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Abstract—The last few years have witnessed VoIP applications
gaining a tremendous popularity and Skype, in particular, is
leading this continuous expansion. Unfortunately, Skype follows
a closed source and proprietary design, and typically uses encryp-
tion mechanisms, making it very difficult to identify its presence
from a traffic aggregate. Several algorithms and approaches have
been proposed to perform such task with promising results in
terms of accuracy. However, such approaches typically require
significant computation resources and it is unlikely that they
can be deployed in nowadays high-speed networks. In this light,
this paper focuses on cutting the processing cost of algorithms
to detect Skype traffic. We have conveniently tuned a previous
well-validated algorithm and we have assessed its performance.
To this end, we have used real traces from public repositories,
from a Spanish 3G operator, and synthetic traces. Our results
show that a single process can detect Skype traffic at 1 Gbps rates
reading replayed real traces directly from a NIC. Even more, 3.7
Gbps are achieved reading from traces previously allocated in
memory using a single process and 45 Gbps using 16 concurrent
processes. This fact paves the way for 10 Gbps processing in
commodity hardware.

Index Terms—Skype; Traffic Classification; High-speed net-
works;

I. INTRODUCTION

In recent years, the usage of IP telephony (VoIP) and
particularly, of the Skype application, is becoming widespread.
At the time of writing, it is estimated that Skype has over
one half billion of users1 (over 22 million users logged in
simultaneously2) and it generated 185 million USD in the third
quarter of 2009 (it is expected to reach 1 billion USD annual
revenue in 2011)1.

The analysis, characterization, classification and detection
of Skype traffic is gaining considerable interest in the research
community [1]–[4]. On the one hand, regulatory bodies are
enforcing operators to intercept communications for security
reasons (among which Skype calls). On the other hand,
Skype’s usage from mobile devices (such as smartphones, net-
books, etc) using 3G or GPRS mobile networks, is becoming
very popular. For these reasons, operators are willing to detect
Skype, either to provide differentiated quality of service or
to restrict it or with billing/accounting purposes, depending

1http://www.techcrunch.com/2009/10/21/skype-hits-521-million-users-and-
185-million-in-quarterly-revenue accessed 16 March 2010

2http://skypejournal.com/2010/01/skype-dialtone-22-million-online.html
accessed 16 March 2010

on the contract. In any case, the detection of Skype traffic is
becoming a very important issue.

As data transmission speeds have increased dramatically in
recent years, the traffic classification applications are turning
out to be a bottleneck for network monitoring. Note that
current high-speed networks provide a bandwidth in the 1-10
Gbps range per link, due to the increasing popularity of new
bandwidth-hungry applications like high-definition television,
real-time data backup, gaming, to mention some of them.
However, the performance evaluation of traffic classification
algorithms in terms of processing time, and more specifically,
Skype, have received relative little attention. We note that the
most state of the art has focused on providing accuracy only,
regardless of the processing power that is required, which may
impair the practical applicability of the traffic classification
algorithm in a real-world, high-speed environment.

This paper aims at filling this gap. Specifically, we seek for
Skype detection algorithms that are both accurate and fast. Our
analysis is focused in general-purpose servers, not specialized
software. As it turns out, all Skype traffic classifiers found in
the literature run in general-purpose servers. Actually, higher
processing rates can be achieved with specialized hardware;
however, the hardware solution is less flexible to incorporate
changes to the algorithm and the cost is significantly higher.
In our case, we trade off complexity of the detection algorithm
versus responsiveness for real-time detection purposes, all in
a general-purpose server. We should be able to answer some
questions, such as “Which is the limit rate, per CPU core, for
detecting Skype traffic? Is a general-purpose server enough
for traffic classification in a highly utilized 1 Gbps link?
how about a 10 Gbps link?”. The answers of these questions
are relevant for network operators with large backbone links,
which seek for traffic classification at the minimum expense
in monitoring equipment.

The authors in [1] proposed a method to detect Skype traffic
based on two statistical techniques: on the one hand, based on
the fact that traffic Skype is encrypted, they use Pearson’s
Chi-Square estimator to check if the packets’ payload fol-
lows a uniform distribution; on the other hand, they use a
Naı̈ve-Bayes classifier to check if the packet length and the
interarrival time fit with a hypothesized distribution of both
magnitudes, which is inferred from the typical Skype codecs.

In this paper, we have borrowed some of these ideas, i.e.,
we have implemented an algorithm that follows a similar978-1-4244-9538-2/11/$26.00 c© 2011 IEEE



approach to those statistical techniques, but conveniently tuned
to satisfy the current high-speed network requirements. Then,
we have evaluated its performance both in terms of accuracy
and processing time.

We have evaluated our approach using real traces both from
public repositories and from a Spanish ISP as well as synthetic
traces. In order to evaluate the performance of our approach
in terms of accuracy, i.e., false positives and negatives rates,
we have used traces from Politecnico di Torino [5], which are
labeled with ground truth, and synthetic traces that comprise
P2P traffic. However, neither of these traces are representa-
tive of real traffic because they were gathered in controlled
scenarios with few users or, directly, generated on purpose.
Therefore, to evaluate the performance in terms of processing
time, we have used a Spanish ISP trace which constitutes a
good sample of the real traffic for a production traffic classifier.

First, our results show that our approach achieves similar
results in terms of accuracy than previous work. More specif-
ically, we obtain a percentage of false negatives of 6% in the
worst case whereas the false positive rate is zero. Second, the
performance of our proposal, in terms of throughput, shows
that Skype traffic can be identified from a traffic aggregate
of up to 1 Gbps with a single process reading replayed real
traces directly from a NIC. Additionally, reading from traces
previously allocated in memory gives a rate of 3.7 Gbps. It is
worth remarking that these figures can be potentially scaled
to the number of available cores using techniques as proposed
in [6]. Specifically, in our general-purpose server with four 8-
core CPUs, Skype traffic can be classified up at 45 Gbps rates
reading from memory.

The rest of the paper is structured as follows: Section II
outlines the existing work on the Skype application. Section III
explains the design of our proposed Skype detection technique,
Skypeness, whereas Section IV provides a performance evalu-
ation in terms of throughput. Finally, Section V concludes this
work with a brief summary of the main findings obtained and
future work.

II. RELATED WORK

Traditional services and protocols (such as FTP, web-
browsing, SMTP, etc) are not difficult to detect by simple
matching to well-known ports. However, such techniques are
not enough to detect Skype traffic, which is a proprietary, ob-
fuscated and encrypted protocol that uses per-session random
ports. Therefore, not even access to the packet payload is
granted and, consequently, well-known Deep Packet Inspec-
tion (DPI) [7] approaches are not longer valid. Because of
this, the research community has proposed novel approaches
based on the use of statistical traffic characteristics (or intrinsic
traffic characteristics) and further applying, typically, Machine
Learning (ML) techniques [8] to classify.

The authors in [9], [10] use ML techniques (such as
AdaBoost, classification tree C4.5, SVM, etc) to design a
simple classifier based on rules, starting from a large traffic
trace. This classifier uses simple discriminants such as flow
duration, bit rate, packet rate, protocol, as well mean, variance,

minimum and maximum observed packet length. In addition,
it is worth noting the existence of a U.S. patent [11], which
claims the invention of a system and a method to build Skype
traffic models and to further apply them to detect Skype traffic
among other network traffic.

To the best of our knowledge, there is no state of the
art in the performance evaluation of Skype detection from a
computational point of view. The authors in [12]–[14] claim
that detection of Skype flows is possible with the first 5 or
10 seconds of a given flow, with accuracy greater than 98%.
Nevertheless, when a link (or a whole network) is monitored
to detect Skype traffic, there are many different flows from
other classes of traffic and the authors do not evaluate if their
proposed technique can effectively discard non-Skype flows.

III. Skypeness

A. Detector Fundamentals

As stated the introduction, Skypeness test is based on the
statistical techniques presented in [1]. We do not consider
the Chi-Square estimator due to the high-performance require-
ments (Chi-Square requires inspection of the packet payload).
Therefore, our detector uses the intrinsic characteristics of the
Skype flows, namely: packet length, interarrival and bit rate.
Fig. 1 shows the behavior of several audio UDP Skype flows
in terms of these characteristics: packet length is delimited
between 30 and 200 bytes (left), interarrival is nearly constant
in multiple of 20 ms (middle) and bit rate is below 100 Kbps
(right).

Flow information, such as timestamp (used to compute
interrarivals) and size for each packet, is passed to the detector
module. In order to smooth data, they are averaged in windows
of 10 packets. It is worth noting that we only focus on audio
UDP Skype flows with more than 30 packets (3 windows)
because this is a validated trade-off threshold to detect Skype
calls and ignore control flows. The detector computes the
proportion of packet windows whose mean packet size, mean
interarrival and mean bit rate are inside the valid intervals.
If these proportions are greater than the given thresholds, the
flow is classified as Skype. Table I shows the values for the
intervals and the thresholds. The interval values have been
chosen with an exhaustive study of Skype flows captured in
several scenarios (wired and wireless connection, real and
emulated networks conditions, etc). The thresholds values have
been optimized using C4.5 trees, as in previous work [9], [10].

TCP Skype flows are not detected by Skypeness. However,
it is worth noting that Skype uses UDP for voice transmissions
as much as possible. TCP is used only when it is behind
UDP-restricted firewall. Nevertheless, we plan to extend the
classifier to TCP Skype voice calls and other classes of Skype
traffic, such as video conferences, file transfers and chat.

B. Hardware and Software Architecture

Skypeness software runs over a general-purpose server
based on 4 AMD Opteron 6128 processors working at 2 GHz.
Each processor counts with 8 cores and the total memory
is composed by 32x4 GB DDR3 memory boards working at
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Fig. 1: Intrinsic Characteristics of a UDP Skype flow (audio conversation).

TABLE I: Intervals and threshold values used by Skypeness
detector.

Characteristic Interval Threshold

Packet size [Bytes] [30, 200] 0.75
Interarrival [ms] [in−1 ± 15] 0.6
Bit rate [Kbps] [0,150] 0.75

1333 MHz, on a standard Supermicro H8QG6 motherboard.
To provide network connectivity one Intel 10 Gigabit CX4
Dual Port Server Adapter is used. This PCI-E 16x card uses
an 82598EB controller that allows multiqueue transmission
and reception up to 16 queues per interface and direction.

This server features a NUMA (Non Uniform Memory
Access) architecture, whereby memory is split into several
groups, one per CPU, giving raise to the so-called NUMA
nodes (CPU+local memory). Clearly, better performance is
achieved when the memory region of a process lies within the
same NUMA node, such that the CPU executing the process
only access local memory. However, the use of memory
across different NUMA nodes increases access times and
degrades computing performance. Fig. 2 shows the NUMA
design for Skypeness hardware obtained using hwloc utility3.
Following the rationale of better performance when memory
locality is exploited, given a NUMA node, a distance vector
to other NUMA nodes is defined. The lower the distance is,
the higher the performance obtained accessing other NUMA
node resources. Table II shows the NUMA distance matrix for
Skypeness hardware obtained using numactl4 utility.

On the software side, Skypeness runs over Ubuntu 10.04
Linux Server (64 bits) using 2.6.35 kernel. Skypeness is
divided into three well distinguished modules. The first module
is in charge of capturing and parsing incoming packets using
a raw socket and mmap functions to map NIC receive queues
at userspace level. Once a packet is processed, it is redirected
to the second module responsible of creating and updating
a list of flows or sessions. From now on, the paper will
focus on flows rather than sessions for simplicity but all

3http://www.open-mpi.org/projects/hwloc/
4http://freshmeat.net/projects/numactl/

TABLE II: Skypeness NUMA nodes distance matrix.

NUMA Node 0 1 2 3 4 5 6 7
0 10 16 16 22 16 22 16 22
1 16 10 22 16 22 16 22 16
2 16 22 10 16 16 22 16 22
3 22 16 16 10 22 16 22 16
4 16 22 16 22 10 16 16 22
5 22 16 22 16 16 10 22 16
6 16 22 16 22 16 22 10 16
7 22 16 22 16 22 16 16 10
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Fig. 2: NUMA architecture of Skypeness.

considerations could be applied as well to sessions. By flow,
we mean a stream of IP packets sharing the 5-tuple (IP source
and destination addresses, source and destination ports and
protocol) and by session, we mean bidirectional flows. This
module handles a hash-based flow table in memory to reduce
access time to the bare minimum. All the memory used in
the application is preallocated in a memory pool to reduce
insertion/deletion time of a flow in the table.

Periodically, the active flows in the table are checked for
expiration. To avoid checking all the active flows in the list,
flows are sorted in decreasing order by last packet arrival time.
Expiration time-slots happen every 15 seconds because it is
the default expiration timeout specified by router manufactur-
ers [15]. When a flow is marked as expired, it is deleted from
the active flow list and redirected to the third module that is
in charge of running Skype detection tests. If the flow passes
all the tests, it is marked as a Skype flow and it is written into



a file.
Note that this is a modular architecture that is based on

a two-step treatment of flows, first flow extraction and then
flow classification. In this case, flow classification is Skype
versus non-Skype but it could be other. Actually, this software
architecture gives flexibility and modularity to the detection
tool, making possible the addition of other tests such as
signature based DPI, etc.

IV. PERFORMANCE EVALUATION

A. Accuracy results

For the accuracy analysis, we have used three different
traces. The first and second traces, named as Trace 1 and Trace
2 in the following, contain Skype traffic captured on the access
link of Politecnico di Torino [5]. The set of users of such
a network are typically students, faculty and administration
staff. The measurement campaign duration was 96 hours in
May/June 2006. Trace 1 only contains end-to-end Skype voice
and video calls whereas Trace 2 only contains Skype out calls.
Trace 1 contains ∼40M packets and Trace 2 contains ∼3M
packets. The last trace used, named as Trace 3 in the following,
is a synthetic trace captured in our laboratory at Universidad
Autónoma de Madrid in August 2008. The trace contains
∼22M packets of P2P traffic from several applications, such
as Emule and Bittorrent.

Table III shows the false positives/negatives rates in the
traces described above. We only consider UDP flows with
more than 30 packets, as stated in Section III-A. With traces
1 and 2 we only estimate the false negatives rate (these traces
only contain Skype traffic). However, with Trace 3 we estimate
the false positives rate (this trace does not contain Skype
traffic). It can be observed that the false negative rate is below
1% in Trace 1 and is around 6% in Trace 2. On the other
hand, Trace 3 shows a false negative rate equal to zero.

The obtained accuracy results are similar to the ones found
in previous works which use trace 1 and 2: [14] shows a false
negative rate near to 6% (in bytes) in the best case using
only statistical classifiers (without inspecting packet payload).
In [1], it is obtained a false negative rate greater than ours,
when Naivë-Bayes classifier is used only.

B. Processing performance results

We have connected Skypeness to a server, which reproduces
a pcap file using Tcpreplay5. This tool allows the transmission
of pcap traces at variable rate. The transmission rate is varied
during the tests (100, 250, 500, 750 and 1000 Mbps). We have
found a limitation in the Tcpreplay throughput to 1 Gbps (i.e.,
we have not been able to send the pcap file faster than 1 Gbps
in spite of using 10 Gbps NICs).

In this experimental setup, we have only set one reception
queue and one traffic classifier instance running in the server.
That is, we only use two cores: one for receiving packets and
one for detecting Skype flows. Concerning NUMA affinity,
we have set the CPU affinity of the reception queue to the

5http://tcpreplay.synfin.net/

NUMA node 1 and the CPU affinity of the Skype detector to
the NUMA node 4 (the worst case in terms of distance).

For our performance analysis (processing point of view), we
have used another trace, named as Trace 4 in the following.
Trace 4 was captured from a 3G access network of a Spanish
provider. The full trace contains traffic from residential house-
holds and small businesses. The trace contains ∼70M packets
which correspond to ∼12M TCP/UDP flows captured during
∼18 hours in June, 2009.

The results are shown in Table IV. For each speed step,
we can see the bit rate, the packet rate, the maximum number
of flows expired (and consequently analyzed) in a second and
the packet loss rate in the whole trace. It can be observed
that there is no packet loss. It is worth noting that these
results have been obtained using only two cores: one for
receiving packets and storing them in memory and one for
traffic classification. By using the technique proposed in [6],
which assigns a reception queue per socket, we would be able
to set up to 16 reception queues and 16 detection processes. In
the following, we investigate if the use of this technique would
allow performance gains of 16x, which would enable 10 Gbps
Skype traffic classification in a general-purpose server.

To tackle this issue, some offline experiments were made.
These experiments use a modified version of Skypeness soft-
ware that obtains traffic from a local pcap trace instead of
opening a socket for reception of frames. As it turns out,
the theoretical read/write throughput of our DDR3 memory
is 170.6 Gbps which is by far larger than the bandwidth of
an Internet backbone link. To compute the hypothetical band-
width that Skypeness can handle, the program was executed
10 times and execution times were obtained using Trace 4 as
source. This methodology is repeated incrementing the number
of parallel instances of Skypeness process and obtaining the
corresponding execution times.

Taking into account the NUMA architecture described in
section III-B the experiments have been designed such that
data source and Skypeness software are located on different
NUMA nodes and as far, in terms of NUMA distance, as
possible. These conditions set out a worst case scenario. Fig. 3
and 4 show the execution time and the throughput versus
the number of concurrent instances of Skypeness. It can be
observed that the throughput of a single instance is 3.7 Gbps,
scaling linearly up to a remarkable 45 Gbps classification
speed using 16 instances. Note that slope is not 3.7 Gbps but
lower. This is because every NUMA node serializes access to
shared memory.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an application for Skype
traffic classification that works at 1 Gbps and 3.7 Gbps, read-
ing from a NIC and from memory, respectively. In addition,
we have assessed such application in our four 8-cores CPUs
platform, providing a total throughput of 45 Gbps. From
accuracy point of view, we have obtained a percentage of false
negatives of 6% in the worst case whereas the false positive
rate is zero, similar to related work.



TABLE III: Accuracy Results.

Trace Skype Other Class. Skype Class. Other FP (%) FN (%)

Trace 1
Bytes 8381658970 0 8346887596 34771374 - 0.41

Packets 39458562 0 39147589 310973 - 0.79
Flows 1059 0 939 120 - 11.33

Trace 2
Bytes 231257652 0 217651943 182930 - 5.88

Packets 3049148 0 39147589 2866218 - 6
Flows 159 0 149 10 - 6.29

Trace 3
Bytes 0 1098935 0 1098935 0 -

Packets 0 5312 0 5312 0 -
Flows 0 52 0 52 0 -

TABLE IV: Performance results (per core) in packet, bit and
flow rate.

Bit Rate Packet Rate Max. Flow Rate Total Packet
[Mbps] [Kpps] per second Loss Rate

100 30 26550 0
250 75 52800 0
500 150 90000 0
750 225 119000 0

1000 300 170000 0
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Fig. 3: Processing time obtained in offline processing.

These results show that identification of Skype traffic is fea-
sible at the nowadays high-speed networks, typically ranging
from 10 to 40 Gbps, using commodity hardware.

Given the difference, in terms of throughput, between
reading from a NIC and from memory, we remark that traffic
handling (both transmission and reception) with 10GbE NICs
is the bottleneck of the process. In this light, we plan to address
this issue tuning the current Intel driver and the Linux kernel.

We plan to apply the methodology of this paper to other
classes of traffic, such as P2P, and to other detection tech-
niques, such as DPI.
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