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Abstract—Accurate channel state information (CSI) is required 
for coherent detection in time-variant multiple-input multiple-
output (MIMO) communication systems using orthogonal 
frequency division multiplexing (OFDM) modulation. One of 
low-complexity and stable adaptive channel estimation (ACE) 
approaches is the normalized least mean square (NLMS)-based 
ACE. However, it cannot exploit the inherent sparsity of MIMO 
channel which is characterized by a few dominant channel taps. 
In this paper, we propose two adaptive sparse channel estimation 
(ASCE) methods to take advantage of such sparse structure 
information for time-variant MIMO-OFDM systems. Unlike 
traditional NLMS-based method, two proposed methods are 
implemented by introducing sparse penalties to the cost function 
of NLMS algorithm. Computer simulations confirm obvious 
performance advantages of the proposed ASCEs over the 
traditional ACE. 

Keywords—normalized least mean square (NLMS),  -norm 
NLMS, -norm NLMS, adaptive sparse channel estimation 
(ASCE). 

I.  INTRODUCTION 
The use of multiple-input multiple-output (MIMO) 
transmission (as shown in Fig. 1), and orthogonal frequency 
division multiplexing (OFDM) makes high data 
communications possible with low transmit power in a 
frequency-selective fading channel [1–3]. In the high mobility 
environment, the MIMO channel is subjected to a as time-
variant fading (i.e., double-selective fading). The accurate 
estimation of channel impulse response (CIR) is a crucial and 
challenging issue in coherent modulation and its accuracy has 
a significant impact on the overall performance of 
communication system.  

During last decades, many channel estimation methods 
proposed for MIMO-OFDM systems [4–12]. However, all of 
the proposed methods can be categorized into two types. The 
first type is that linear channel estimation methods, e.g., least 
squares (LS) algorithm, based on the assumption of dense 
CIRs. By applied these approaches, the performance of linear 
methods depend only on size of MIMO channel. Note that 
narrowband MIMO channel may be modeled as dense channel 
model because of its very short time delay spread; however, 

broadband MIMO channel is often modeled as sparse channel 
model [13–15]. A typical example of sparse channel is shown 
in Fig. 2. It is well known that linear channel estimation 
methods are relatively simple to implement due to its low 
computation complexity [4–9]. But, the main drawback of 
linear channel estimations is unable to exploit the inherent 
channel sparsity. Second type is the sparse channel estimation 
methods using compressive sensing (CS) [16], [17] based on 
the assumption of sparse CIRs. Optimal sparse channel 
estimation often requires that its training signal satisfies 

Fig.1. An example of MIMO system. 

Fig. 2. A typical example of sparse multipath channel. 



restrictive isometry property (RIP) [18]. However, designing 
the RIP-satisfied training signal is a Non-Polynomial (NP) 
hard problem [19]. Although some CS algorithms are stable 
solution, they incur extra high computational burden, 
especially in time-variant MIMO-OFDM systems. For 
example, one of typical sparse channel estimations methods, 
using Dantzig selector (DS) algorithm, was proposed for 
double-selective fading MIMO systems in [11]. However, DS 
algorithm needs to be solved by linear programming and 
hence it incurs high computational complexity. To reduce the 
complexity, sparse channel estimation methods using greedy 
iterative algorithms were also proposed in [10], [12]. However, 
their complexity depends on the number of nonzero taps of 
MIMO channel. Larger number of nonzero taps in MIMO 
channel requires higher complexity and vice versa. Hence, a 
new sparse channel estimation method needs to be developed 
for MIMO-OFDM channel.  
 

 
In this paper, we study least mean square (LMS) [20] based 

adaptive channel estimation (ACE) method for MIMO-OFDM 
systems. To exploit the channel sparsity, Chen et. al. proposed 
an effective sparse LMS algorithm using -norm sparse 
penalty [21]. Based on the -norm sparse LMS, Taheri et. al. 
proposed a -norm LMS (LP-LMS) based adaptive sparse 
channel estimation (ASCE) method to further exploit the 
channel sparsity in signal-antenna systems [22]. To fully take 
advantage of channel sparsity and to improve stability of 
adaptive parse channel estimation (ASCE), we proposed a -
norm LMS (L0-LMS) based ASCE method and sparse 
normalized LMS (NLMS) methods, i.e., -norm NLMS (LP-

NLMS) and -norm NLMS (L0-NLMS) algorithms, for 
single-antenna time-variant communication systems [23]. To 
the best of our knowledge, it is still no work to propose ASCE 
method in MIMO-OFDM systems. Hence, we extend our 
previous work in [23] to MIMO systems. Our proposed ASCE 
methods are implemented by LP-NLMS and L0-NLMS, 
respectively. First of all, as shown in Fig. 3, MIMO-OFDM 
system model is formulated so that each multiple-input single-
output (MISO) channel vector can be estimated by ASCE 
methods. Later, computer simulation results are presented to 
confirm the effectiveness of our proposed methods. 

  The remainder of this paper is organized as follows. A 
MIMO-OFDM system model is described and problem 
formulation is given in Section II. In section III, the sparse 
LMS algorithm is introduced and ASCE in MIMO-OFDM 
systems is highlighted. In addition, performances of ASCE 
methods are compared analytically. Computer simulation 
results are given in Section IV in order to evaluate and 
compare performances of the ASCE methods. Finally, we 
conclude the paper in Section V. 

II. SYSTEM MODEL 
Consider a time-variant MIMO-OFDM communication 
system as shown in Fig. 1. Frequency-domain signal vector ( ) = ̅ ( , 0), … , ̅ ( , − 1) , = 1,2, … ,   is fed 
to inverse discrete Fourier transform (IDFT) at the -th 
antenna, where  is the number of subcarriers. Assume that 
the transmit power is ( ) = . The resultant vector ( ) ≜ ( ) is padded with cyclic prefix (CP) of length ≥ ( − 1) to avoid inter-block interference (IBI), where 

  is a ×  DFT matrix with entries [ ] = 1⁄ ⁄ , , = 0,1, . . . , − 1. After CP removal, the received signal 
vector at the -th antenna for time  is written as . Then, 
the received signal  and input signal  are related by  = + ,                             (1) 

where the MIMO channel matrix  can be written as 

= ⋮     ⋮ ⋯⋯⋱  ⋮… = ::⋮ :
 ,              (2) 

where  is the size of the channel memory of each single 
channel between each antenna pair. Then, the received signal 
at -th antenna can be written as = ∑ +  = : + ,        (3)                  

where : = , , … , ∈ ∁ × , = 1,2, . . ,  
is a column vector which is considered as an multiple input 
single output (MISO) channel vector and  ( =1,2, … ,  and = 1,2, … , )  is assumed equal -length 
sparse channel vector from -th receiver antenna to  -th 
antenna. In addition, we assume that the each channel vector   

 is only supported by  dominant channel taps. A typical 
example of sparse multipath channel is depicted in Fig. 2. 
Hereby, at the -th receive antenna, the corresponding signal 
estimation error  at time  can be defined as 

Fig.3. ASCE for MIMO-OFDM systems. 



( ) =  −  ( ) = − :( ) ( ),         (4) 

for = 1,2, … , , where :( ) denotes an -th adaptive 
updating estimator of : and ( ) is the output signal from 
NLMS filter which can be seen in Fig.3. If we collect all of the 
error signals ( ), = 1,2, … , , then the Eq. (4) can be 
rewritten as matrix-vector form ( )  = ( ), ( ), … , ( )   = − ( )                                              = − ( ) ( ),                                   (5) 

where = , … ,  and ( ) = ( ), … , ( )  
denote MIMO system ideal output vector and its estimate 
signal, respectively; ( ) is an -th adaptive estimate channel 
matrix . According to Eq. (5), MIMO channel estimation 
problem equivalents to estimate different individual MISO 
channel :  using error signal ( )  and input training 
signal ( ). In general, estimate the MISO channel vector : 
using standard LMS algorithm, the corresponding cost 
function can be constructed as ( ) = ( ),                               (6) 

for = 1,2, … , . It is obvious that the update equation of 
LMS based adaptive channel estimation can be derived as 

:( + 1) = :( ) − ( ):( )  = :( ) + ( ) ( )                 (7) 

for = 1,2, … , , where  ∈ (0, ) is the step size of 
LMS gradient descend and   is the maximum eigenvalue 
of the covariance matrix = { ( )x ( )}. Since the LMS 
based method is sensitive to random scaling of training signal. 
To improve the stability, normalized LMS (NLMS) is 
considered as standard method for MIMO ACE. Hence, its 
update equation is given by  

:( + 1) = :( ) + ( ) ( )( ) ( )  .                  (8) 

III. PROPOSED SPARSE NLMS METHODS 
Consider -norm sparse penalty on NLMS cost function to 

produce sparse channel estimator since this penalty term 
forces the channel taps values of : to approach zero. It is 
termed as LP-NLMS which was proposed for single-antenna 
systems in [22]. For -th MISO channel vector, its cost 
function of the LP-NLMS is given by 

, ( ) = ( ) + , : ,              (9) 

for = 1,2, … , , where  ‖∙‖  is the -norm operator and ,  is a regularization parameter which tradeoffs the mean 
square error and sparse penalty. The update equation of LP-
NLMS based adaptive sparse channel estimation can be 
derived as 

:( + 1) = :( ) + ( ) ( )( ) ( )  − , :( ) :( )
:( ) ,  (10) 

where , = ,  depends on gradient descend step-size 
 and regularization parameter , . 

Following to idea of the LP-NLMS algorithm on adaptive 
channel estimation, if = 0, then the zero-attracting forces 
the channel taps values of : to approach zero is L0-norm 
penalty. It is termed as L0-norm NLMS (L0-NLMS) [23] that 
the cost function is given by 

, ( ) = ( ) + , :( ) ,              (11) 

where ‖∙‖  is the -norm operator that counts the number of 
nonzero taps in :( ) and ,  is a regularization parameter 
to balance the estimation error and sparse penalty. Since solve 
the -norm minimization is a NP-hard problem [19], we 
replace it with approximate continuous function  

: ≈ ∑ 1 − :, .                  (12) 

According to the approximate function, L0-LMS cost function 
can be revised as 

, ( ) = ( ) + , ∑ 1 − :, ,   (13) 

Then, the update equation of L0-LMS based adaptive sparse 
channel estimation can be derived as :( + 1) = :( ) + ( ) ( )  − , sgn :( ) :( ) ,     (14) 

where , = , . It is worth mention that the exponential 
function in (14) will cause high computational complexity. To 
reduce the computational complexity, the first order Taylor 
series expansion of exponential functions is taken into 
consideration as [24] | | ≈ 1 − |ℎ|, when |ℎ| ≤ 1⁄  0, others.                (15) 

Then, the update equation of L0-NLMS based adaptive sparse 
channel estimation can be derived as 

:( + 1) = :( ) + ( ) ( )( ) ( ) − , ( :( )), (16) 

where ( )J h  is defined as 

:( ) = 2 ℎ − 2 sgn(ℎ), when |ℎ| ≤ 1⁄  0, others.   (17) 

IV. NUMERICAL SIMULATIONS 
In this section, the proposed ASCE estimators using 1000 

independent Monte-Carlo runs for averaging. The length of 
channel vector  between each pair ( , )  is set as = 16 and its number of dominant taps is set as = 1 and 4, 
respectively. Values of dominant channel taps follow Gaussian 
distribution and their positions are randomly allocated within 
the length of  which is subjected to  { = 1} . 
The received signal-to-noise ratio (SNR) is defined as 10log ( ⁄ ) , where = 1  is transmitted power at each 
antenna. Here, we set the SNR as 5dB , 10dB  and 15dB  in 
computer simulation. All of the step sizes and regularization 
parameters are listed in Tab. I. The estimation performance is 



evaluated by average mean square error (MSE) which is 
defined as  { ( )} = {‖ − ( )‖ },                (18) 

where {∙} denotes expectation operator,  and ( ) are the 
actual MIMO channel vector and its -th adaptive channel 
estimator, respectively.  

TABLE I.  SIMULATION PARAMETERS.  

Parameters    

Values 0.5 and  1 (1e − 4)  (1e − 3)
 
 

In the first example, the proposed methods are evaluated in 
Figs. 4-6 in different signal region. The three figures show that 
LP-NLMS based ASCE methods can achieve better estimation 
performance than standard NLMS based ACE. Since L0-
NLMS based ASCE methods taken more fully sparsity 
advantage of MIMO channel, much better estimation 
performance than NLMS is achieved. In addition, the three 
figures also indicate that ACE using NLMS has no obvious 
relationship with number of nonzero channel taps; but 
proposed ASCE methods depend on the number of nonzero 
taps. The proposed ASCE methods can achieve better 
estimation performance for sparser channel, and vice versa. 
Let us take the Fig. 5 example. Two performance curves of 
ACE method using NLMS are almost same at different 
number of nonzero channel taps, i.e., = 1 and 4. Unlike this 
phenomenon, ASCE methods using both LP-NLMS and L0-
NLMS algorithms achieved better estimation performance on 
the channel ( = 1) which is sparser than the channel ( = 4).  

In the second experiment, the proposed methods are 
evaluated at different number of transmit/receive antennas, i.e., ( , ) = (2,4) as shown in Figs. 7-8. The figures are shown 
that the performance advantage of proposed ASCE using 
methods LP-NLMS and L0-NLMS algorithms over than SCE 
method using NLMS algorithm.  

 In the third experiment, the proposed methods are 
evaluated at different step-sizes, i.e., = 0.5, 1  and 1.5 , as 
shown in Fig. 9-10. Without loss of generality, the simulation 
environment is considered in SNR = 10dB . The number of 
transmit/receive antennas are set as (N , N ) = (2,2) in Fig. 9 
and (N , N ) = (2,4) in Fig. 10, respectively. The two figures 
show that the proposed ASCE methods can achieve better 
performance than standard ACE method. Here, note that each 
proposed ASCE method using smaller gradient descend step-
size can achieve better estimation that one using bigger step-
size, at the cost of few higher computational complexity and 
vice versa. For a practical time-variant MIMO-OFDM system, 
both performance and simplicity of the ASCE method are 
required. In different SNR region, hence, different step-size 
could be applied to trade off the performance and 
computational complexity of the proposed ASCE methods. 

 

Fig. 4. Performance comparison at SNR = 5dB and = 0.5. 

Fig. 5. Performance comparison at SNR = 10dB and = 0.5. 

Fig. 6. Performance comparison at SNR = 15dB and μ = 0.5. 



 

 

V. CONCLUSION 
In this paper, we proposed ASCE methods using LP-NLMS 

and L0-NLMS algorithms, for time-variant MIMO-OFDM 
systems. First of all, system model was formulated to ensure 
each MISO channel vector can be estimated independently. 
Secondly, cost function of the two proposed methods were 
constructed using sparse penalties, i.e., -norm and -norm. 
Later, MIMO channel matrix was estimated using ASCE 
methods. At last, simulation results were shown that proposed 
ASCE methods achieved better performance than standard 
ACE method without scarifying computational complexity. 
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