
THE STATISTICAL DICTIONARY-BASED
STRING MATCHING PROBLEM

M. Suri and S. Rini

Electrical and Computer Engineering Department,
National Chiao Tung University (NCTU), Taiwan

ABSTRACT

In the Dictionary-based String Matching (DSM) problem, a
retrieval system has access to a source sequence and stores
the position of a certain number of strings in a posting ta-
ble. When a user inquires the position of a string, the retrieval
system, instead of searching in the source sequence directly,
relies on the the posting table to answer the query more effi-
ciently. In this paper, the Statistical DSM problem is a pro-
posed as a statistical and information-theoretic formulation
of the classic DSM problem in which both the source and the
query have a statistical description while the strings stored in
the posting sequence are described as a code. Through this
formulation, we are able to define the efficiency of the re-
trieval system as the average cost in answering a users’ query
in the limit of sufficiently long source sequence. This formu-
lation is used to study the retrieval performance for the case
in which (i) all the strings of a given length, referred to as
k-grams , and (ii) prefix-free codes.

1. INTRODUCTION

Let us define a Dictionary-based String Matching (DSM) prob-
lem is defined as follows. The retrieval system has access to
a source sequence and constructs a posting table in which it
stores the position of a set of source substrings, referred to as
a posting code. More precisely, each row in the posting table
contains the posting list corresponding to a given codeword,
consisting of a list of positions in which the codeword appears
in the source sequence, as selected by the posting function.

At a later time, a user submits a string to the retrieval sys-
tem, termed a query, and the retrieval system is tasked with
providing the positions of the query in the source sequence,
called matches. If the query does not appear in the source
sequence, a empty message is returned to the user. If the re-
trieval system is not able to retrieve some of the matches, an
error message is returned.

We consider a variation of the classic DSM in which we
assume that (i) the source sequence and the query have a sta-
tistical description and that (ii) the cost of a query is pro-
portional to the product of the length of the entries in the
posting table visited by the retrieval system in answering a

query. Under these two assumptions, we consider the prob-
lem of designing the posting code that minimizes the expected
cost of retrieving the positions of a query, from the infor-
mation in the posting sequence in the limit of an infinitely
long source sequence. We term this problem as the Statistical
DSM (SDSM). We are interested in the study of the SDSM
as we wish to determine the ultimate information searching
efficiency in the posting table. As such, this paper represents
a stepping stone toward the development of a universal and
dynamic SDSM in which the source sequence is any station-
ary sequence while the query distribution is unknown at the
retrieval system.
Literature Review: The DSM problem has been studied in a
number of context and modeled through various assumptions
so that a vast literature is available on the topic. To the best of
our knowledge, no formulation has explicitly considered ei-
ther the distribution of source and queries, or the performance
in the limit of large source length. In the information retrieval
context, the DSM problem is referred to as “inverted index”
problem and the concern is with the respect to the memory
required to store the entries of the posting table [6]. The dis-
tribution of the queries is used in [7] to design a three level
memory organization for a search engine inverted file index.
In computation lingustics and natural language processing,
the DSM problem has been studied to determine robust re-
trieval methods [5, 11] to search in a text affected by errors.
In the context of genomics, bioinformatics and computational
biology, the problem is sometimes referred to as off-line or
indexed pattern matching: here the focus is on the retrieval of
sequences that approximatively match the given query [3, 12].
More generally, the source distribution implicitly appears in
the literature concerned with the compression of the entries of
the posting table, such as [2], [13] and [10],
Contributions & Organization: The remainder of the paper
is organized as follows
• Sec. 2- Problem formulation: We propose formulation
of the SDSM problem which accounts for source and query
along with the cost of accessing the entries in the posting ta-
ble. We define the efficiency of a retrieval system as the ex-
pected cost of retrieving a query in the limit for large source
length. Through this performance measure, we formulate an
optimization problem that helps us determine the code with

ar
X

iv
:1

81
1.

09
21

6v
1

 [
cs

.I
R

]
 2

2
N

ov
 2

01
8

the optimal memory utilization.
• Sec. 3- Relevant examples: To validate the propose model,
we study in detail the performance of two retrieval system:
one storing (i) k-grams, all possible source sequences of length
k and (ii) prefix-free codes, codes in which no codeword is
a prefix of another codeword. For illustrative purposes, we
consider the simple case of binary i.i.d. source and query dis-
tributions.
• Sec. 4- Numerical Evaluations: we numerically investi-
gate the design of the optimal code for the case of binary i.i.d.
source and query distributions.

Notation: With x = [x1, . . . , xN] ⊆ XN we indicate a se-
quence of elements from X with length N . The notation xj

i

indicates the substring [xi, . . . , xj]. Given the sequence x,
l(x) indicates the length of the sequence x, w(x) indicates
the Hamming weight, respectively. The notation a.b indi-
cates the vector concatenation operation. The notation a � b
indicates that a is a substring of b. Let P(X) indicate the
power set of X . Define x = 1− x.

2. PROBLEM FORMULATION

The SDSM problem is comprised of a source sequence, a re-
trieval system and a user. The source sequence is defined as
the random sequence XN with support XN and distribution
PXN (x) and let the query be defined as the Random Vari-
able (RV) Q with support P(X) \ ∅ and with distribution
PQ(q). A retrieval system is comprised of a posting code,
a posting table, a storing function and a retrieval function. A
posting code of size M is defined as the set C = {ci}Mi=1 with
ci ∈ P(XN). The set of source matches of the codeword ci
is the set I(ci) = {Wm(i)}m∈N for which

X
Wm(i)+l(ci)
Wm(i) = ci, ∀ i ∈ [1 :M]. (1)

The posting list of the codeword ci is defined as T (ci, XN)
and is such that T (ci, XN) ⊆ I(ci). The posting table is de-
fined as the tuple T (C, XN) = {T (ci, XN)}Mi=1. The storing
function is the mapping fS(I(ci), XN) which produces the
posting list from the set of source matches for each codeword
ci, i.e.

fS : I(ci)→ T (ci, XN) ⊆ Ii. (2)

A user provides a query Q with distribution PQ(q) to the
retrieval system: upon receiving a query Q, the retrieval sys-
tem produces a covering of length V of the query Q = q,
defined as the tuple S(q) = {c(V),n(V)} such that

q
l(c(i))
n(i)

= c(i), ∀ i ∈ [1 : V]. (3)

If a covering of the query does not exists, a retrieval error is
declared. Once a covering is produced, the retrieval system
fetches the position of the codewords in the covering from

the posting table. Finally, the retrieval function, fR, is the
mapping

fR : {T (c(i), XN), c(i) ∈ S(q)}Vi=1 →m ⊂ RN , (4)

where m is such that X l(q)
mi = q for all mi ∈m.

The average size of the posting list and the average size of
the posting table are defined as

E
[
|T (ci, X

N)|
]
= E[l(T (ci, X

N))]

E
[
|T (C, XN)|

]
=

M∑
i=1

E
[
|T (ci, X

N)|
]
,

respectively. If a covering for the query exists, than the cost
of a covering S(q) is defined as

c (S(q)) = log

V∏
i=1

∣∣T (c(i), XN)
∣∣ = V∑

i=1

log |T (c(i), XN)|.

If a covering for the query does not exist, than the cost of
the query is infinite. The minimum expected cost for a given
query Q = q, c(q), is defined as

E[c∗(q)] = min
S(q)

E [c (S(q))] . (5)

Finally, we are now ready to state the optimization prob-
lem of our interest. For given source, query distributions, and
the size of the posting code, the maximal efficiency η in the
SDSM problem is defined as

η = min
C, fS(·)

lim
N→∞

E[c∗(q)]
logN

. (6)

Remark 1. The cost function in (5) is chosen so as to approx-
imate the complexity of finding the positions in the entries of
the posting lists in S(q) corresponding to contiguous code-
words in the covering. See [9, 4, 8].

2.1. The Pre-fix free coded, Complete and Parsed (PCP)
SDSM problem

In the above formulation, the SDSM problem is presented
in the greatest possible generality. In the following, we fo-
cus on a specific formulation of the SDSM problem, the Pre-
fix free coded, Complete and Parsed (PCP) SDSM problem,
which can be more readily analyzed. In particular, we con-
sider the case in which (i) the posting code is a complete pre-
fix free code (see [14]), (ii) the posting table stores all the
matches, (iii) queries are covered by non-overlapping code-
words. While property (i) and (ii) are straightforward, for
(iii), we resort to the following definition. A covering is de-
fined as a parsing if there exists anK such that nj+ l(c(j)) =
nj+1 for j ∈ [1 : K − 1], while

nj = nK , nj + l(cj) > l(Q), (7)

for j ∈ [K : V] and no codeword outside the set {cj}VK
satisfies (7). In other words, a parsing of a query is a covering
with no overlapping over the codewords, apart from the tail
of the query. In the tail of the query, codewords start from
the same position nK and overflow the end of the sequence.
The parsing between K and V contains all codewords that
contain Ql(Q)

nK as a prefix. The string Ql(Q)
nK is referred to as

the tail of the query. Our interest in the PCP-SDSM problem
is motivated by the next theorem.

Theorem 2.1. In the PCP-SDSM problem, the following holds:
− no retrieval error occurs,
− the minimum covering cost is always finite,
− there exists only one parsing of any query, thus this parsing
is the optimal covering,
− the number of entries in the posting table is always equal
to N .

3. RELEVANT EXAMPLES

In the remainder of the paper, we evaluate the efficiency for
two example codes. In both cases, we consider the scenarios
of binary i.i.d. sources and queries distribution. In particular,
the source distribution is obtained as

XN ∼ i.i.d. B(p)N . (8)

PCP-SDSM problem with a k-gram code: Perhaps the sim-
plest choice of posting code for the binary i.i.d. setting is
the case in which C contains all possible binary sequences of
length k such thatM = 2k. Such a posting code is usually re-
ferred to as k-gram code and is typical employed in genomic
research for indexing DNA sequences, such as in the well-
known BLAST algorithm [1].

In the regime of large blocklength, the length of the post-
ing table is obtained by constructing a Markov chain with
M states, each corresponding to a possible k-gram. The i-th
window of the source sequence, Ki = Xi+k

i , can be repre-
sented as a state in the Markov chain: as the window slides by
one position, yielding Ki+1 = Xi+k+1

i+1 , this corresponds to a
state transition of the Markov chain. The length of the posting
sequence of each codeword in the codebook can then be ob-
tained as the average time spent in the corresponding state of
the Markov chain. By considering the structure of the Markov
chain and transition probability matrix, we obtain the steady
state distribution πi = pk−w(ci)pw(ci) for i = 1, 2 . . . ,M
and the average time spent in the state Ki = ci. Let us next
consider the cost of each query: let us assume that the queries
are obtained as

∑
l PL(l)PQ|L=l and that

Q|l ∼ i.i.d. B(q)l, (9)

that is, given that the query length is l, the query is an i.i.d.
sequence of Bernoulli distribution with parameter q of length

l. The RV determining the length of the query can always be
expressed as quotient and remainder of the division by k, i.e.

L = kZ +R, (10)

where Z ∈ N and R = [0 : k − 1]. The minimum expected
cost of the query is then

E [c∗ (S(q))] = E[c(Qk
1)]
(
Z + 1{R>0}2

k−R) , (11)

that is, the cost of the query is the cost of parsing the query
with Z k-grams along with covering the tail and accounting
for its cost. If the tail has length zero, than the cost of the
tail is zero, otherwise the tail of the query is composed of all
2k−R codewords with prefix QkZ+R

kZ .

Lemma 3.1. For the PCP-SDSM problem with a k-gram post-
ing code and source and query distribution in (8) and (9), the
efficiency is obtained as

η =
(
1 + k log (pq + pq)O(log(N)−1)

) (
E[Z] + E

[
2k−R

∣∣∣R > 0
])
,

for Z and R are defined as in (10).

PCP-SDSM problem for Run-Length Encoding (RLE): RLE
is very simple form of lossless data compression to encode
binary data in which one symbol occurs with much higher
frequency than the other. This coding is useful, for instance,
when encoding line drawings, as the black pixels are sparse.
For such a setting, we consider the problem of identifying a
specific binary pattern that can itself be described as a set of
B run lengths. For this reason, we consider a posting code of
the form

ci =

 1 i = 1
0.ci−1 i ∈ [2 :M − 1]
0(M − 1) i =M,

(12)

where 0(x) is the vector of all zeros of length x, so that
l(ci) = i for i ∈ [1 : M − 1] and l(cM) = M − 1. In
other words, the retrieval system stores the successive occur-
rences of zeros before a one appears, up to length M − 1. As
argued for the case of k-grams, the length of each entry in the
posting table can obtained from the average time spent in the
state Ki = ci in the Markov chain corresponding to the win-
dowing of the source sequence. Accordingly, in the regime
of sufficiently large N , the length of each entry in the posting
sequence converges to

lim
N→∞

|T (ci, XN)| =

{
ppi−1 1 ≤ i < M

pM−1 i =M,

since each codeword apart from cM has unitary weight. Let
us next define the distribution queries: queries are of the form
S1.S2 . . . SB , where Sj is a run length of length kj and B
is the number of run lengths. The distribution of the Sj is
obtained

P[Sj = 0(kj − 1).1] = qqkj−1. (13)

Similar to (10), the length of success-run Sj can be expressed
as quotient and remainder of the division by M − 1, i.e.

l(Sj) = Zj(M − 1) +Rj , (14)

so that the cost of the query is Zj-times the cost of the all zero
codeword plus the cost of the codeword equal to Rj .

Lemma 3.2. For the PCP-SDSM problem with a RLE code
and source and query distribution in (9) and (13), the effi-
ciency is obtained as

η =

(
1 + log

(
pq

(1− pq)(1− qM−1)

)
O(log(N)−1)

)
E[B]. (15)

where B is the number of run lengths in the query.

4. NUMERICAL EVALUATIONS

We performed two of sets of preliminary, small-scale simu-
lations to evaluate the the proposed model and to gain some
insight into the performance of the codes discussed in the pre-
vious section. For the first simulation, prefix-free codes with
maximum codeword lengths of 8 were generated by proba-
bilistic splitting of nodes in the code trees. The efficiency
of these randomly generated prefix-free codes was compared
with that of k-gram codes, with a maximum k of 8 and two
sets of p and q. We observe that values for M in the neigh-
borhood of 128, the prefix-free codes have a better efficiency
than the k gram for k = 7 as the minimum expected costs
are lower in this region. We also see that, as M approaches
256, the efficiency of the prefix-free codes approaches that of
the k-gram for k = 8. In the case of run-length codes, from
Lem. 3.2 we see that as the source sequence grows large, the
efficiency approaches the expected number of run-lengths in
the query. This behavior can be observed in Fig. 2. Queries
with up to 4 run-lengths (B = 4), were simulated and the
distribution of B was chosen to be geometric with a success
probability of 0.8.

5. CONCLUSION

In the paper we propose a statistical and information-theoretic
formulation of the dictionary-based string matching (SDSM)
problem. In the SDSM problem, a retrieval system has access
to a source sequence and it stores the position of a certain
number of strings, in a table called the posting table. Upon
receiving a query from a user, the retrieval system access the
entries in the table to efficiently determine the position of the
matches in the source sequence. For this problem, we assume
that source and query distributions are described as random
processes and we propose a cost function for the query re-
trieval. Through this formulation, we are able to define an
optimal posting code as the code which attains the smallest
expected cost in retrieving a query. For the proposed model,
we provide some relevant examples and preliminary numeri-
cal evaluations.

M
η

k = 6

k = 7

k = 5
•

•

p = 0.7

q = 0.2

•

p = 0.4

q = 0.6

•

Fig. 1. Comparison of efficiency of k-gram codes and ran-
domly generated prefix-free codes.

M

η

E[B]

•

N5 = 1012

•

N4 = 109

•

N3 = 106

•

N2 = 103

•

N1 = 102
•

Fig. 2. Convergence of run-length code efficiency to E[B] as
N grows large

6. REFERENCES

[1] Stephen F Altschul, Warren Gish, Webb Miller, Eu-
gene W Myers, and David J Lipman. Basic local
alignment search tool. Journal of molecular biology,
215(3):403–410, 1990.

[2] Vo Ngoc Anh and Alistair Moffat. Inverted index com-
pression using word-aligned binary codes. Information
Retrieval, 8(1):151–166, 2005.

[3] Galil Apostolico. Pattern matching algorithms. Oxford
University Press on Demand, 1997.

[4] Ricardo Baeza-Yates. A fast set intersection algorithm
for sorted sequences. In Annual Symposium on Com-
binatorial Pattern Matching, pages 400–408. Springer,
2004.

[5] Ricardo Baeza-Yates and Gonzalo Navarro. Fast ap-
proximate string matching in a dictionary. In spire, page
0014. IEEE, 1998.

[6] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Mod-
ern information retrieval, volume 463. ACM press New
York, 1999.

[7] Ricardo Baeza-Yates and Felipe Saint-Jean. A three
level search engine index based in query log distribu-
tion. In International Symposium on String Processing
and Information Retrieval, pages 56–65. Springer, 2003.

[8] Ricardo Baeza-Yates and Alejandro Salinger. Exper-
imental analysis of a fast intersection algorithm for
sorted sequences. In International Symposium on String
Processing and Information Retrieval, pages 13–24.
Springer, 2005.

[9] Stefan Büttcher, Charles LA Clarke, and Gordon V Cor-
mack. Information retrieval: Implementing and evalu-
ating search engines. Mit Press, 2016.

[10] David M Chen, Sam S Tsai, Vijay Chandrasekhar,
Gabriel Takacs, Ramakrishna Vedantham, Radek
Grzeszczuk, and Bernd Girod. Inverted index compres-
sion for scalable image matching. In DCC, page 525,
2010.

[11] Stoyan Mihov and Klaus U Schulz. Fast approximate
search in large dictionaries. Computational Linguistics,
30(4):451–477, 2004.

[12] Gonzalo Navarro, Ricardo A. Baeza-Yates, Erkki Suti-
nen, and Jorma Tarhio. Indexing methods for approxi-
mate string matching. IEEE Data Eng. Bull., 24(4):19–
27, 2001.

[13] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index
compression and query processing with optimized docu-
ment ordering. In Proceedings of the 18th international
conference on World wide web, pages 401–410. ACM,
2009.

[14] Raymond W Yeung. A first course in information the-
ory. Springer Science & Business Media, 2012.

Appendix A: Proof of Th. 2.1

Any (posting) code can be represented by a |X |-ary tree in
which codewords are represented as nodes in the tree and each
branch outgoing from an edge is labeled with one of the el-
ements in X . The codeword associated with each node is
obtained as the sequence of labeled visited in the path from
the root of the three to the node. A prefix-free code is repre-
sented by a tree in which all codewords are leaves. A code
is complete if all the leaves in the three representing the code
are codewords. Let us prove each of the properties of the PCP
SDSM in Th. 2.1.

− no retrieval error occurs: since the posting code is com-
plete, any sequence can be parsed using such code. This fol-
lows because, starting from the beginning of the source se-
quence, the first codeword ends in a leaf of the tree. The next
symbol in the source sequence will, consequently, start from
the root of the coding tree and the second codeword will again
end in a leaf. By repeating this argument, the desired property
is shown.

− the minimum covering cost is always finite: since queries
are parsed with posting codewords and given that the posting
code is complete, it follows that a parsing of a query always
exists

− there exists only one parsing of any query, thus this
parsing is the optimal covering: again following from the
completeness of the posting code, it follows that there exists
a unique parsing of any codeword.

− the number of entries in the posting table is always
equal to N : at each position in the source sequence, a code-
word exists. Following from the completeness of the storing
function, such codeword is stored in the posting table.

Appendix B: Proof of Lem. 3.1

To construct the postings table, the source sequence XN is
parsed into overlapping k-grams such that each k-gram has an
overlap of k − 1 bits with its adjacent k-grams and the posi-
tions of each k-gram in the sequence are recorded in postings
lists.

Let us first derive the average length of each posting list:
this can be determined by observing that the transition from
a k-gram to its adjacent overlapping k-gram can be described
through a Markov chain. Consider the Markov chain with
M states, each corresponding to a possible k-gram, and each
labelled with the decimal representation of the corresponding
k-gram. The transition between two states corresponds to the
sliding of the k-gram of a position forward, i.e. Ki = Xi+k

i

to Ki+1 = Xi+k+1
i+1 . The transition matrix can be constructed

by observing that

Pij =

p, if i ≤ 2k−1 and j = 2i− 1

p, if i ≤ 2k−1 and j = 2i

p, if i > 2k−1 and j = 2(i− 2k−1)− 1

p, if i > 2k−1 and j = 2(i− 2k−1)

0, otherwise ,

since the sliding removes the most significant bit in the k-
grams and introduces a least significant bit. The transition
probability matrix can be represented has a block matrix struc-
ture has

P =

p p 0 0 · · · 0 0 0 0
0 0 p p · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · p p 0 0
0 0 0 0 · · · 0 0 p p
p p 0 0 · · · 0 0 0 0
0 0 p p · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · p p 0 0
0 0 0 0 · · · 0 0 p p

. (16)

In order to calculate the average length of the posting list of a
given k-gram, we make use of some results on Markov chains.
For a Markov chain with transition matrix P and initial state
i, the steady state distribution is denoted by π, so that the
following holds

πTP = πT . (17)

The number of visits to state i before time n is

Vi(n) =

n−1∑
t=0

1{Xt=i}, (18)

Under suitable conditions, we can determine the average time
spent in a state using the following result

P
(

lim
n→∞

Vi(n)

n
= πi

)
= 1, (19)

and so the average length of the postings list of codeword i is
given by

E[|T (ci, XN)|] = Nπi. (20)

The steady-state distribution is obtained as the left eigenvec-
tor corresponding the eigenvalue at one. We denote compo-
nent i of the eigenvector u by ui. This eigenvector has an
eigenvalue of 1. Based on the structure of the transition ma-
trix P , we guess the following

ui =

(
p

p

)k−wi

i = 1, 2..,M (21)

where |wi| is the hamming weight of the k-gram wi. If u is
the eigenvector corresponding to eigenvalue 1, it will satisfy
the following equation

uTP = uT . (22)

If (22) holds for the choice in (21), this must indeed be the
eigenvector as eigenvectors are unique. Eq. 22 can be ex-
pressed component wise as

uj =

M∑
i=1

uiPij j = 1, 2, ..,M (23)

Observe that there are only two non-zero entries in every col-
umn of P and that these entries are always separated by 2k−1

rows. This implies that wi+2k−1 = wi + 1. Using this obser-
vation, the RHS of the preceding equation for j = 0, 2, ..,M
can be written as

= p

(
p

p

)k−w j+1
2

+ p

(
p

p

)k−w j+1
2

+2k−1

(24)

= p

(
p

p

)k−w j+1
2

+ p

(
p

p

)k−w j+1
2
−1

(25)

=

(
p+ p

p

p

)(
p

p

)k−w j+1
2 (26)

=

(
p

p

)k−w j+1
2

= u j+1
2

= uj (27)

When j = 1, 3, ..,M − 1, the multiplication factor (1− p) is
replaced with p.

(p)

(
p

p

)k−w j−1
2

+ (p)

(
p

p

)k−w j−1
2
−1

(28)

= (p)

(
1 +

p

p

)(
p

p

)k−w j−1
2 (29)

=

(
p

p

)k−w j−1
2
−1

= u j−1
2 +2k−1 = uj (30)

For the last step, note thatw j−1
2

= wj−1 and sow j−1
2 +2k−1 =

wj .
The eigenvector needs to be normalized to make it a steady-

state distribution. To do this end, we calculate the sum S of
the elements of the eigenvector as follows

S =

k∑
m=0

(
k

k −m

)
(−1)k−m

(
p

p

)k−m

(31)

=

k∑
m=0

(
k

k −m

)(
p

p

)k−m

=
1

pk
(32)

Dividing u by S we obtain the steady-state distribution πi =
(p)k−wipwi which yields

lim
N→∞

|T (ci, XN)| P= N(p)k−wipwi , (33)

for i = 1, 2, . . . ,M and where P= indicates equality in prob-
ability. Note that the average time spent in a state only de-
pends on the Hamming weight of the state. Next we move to
the analysis of servicing a query. A query q with length l(q)
is parsed into successive k-grams to service it using the in-
verted index of k-grams. Since, in a PCP-SDSM problem
there exists only one parsing, this parsing is also optimal.
The number of k-grams in the parsing of length L in (10)
is Z + 1{R>0}2

k−R since the number of codewords to cover
a tail of length R is 2k−R. For each k-grams, since symbols
in a k-grams are iid, we conclude that (11) holds. Finally, we
have that QK

1 is a Binomial random varible so that

E
[
c
(
Qk

1

)]
= NpkMW

(
q, k,

p

p

)
. (34)

where we have used (33) and whereMW (q, k, t) indicates the
moment generating function of a Binomial random variable
with parameters q and k with independent variable t.

Appendix C: Proof of Lem. 3.2

Also, for the case of RLE, the structure of the codes allows
obtaining a compact expression for the average cost of ser-
vicing a query. As argued for the case of k-grams, the length
of each entry in the posting table can obtained from the av-
erage time spent in the state Ki = ci in the Markov chain
corresponding to the windowing of the source sequence.

lim
N→∞

1

N
E[|T (ci, XN)|] P=

{
ppi−1 1 ≤ i < M

pM−1 i =M.

The expected cost of each run length is then obtained as

E[c(Sj)] = N, (35)

Since the source symbols are iid, the expected cost of a
run length, decomposed as in is

c(Sj) = NZj+1ppZj(M−1)+Rj−1, (36)

In this case, we normalize the cost term to factor out the

effect of the sequence length, and then take the expected value

E[c(Sj)] =

∞∑
Zj=0

M−1∑
R=1

pq(pq)Zj(M−1)+Rj−1 (37)

=
pq

pq

∞∑
Zj=0

(pq)Zj(M−1)
M−1∑
R=1

(pq)R (38)

=
pq

(1− pq)(1− qM−1)
. (39)

This is generalized to the case of b run lengths by using
the fact that run lengths are i.i.d.

E[c(q)|B = b] =

(
pq

(1− pq)(1− qM−1)

)b

. (40)

Taking the log and re-normalizing, we obtain the expres-
sion (15)

	1 Introduction
	2 Problem Formulation
	2.1 The Pre-fix free coded, Complete and Parsed (PCP) SDSM problem

	3 Relevant Examples
	4 Numerical Evaluations
	5 Conclusion
	6 References

