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Abstract—The extended Golay code is shown to be repre-
sentable as a chained polar subcode. This enables its decoding
with the successive cancellation decoding algorithm and its stack
generalization. The decoder can be further simplified by employ-
ing fast Hadamard transform. The complexity of the obtained
algorithm is comparable with that of the Vardy algorithm.

I. INTRODUCTION

The (24, 12, 8) extended Golay code is a quasi-perfect

self-dual linear binary block code. It has found numerous

applications in communication, storage and imaging systems

[1], [2], [3], [4]. Rich algebraic structure of the Golay code

admits very efficient decoding, see [5] and references therein.

However, these algorithms are specific to the extended Golay

code, and, in general, may not be used for decoding of other

types of error correcting codes.

Polar codes is a novel class of capacity-achieving error

correcting codes, which have very efficient construction, en-

coding and decoding algorithms [6]. Furthermore, the list and

sequential successive cancellation decoding algorithms [7], [8]

were shown to be applicable for decoding of short extended

BCH codes [9]. Polar codes were adopted for use in 5G

wireless, so many future communication systems are likely

to have an implementation of a decoder for polar codes. It

is tempting to explore application of the decoding techniques

developed for polar codes for other types of error correcting

codes. This would enable communication systems to support

different channel coding schemes with the same hardware.

In this paper we show that the extended Golay code can be

represented in the framework of chained polar subcodes [10],

and suggest a low-complexity decoding algorithm based on

this representation. The proposed algorithm can be considered

as a generalization of sequential (stack) and block sequential

decoding algorithms [8], [11], [12].

The paper is organized as follows. In section II we review

polar codes, their generalizations and decoding algorithms.

Section III introduces a representation of the extended Go-

lay code as a chained polar subcode. This representation is

used in Section IV to derive some new decoding algorithms.

Simulation results are presented in Section V.

II. BACKGROUND

A. Dynamic frozen symbols

(n = 2m, k) polar code is a set of vectors cn−1
0 = un−1

0 Am,

where Am = Bm

(
1 0
1 1

)⊗m

is the polarizing matrix, ui =

0, i ∈ F , Bm is the bit reversal permutation matrix, and F ⊂
0, . . . , 2m − 1 is the set of 2m − k frozen channel indices

[6]. It is possible to show that Am together with a binary

input memoryless channel W(y|c) give rise to synthetic bit

subchannels

W
(i)
m (yn−1

0 , ui−1
0 |ui) =

1

2n−1

∑

u
n−1
i+1

n−1∏

j=0

W(yj |(u
n−1
0 Am)j),

and the capacities of these subchannels converge with m to

0 or 1 bits per channel use. The standard way to construct

polar codes is to let F be the set of low-capacity subchannels.

However, the minimum distance of classical polar codes is

quite low. It was suggested in [9] to select un−1
0 in such way,

so that the obtained vectors cn−1
0 are codewords of some linear

block code with check matrix H . This corresponds to dynamic

freezing constraints

ui =
∑

j<i

Vsi,juj, i ∈ F , (1)

where V = QHAT
m is a (n−k)×n constraint matrix, and Q is

an invertible matrix, such that last non-zero elements in rows

of V are located in distinct columns, F is the set of indices

of such columns, and si is the index of the row having the

last non-zero entry in column i. Alternatively, the codewords

of a polar subcode can be obtained as cn−1
0 = xWAm, where

W is a k × n precoding matrix, such that WV T = 0, and x
is an information vector.

Decoding of such codes can be implemented with a straight-

forward generalization of the successive cancellation decoding

algorithm, which makes decisions

ûi =

{
argmaxui∈F2 W

(i)
m (yn−1

0 , ûi−1
0 |ui), i /∈ F∑

j<i Vsi,j ûj, i ∈ F .
(2)

Extended primitive narrow-sense BCH codes were shown to

have particularly well-structured sets of frozen symbol indices,

and admit efficient list/sequential SC decoding [9].

Representation of linear codes via the dynamic freezing

constraints can be considered as a result of application of the

generalized Plotkin decomposition introduced in [9].

Theorem 1 ([9]). Any linear (2n, k, d) code C has a generator

matrix given by

G =

(
Ik1 0 Ĩ
0 Ik2 0

)

G1 0
G2 G2

G3 G3


 , (3)
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where Il is a l × l identity matrix, Gi, 1 ≤ i ≤ 3, are ki × n
matrices, k = k1 + k2, and Ĩ is obtained by stacking a (k1 −
k3)× k3 zero matrix and Ik3 , where k3 ≤ k1.

In this paper we essentially present a generalization of this

decomposition.

B. List successive cancellation decoding

In general, classical polar codes, polar subcodes and other

codes represented by (1) require list successive cancellation

decoding in order to obtain near-ML performance. Let

W(i)
m (ui

0|y
n−1
0 ) = max

u
n−1
i+1 ∈F

n−i−1
2

W
(n−1)
m (un−1

0 |yn−1
0 )

be the probability of the most likely continuation of path ui
0 in

the code tree, without taking into account freezing constraints

on symbols uj, j > i. It can be seen that for λ > 0

W
(2i)
λ (u2i

0 |yn−1
0 ) = max

u2i+1∈F2

W
(i)
λ−1(u

2i+1
0,e ⊕ u2i+1

0,o |y
n
2 −1
0 )

· W
(i)
λ−1(u

2i+1
0,o |yn−1

n
2

), (4)

W
(2i+1)
λ (u2i+1

0 |yn−1
0 ) =W

(i)
λ−1(u

2i+1
0,e ⊕ u2i+1

0,o |y
n
2 −1
0 )

· W
(i)
λ−1(u

2i+1
0,o |yn−1

n
2

), (5)

and W
(0)
0 (c|yj) = W(c|yj). Let us define modified log-

likelihood ratios

S
(i)
λ (ui−1

0 , yn−1
0 ) = log

W
(i)
λ (ui−1

0 .0|yn−1
0 )

W
(i)
λ (ui−1

0 .1|yn−1
0 )

.

It is possible to show that [8], [13]

S
(2i)
λ (u2i−1

0 , yN−1
0 ) =a⊞ b = sgn(a) sgn(b)min(|a|, |b|)

S
(2i+1)
λ (u2i

0 , yN−1
0 ) =(−1)u2ia+ b,

where a = S
(i)
λ−1(u

2i−1
0,e ⊕ u2i−1

0,o , y
N
2 −1
0 ), b =

S
(i)
λ−1(u

2i−1
0,o , yN−1

N
2

), N = 2λ. Then the logarithm of

the probability of the most likely continuation of a path ui
0

can be obtained as

R(ui
0|y

n−1
0 ) = logW(i)

m (ui
0|y

n−1
0 )

=R(ui−1
0 |yn−1

0 ) + τ
(
S(i)
m (ui−1

0 , yn−1
0 ), ui

)
,

(6)

where

τ(S, u) =

{
0, sgn(S) = (−1)u

−|S|, otherwise.

One can assume that R(ǫ|yn−1
0 ) = 0, where ǫ is an empty

sequence. Observe that R(ui
0|y

n−1
0 ) is equal up to the sign

to the approximate path metric introduced in [14]. The above

derivation shows that this value is not just an approximation to

the path metric used by the Tal-Vardy list decoder, but reflects

the likelihood of the most probable continuation of a path in

the code tree, without taking into account not-yet-processed

freezing constraints.

It can be also seen that R(un−1
0 |yn−1

0 ) =
−E(un−1

0 Am, yn−1
0 ), where

E(cn−1
0 , yn−1

0 ) = −

n−1∑

j=0

τ(S
(0)
0 (yi), ci)

is the ellipsoidal weight or correlation discrepancy of vector

cn−1
0 with respect to the noisy vector yn−1

0 .

C. Chained polar subcodes

Classical polar codes are limited to length 2m. In order

to obtain codes of arbitrary length, it was suggested in [10]

to combine polarizing matrices of different size. That is, the

codewords of chained polar subcodes are given by cn−1
0 =

xW diag(Am0 , . . . , Ams−1)︸ ︷︷ ︸
A

, where n =
∑s−1

i=0 2mi , and A is

the mixed polarizing transformation matrix. A generalization

of the successive cancellation decoding algorithm and its

derivatives to the case of chained polar subcodes is provided

in [10]. Alternatively, the code can be described as a set of

vectors cn−1
0 = un−1

0 A, where un−1
0 V T = 0, and V is the

constraint matrix, such that WV T = 0.

In general, list or sequential decoding algorithm should be

used for decoding of chained polar subcodes. These algo-

rithms essentially operate by arranging the input symbols of

polarizing transformations Ami
in some order, called decoding

schedule, and interleaving steps of conventional list/sequential

successive cancellation for each Ami
. The performance of

such algorithm does depend on the ordering of symbols ui.

It was shown in [10] that the best performance is achieved

by the greedy schedule, which aims on processing of frozen

symbols as early as possible.

III. THE EXTENDED GOLAY CODE

(24, 12, 8) extended Golay code is a quasi-perfect self-dual

binary linear block code [15]. One of many possible ways

to describe it is given by the Turyn construction [16]. The

codewords are obtained as

c = (u+ v, u + w, u+ v + w), v, w ∈ C′, u ∈ C′′,

where C′ is the (8, 4, 4) extended Hamming code, and

C′′ is a code equivalent to C, such that C′ ∩ C′′ =
{(0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1)}. Note that both C ′

and C′′ are instances of extended BCH codes with generator

polynomials g′(x) = (x − α)(x − α2)(x − α4) = x3 + x+ 1
and g′′(x) = (x−α3)(x−α6)(x−α5) = x3 + x2+1, where

α is a primitive element of F23 .

Their generator and check matrices are given by

G′ = H ′ =

0 α0 α1 α2 α3 α4 α5 α6







1 1 1 0 1 0 0 0
1 0 1 1 0 1 0 0
1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1



G = H =




1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0
1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1
1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1




V = QHAT =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0




and

G′′ = H ′′ =

0 α0 α1 α2 α3 α4 α5 α6







1 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 0 0 1 0 1 1 0
1 0 0 0 1 0 1 1

.

The columns of the matrices are indexed with elements of F23 .

Arranging these elements in the standard bit order (0, 1, α, α+
1 = α3, α2, α2+1 = α6, α2+α = α4, α2+α+1 = α5), and

combining the matrices according to the Turyn construction,

one obtains the generator and check matrix for the extended

Golay code shown at the top of this page.

In order to employ the successive cancellation algorithm and

its derivatives for decoding of the extended Golay code, we

define a mixed polarizing transformation A = diag(A4, A3).
Then, for a suitable matrix Q, one obtains the constraint matrix

V shown at the top of this page.

IV. DECODING

A. Chained decoding schedule

Decoding of the extended Golay code in the above pro-

posed chained representation can be implemented using two

instances of the Tal-Vardy list decoder, which are configured

for polarizing transformations A4 and A3, respectively. Each

instance is responsible for memory management, path cloning

and computing path probabilities or LLRs. However, these

instances need to be synchronized. The synchronization is

achieved by computing the global path score (6), where

the log-likelihood ratios S
(i)
m are computed by either of the

corresponding Tal-Vardy decoder instances.

According to the greedy procedure given the

[10], one obtains the following sequence of

symbol ui indices to be processed by the decoder:

0, 1, 2, 16, 3, 17, 4, 5, 18, 6, 7, 8, 9, 19, 20, 10, 21, 11, 12, 22, 13,

14, 15, 23. For example, the initial four steps of decoding

according to this schedule correspond to frozen symbols

u0 = u1 = u2 = u16 = 0. Hence, one obtains a single

all-zero path with the score

A = R(0000|y230 ) =τ(S
(0)
4 (y150 ), 0) + τ(S

(1)
4 (0, y150 ), 0)

+ τ(S
(2)
4 (00, y150 ), 0) + τ(S

(0)
3 (y2316), 0).

Then one needs to consider two possible values of u3, i.e.

clone the path. This immediately enables one to process

freezing constraint u17 = u3, which follows from the equation

u23
0 V T = 0. Hence, one obtains

R(0000u3u17|y
23
0 ) =A+ τ(S

(3)
4 (000, y150 ), u3)

+ τ(S
(1)
3 (y2316), u17).

The decoder operates in the same way until paths of length

24 are obtained. The result of decoding is given by the

path with the highest score. The decoding complexity can be

substantially reduced by employing the sequential algorithm

described in [8].



B. Block decoding

The decoding complexity can be reduced by joint processing

of some blocks of the input symbols of the polarizing transfor-

mation [12]. In order to exploit this approach, we observe that

puncturing last 8 symbols transforms the extended Golay code

into (16, 11, 4) extended Hamming code. It can be represented

as a Plotkin concatenation of the (8, 4, 4) first-order Reed-

Muller code, and a single-parity check code. Observe also,

that puncturing all codeword symbols for the extended Golay

code except those with indices 16, . . . , 23 results in (8, 7, 2)
single parity check code, which can be obtained via Plotkin

concatenation of the (4, 3, 2) first-order Reed-Muller code

and (4, 4, 1) trivial code. Rows 6,7 of matrix V provide

linear relations between the codewords of (8, 4, 4) and (4, 3, 2)
codes.

The correlation metrics for the codewords of a first-order

Reed-Muller code C of length N − 1

C(c(i), zN−1
0 ) =

N∑

j=0

(−1)c
(i)
j zi, c

(i) ∈ C,

where zi are the log-likelihood ratios, can be obtained via

order-N fast Hadamard transform (FHT) with complexity

N log2 N summations. Given a correlation metric, the cor-

responding ellipsoidal weight can be computed as

E(c(i), zN−1
0 ) =

1

2




N−1∑

j=0

|zj | −C(c(i), zN−1
0 )



 .

This implies that

2R(u7
0, u

19
16|y

23
0 ) = −

11∑

j=0

|zj |+C(u7
0A3, z

7
0)+C(u19

16A2, z
11
8 ),

(7)

where zi = S
(0)
1 (y2i, y2i+1) = S

(0)
0 (y2i) ⊞ S

(0)
0 (y2i+1), 0 ≤

i < 12, and u0 = u1 = u2 = u4 = u16 = 0, u3 = u17,

u5 = u18. Observe that the first summand does not depend

on u23
0 , and can be neglected. With this simplification, one

obtains R(u6
0, u7 = 1, u18

16, u19 = 1|y230 ) = −R(u6
0, u7 =

0, u18
16, u19 = 0|y230 ). Hence, the scores of 32 paths (u7

0, u
19
16)

can be computed via order-8 and order-4 FHTs and 16

additional summations. We propose to sort these pathes in

the descending order1, and apply the below described second

processing step until a stopping condition is satisfied.

For any path (u7
0, u

19
16) with score r = 2R(u7

0, u
19
16|y

23
0 ) one

can compute u9 = u20 = u3 + u5 + u6 + u19. Now one can

compute z̃8+i = S
(1)
1 (u19

16A3, y
16+2i+1
16+2i ), 0 ≤ i < 3. These can

be considered as the LLRs for a codeword of the coset, given

by the value of u20, of (4, 3, 2) code . Hence, one can compute

the corresponding correlation metrics using the order-4 FHT

and obtain scores

ρ = 2R(u7
0, u

23
16|y

23
0 ) = r −

11∑

i=8

|z̃i|+C(u23
20A3, z̃

11
8 ).

1Observe that only 16 values need to be actually sorted.
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Note that only vectors with C(u23
20A3, z̃

11
8 ) ≥ 0 need to be

considered, since u23 is not frozen. Let the vectors u23
20 be

ordered in the descending order of C(u23
20A3, z̃

11
8 ). Now one

can compute u10 = u3 + u5 + u21 and u5 = u22. Let us

further compute z̃i = S
(1)
1 (u7

0A4, y
2i+1
2i ), 0 ≤ i < 7. The can

be considered as the LLRs for a coset, given by u9.u10, u12, of

the (8, 4, 4) first order Reed-Muller code. Hence, one can use

order-8 FHT to compute the correlation metrics, and finally

select the codeword with the highest value of

2R(u23
0 |y230 ) = r−

11∑

i=0

|z̃i|+C(u23
20A3, z̃

11
8 ) +C(u15

8 A4, z̃
7
0).

Observe that coefficients 2 and 1/2 in the above equations can

be omitted.

In order to avoid redundant calculations, one should keep

the highest value Rmax of R(u23
0 |y230 ) obtained so far, and

abort processing of vectors u23
20 as soon as one obtains the

value of ρ < Rmax, and abort processing of (u7
0, u

19
16) as soon

as one obtains r < Rmax.

The best-case complexity of the above described algo-

rithm corresponds to the case when the correct codeword

has the highest values of C(u7
0A3, z

7
0) + C(u19

16A2, z
11
8 ) and

C(u23
20A3, z̃

11
8 ), and exactly two FHTs of order 4 and 3 are

computed. In this case the algorithm requires 111 summations

and 45 comparisons.

At high signal-to-noise ratios one can further reduce the

best-case decoding complexity by constructing the hard-

decision vector for z̃110 corresponding to a given path (u7
0, u

19
16),

and computing the values of u22
20. If the obtained vector

satisfies the constraints given by matrix V , one can skip

computing FHTs in the second step of the algorithm.

V. NUMERIC RESULTS

Figure 1 illustrates the performance of the extended Golay

code for the case of AWGN channel with BPSK modulation.

We consider sequential decoding [8] using the schedule pre-

sented in Section IV-A, and the block algorithm introduced
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in Section IV-B. It can be seen that sequential decoding with

L = 16 provides maximum likelihood decoding. This is the

expected result, since the proposed decoding schedule requires

one to process four unfrozen symbols (u3, u5, u6, u7), before

one can process all freezing constraints which involve these

symbols. Hence, one needs list size at least 16 in order to

avoid killing the correct path at an early phase of decoding

process. It can be seen that the proposed block algorithm also

provides maximum likelihood decoding.

Figure 2 illustrates the average number of arithmetic op-

erations for the proposed decoding algorithms. It can be

seen that their complexity quickly decreases with SNR. At

high SNR it approaches the complexity of the most efficient

decoding algorithm for the Golay code [5], which requires 121

operations. The improved block decoding algorithm, which

employs hard decisions to avoid computing FHTs at the second

step, provides approximately 20% complexity reduction.

The maximal complexity of the block algorithm observed

in our simulations was 1590 operations, which is close to the

complexity of the FHT-based decoding algorithm suggested in

[17].

VI. CONCLUSIONS

It was shown in this paper that the extended Golay code can

be represented like a chained polar subcode. This enables one

to decode it using the successive cancellation decoding algo-

rithm and its list/sequential generalizations. With appropriate

parameter selection, these algorithms can provide maximum

likelihood decoding. The decoding complexity can be reduced

by exploiting the fast Hadamard transform.

Although the complexity of these algorithms is slightly

higher than the complexity of the Vardy algorithm, which

was designed specifically for the extended Golay code, the

proposed approach enables one to decode this code using

the same techniques as polar codes. Since polar codes were

recently adopted for use in 5G, many communication systems

are likely to have an implementation of a decoder for po-

lar codes. The proposed approach enables one to reuse the

corresponding hardware, and avoid implementing dedicated

circuitry for decoder the extended Golay code, reducing thus

the overall implementation complexity. It remains an open

problem to identify other types of error-correcting codes,

which can be decoded in the same way.

A similar representation of the extended Golay code as a

punctured twisted polar code was independently derived in

[18]. However, the authors considered only the straightforward

implementation of the successive cancellation list decoder.
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