition
Property (A.E.P) Theorem [10, Theorem 6.6.1] which states
that if we have 2nR i.i.d Markov sources with entropy rate
H{X}, these Markov sources are not equal with probability
1 when R < H{X}. Now, we derive the entropy rate of
X2,i. Since X2,i is not unifilar, we cannot use entropy rate of
unifilar Markov sources (a unifilar Markov source is a Markov
source in which the present state Un and the present output

Xn compute the next state Un+1). We use the followings (for
simplicity, the index B for block number is omitted from the
equations):

H(X2,n |X2,n−1, ..., X2,1 ) ≥ H(X2,n |Un, X2,n−1, ..., X2,1 ) (16)

= H(X2,n |Un ) = H(X2,1 |U1 ) =

U∑
u=0

πuH(X2|u ) (17)

The inequality (16) follows from the fact that conditioning
does not increase the entropy and the equation (17) holds since
conditioning on Un, the distribution of X2,n is determined
independent of X2,n−1, ..., X2,1 and our processes are sta-

tionary. Therefore, if R <
U∑
u=0

πuH(X2|u ), then the generated

sequences are not equal with probability 1 by A.E.P Theorem.
This completes the proof.

Note that to find Ku, first we have to solve optimization
problem in equation (3), so we can determine p(x1|u , x2|u ).
Next, we calculate H

(
X1|u

∣∣X2|u
)

and we consider Ku <
H
(
X1|u

∣∣X2|u
)
.

IV. NOISY THRC-FB
Theorem 2: The following rate, R, is achievable for Noisy

THRC-FB:

R < max
p(x1|u ,x2|u )

min{
U∑
u=0

πuI(X2|u ;Y3|u ),
U∑
u=0

πuH(X1|u
∣∣X2|u )}

(18)
where P (x1|u , x2|u ) is an indecomposable p.m.f and for u ∈

[0 : m− 1] we must have p(x2|u ) =
{

1 x2|u = 0
0 x2|u = 1

.

Proof: All proof steps of this theorem are exactly the
same as the proof of Theorem 1, except the decoding at the
receiver and the error probability analysis in receiver. Thus,
we only highlight the differences.

Receiver decoding: Receiver uses backward decoding. As
we showed for noiseless THRC-FB, the relay computes
Xn

2 (mB = 1,m′B−1) for each m′B−1 ∈ [1 : 2nR]. Then,
the receiver looks for m̂B−1 which satisfies (Xn

2 (mB =

1, m̂B−1), Y
n
3,B) ∈ τ

(n)
ε , where the Y n3,B is received sequence

in receiver in block B.
Error probability analysis in receiver: As we showed in

Lemma 2, Xn
2 (mB = 1,m′B−1) are independent and identical

Markov sources (for m
′
B−1 ∈ [1 : 2nR]). If the relay sends the

sequence Xn
2 (mB = 1,mB−1 = 1) in block B, the received

sequence in the receiver becomes independent of the other
sequences Xn

2 (mB = 1,m′B−1 6= 1). Thus, we calculate
probability of the event in which (Xn

2 (mB = 1, m̂B−1 6=
1), Y n3,B) ∈ τ

(n)
ε (for simplicity, the index B for block number

is omitted from equations):

Pe =
∑ ∑

(α,β)∈An
ε

P (Xn
2 = α)P (Y n3 = β)

≤ 2−n(H{X2}+ε)2−n(H{Y3}+ε)2n(H{X2,Y3}−ε) (19)

So the upper bound on the error probability is:

Perror ≤ 2nR2−n(H{X2}+H{Y3}−H{X2,Y3}−3ε) (20)



Thus the error probability tends to zero, if:

R < H
{
X2

}
+H

{
Y3
}
−H

{
X2, Y3

}
= lim
n→∞

1
n (I (Xn

2 ;Y
n
3 )) (21)

In addition, Y n3 is stationary, so we have:

lim
n→∞

1

n
H (Y n3 ) = lim

n→∞
H(Y3,n |Y3,n−1, Y3,n−2, ..., Y3,1)

The term in the left hand side can be written as:

H(Y3,n |Y3,n−1, ..., Y3,1) ≥ H(Y3,n |Un, Y3,n−1, ..., Y3,1) (22)

= H(Y3,n |Un ) = H(Y3,1 |U1 ) =

U∑
u=0

πuH(Y3|u ) (23)

The reasons for (22) and (23) are exactly the same as the
ones for (16) and (17). On the other hand, we have a binary
memoryless channel which satisfies:

H (Y n3 |Xn
2 ) =

n∑
k=1

H (Y3,k |X2,k )

which can be continued as:

H (Y3,k |X2,k ) =
∑
x

H (Y3,k |X2,k = x ) p (X2,k = x)

=
∑
x

H (Y3,k |X2,k = x )
∑
u

πup (X2,k = x |u )

(24)

=
∑
u

πu
∑
x

H (Y3 |X2 = x ) p (X2 = x |u )

(25)

=
∑
u

πuH
(
Y3|u

∣∣X2|u
)

(26)

where (24) is due to the law of total probability and the
equation (25) holds thanks to the stationarity of X2,k, Y3,k.
By combining (21), (23) and (26), we derive:

1

n
(I (Xn

2 ;Y
n
3 )) ≥

∑
u

πuI
(
Y3|u ;X2|u

)
(27)

Now, based on (20) and (27), we see that if R <∑
u
πuI

(
Y3|u ;X2|u

)
, then the error probability in receiver

tends to zero. Hence proof is complete.

V. DISCUSSIONS AND CONCLUSIONS

We studied a two-hop channel with an RF energy harvesting
relay (with finite battery size), where the transmitter jointly
transfers information and energy to the relay. Modeling the
energy level at the relay’s battery with states, we propose the
achievability schemes for the channel with memory, where
the main challenge was the unknown state at the receiver.
Our proposed schemes work for the noiseless channel and the
channel with noisy second hop.

Noisy first hop: By considering the noise in the first hop
(between the transmitter and relay), the transmitter does not
know the relay’s battery level. Thus, the state is not available to
the transmitter and as a result the receiver cannot compute the
possible transmitted sequences of relay (for each message).

Therefore, the proposed schemes are not readily extended
to this case. Designing appropriate coding schemes for this
channel is our ongoing research work.

Upper bound: Due to the channel memory, the problem of
finding a tight outer bound for this system model cannot be
tackled by using standard inequalities used in converse proofs.

REFERENCES

[1] S. Buzzi, C.-L. I, T. E. Klein, C. Yang, H. V. Poor, and A. Zappone, “A
Survey of Energy-Efficient Techniques for 5G Networks and Challenges
Ahead,”, IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 697–709, Apr.
2016.

[2] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks
with RF energy harvesting: a contemporary survey,”, IEEE Communi-
cations Surveys and Tutorials, vol. 17, no. 2, pp. 757–789, 2015.

[3] A. M. Fouladgar, O. Simeone, and E. Erkip, “Constrained Codes for
Joint Energy and Information Transfer,”, IEEE Trans. on Commun., vol.
62, no. 6, pp. 2121–2131, June. 2014.

[4] M. Gastpar, “On capacity under receive and spatial spectrum-sharing
constraints,”, IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 471–487, Feb.
2007.

[5] L. R. Varshney, “Transporting information and energy simultaneously,”,
in Proc. IEEE Int. Symposium on Inform. Theory, pp. 1612–1616, 2008.

[6] O. Ozel and S. Ulukus, “Information-theoretic analysis of an energy
harvesting communication system,”, in Proc. IEEE Int. Symposium on
PIMRC, pp. 330–335, 2010.

[7] A. M. Fouladgar, and O. Simeone, “On the Transfer of Information and
Energy in Multi-User Systems,”, IEEE Wireless Commun.Lett., vol. 16,
no. 11, pp. 1733–1736, Sept. 2012.

[8] K. Tutuncuoglu, O. Ozel, A. Yener, and S. Ulukus, “Binary energy
harvesting channel with finite energy storage,”, in Proc. IEEE Int.
Symposium on PIMRC, pp. 1591–1595, 2013.

[9] P. Popovski, A. Fouladgar, and O. Simeone, “Interactive joint transfer
of energy and information,”, IEEE Trans. on Commun.,vol. 61, no. 5,
pp. 2086–2097, May 2013.

[10] R. B. Ash, Information Theory. Interscience, New York, 1965.
[11] A. El Gamal and Y. H. Kim, Network information theory. Cambridge

University Press, 2011.
[12] T. Cover and J. A. Thomas, Elements of Information Theory. Wiley-

Interscience, 2006.


	I Introduction
	II System Model
	III Noiseless THRC-FB
	IV Noisy THRC-FB
	V Discussions and Conclusions
	References

