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Abstract—The paradigm of virtual world environment arises
as an useful tool in diverse fields such as e-Health or education,
where they provide a new way of communication and interaction
with end users. Networking capabilities play an important role
in these systems, which motivates the study and understanding
of the gaming network traffic. The present work focuses on Open
Wonderland, a system that provides the basis for the development
of Networked Virtual Environments with educational or health
purposes. The goal of this paper is defining a testing environment
and modelling the behaviour of the outgoing network traffic at
the server side.

Index Terms—modelling, network traffic, Open Wonderland,
Networked Virtual Environment

I. INTRODUCTION

Most multi-player on-line games rely on the virtual world

paradigm. This “virtual reality” is a simulation shared and

synchronized among multiple players over a data network.

The massive popularization of these games in recent years has

meant the emergence of a new business model in the video

game industry and has attracted the interest of the research

community, focused on the study and better understanding of

the network requirements and user experience, as well as on

the idea that other fields such as the e-Health may benefit from

the introduction of new tools. For example, the possibility of

several users interacting in a Networked Virtual Environment

(NVE) has been seen as a suitable basis for the development

of the so-called “persuasive systems”, systems that focus on

motivating healthy lifestyle habits [1].

Open Wonderland (OWL) is an Open Source NVE, which

has been previously used as basis for the development of

a pervasive system over a NVE, “Virtual Valley”[1], [2].

There are several reasons that make OWL a suitable testing

bench: a GPL v2 license, usage of Java technologies to ensure

portability and freedom to deploy a OWL instance on a wide

range of configurations and infrastructures.

The network traffic generated by Wonderland is mainly due

to three sources. First, object synchronisation that allows all

users to have a coherent view of the virtual world (including

moving objects like avatars). Second, messages intended to

support communications among users, including voice traffic

(the main source of traffic) but also text messages (chat).

And, finally, traffic due to the execution of applications shared

among different users. The latter proves to be very difficult to

model, as it depends on the particular application.

This paper aims to study and model the behaviour of the

server outgoing traffic. This is a first step to understand the

network behaviour and accomplish further study of the impact

of the underlying network over the performance of NVEs.

The paper is structured as follows: Section II provides

a brief summary of related literature, Section III defines

the methodology employed in the current work as well as

the mathematical and statistical tools. Section IV provides a

detailed description of the test-bed and the performed testing

sessions. Then, Section V shows the results extracted from the

experimental data, while Section VI concludes the paper with

some final remarks.

II. PREVIOUS WORK

The early 2000s witnessed the proliferation of studies fo-

cused on the most prominent multi-player genres, First Person

Shooter (FPS), Real-Time Strategy (RTS) and Multiplayer

Online Role-Playing Game (MMORPGS). In [3] there is a

complete survey about the gaming ecosystem.

Regarding the analysis and modelling of gaming network

traffic, the study about FPS games performed in [4] laid

the groundwork for the study of gaming traffic, proposing

a methodology adapted to the specific nature of this traffic,

specifically highlighting the study or packet inter-arrival time

and size. Later studies such as [5] and [6] followed similar

approaches and metrics: the first one focusing on Starcraft

(RTS genre) and also paying attention to the autocorrelation

as a defining characteristic of the traffic and the second one

keeping the study of up-to-date FPS titles.

As stated above, OWL falls within the Networked Vir-

tual Environments (NVEs), which are closer to genres like

MMORPGS and RTS due to the network requirements. Liter-

ature has covered broader spectrum topics about NVEs: usage

of NVEs as basis for persuasive systems ([1]), integration of

NVEs with low cost sensors ([2]). On the other hand, [8] has

focused on the network traffic aspects of OWL, proposing

several models for the outgoing traffic of OWL clients. To

the best of our knowledge there is no work that deals with

server traffic modelling for NVEs like the one presented in

the present paper.



III. METHODOLOGY

A. Testing gaming sessions

Most authors have chosen to base their studies on real

human-driven gaming sessions [6] due to the complexity of

using reliable models for simulating human player behaviour.

In the testing environment defined in this work, human play-

ers have been replaced by scripts and the player behaviour

has been simplified to maximise the interaction rate and its

associated network traffic. Although this simplification may

seem not representative of the traffic obtained during real

gaming sessions, the results from [8] suggest that the impact of

lower rates of activity in OWL sessions translates into greater

inter departure and arrival times and therefore more heavy-

tailed distributions while keeping an analogous nature to those

proposed in this study.

Previous studies have distinguished between “active” and

“inactive” players, focusing on the first ones considered as

more representative about the normalised gaming experience

to be studied and modelled [9]. In [8], it was determined

that the inactivity periods of the so-called “inactive” clients

translated into absence of traffic from client to server. The

most basic forms of interaction that a player can perform

in OWL are avatar movement and voice transmission. Each

of these interactions translates into traffic exchange between

clients and server. Audio traffic shows a periodic nature, while

traffic associated to avatar movement is tightly linked to the

events triggered by the OWL player.

All the testing sessions were performed in the same sce-

nario, a minimalistic virtual world where each user was within

the field of vision of the rest of the players. An instance of

the whole virtual world with all its static elements is loaded

at the beginning of the session, after that, there is no network

traffic associated to such objects unless they perform any kind

of special activity, which is not the case in this work.

Scripting has been used to remove the human factor in

the testing gaming sessions [10] [11]. The real keystrokes

have been replaced with scripts which simulate keystrokes of

the cursor keys, responsible for the movement of the avatar.

Thus, the need of a human player and a physical keyboard are

bypassed. These OWL clients functioning without human in-

tervention are defined as “automated clients” in this paper. To

avoid any kind of correlation in their behaviour, the script de-

termines the direction of the movement: forwards, backwards,

turn right or turn left. This decision is made using a pseudo-

random number generator following an uniform distribution

[12]. The amount of time during which the avatar performs

the selected movement is also determined using an uniform

distribution. Independently of the erratic movement performed

by each “automated client”, they constantly generate updates

about their respective position which are propagated all over

the OWL system as TCP packets.

B. Network traffic study

The present work studies the server outgoing TCP traffic,

focusing on its patterns, and the impact of an increasing

number of concurrent users. The TCP traffic on OWL server

is mostly generated by the propagation of updates that notify

other clients about the changes in the virtual world. This

work aims to model the behaviour of two traffic parameters:

Inter Departure Time (IDT, time between consecutive packets

leaving the server) and Packet Size of Outgoing traffic (PSO,

size of the payloads contained into the TCP packets).

Weibull and Exponential distributions have been chosen to

fit the observed Empirical Cumulative Distribution Functions

(ECDF) for the data sets (data sets will be described in the

following). Maximum Likelihood Estimation (MLE) was used

to estimate the parameters for the best fitting distributions and

λ2 test was chosen to evaluate the goodness of fit between

the empirical data and the proposed theoretical distribution

with their estimated parameters. The λ2 Discrepancy Measure

quantifies the goodness of fit between a data set and a given

theoretical distribution. It is based on the chi-square (χ2) and

it is independent from the number of observations and bins

used during the calculation process, so it can be used for a

quantitative comparison of the fitting of different data sets

from a population. This metric was originally proposed in [13].

Several other works from the traffic analysis literature, [5]

or [6], have also used λ2 as discrepancy metric. The present

paper uses the definition of λ2 and its alternative, λ̂2, described

in [4]. Both discrepancy metrics have been evaluated in this

study, using Q-Q plots to determine their significance.

IV. EXPERIMENTAL TEST-BED

The results shown in this work are based on experimental

data obtained from a test bed running an instance of Open

Wonderland. This test bed was composed of a server machine

and a variable number of client computers, ranging from 1 to

10, depending on the number of players involved in each of

the performed testing sessions.

The OWL instance was deployed on the hardware equip-

ment of a Computer lab of the University of Seville, so all

the machines shared the same hardware specifications. Each

machine was equipped with an Intel i7-2600K CPU clocked

at 3.4 GHz; 8 GB of 1333 MHz Dual Channel DDR3 RAM;

GPU nVidia GForce GTX 550Ti equipped with 1024 MB

of dedicated RAM; and integrated Gigabit Ethernet network

cards. The underlying network was based on Gigabit Ethernet.

Despite all the machines sharing a common hardware con-

figuration, a distinction was made between server and client

software regarding their underlying operating systems. On the

one hand, computers playing the role of OWL players ran un-

der Microsoft Windows 7 64-bit with SP1. This choice makes

sense in a technological context where Microsoft operating

systems has over 87% of the domestic market, with a share

of 53% for Windows 7 alone [14]. On the other hand, OWL

started as a Sun Microsystems project with a tight relation

with server technologies. In the same way that Windows is

the most frequent choice on the client side, trends point to a

Unix-like environment for server deploy. GNU/Linux is the

rule in this context and the most convenient choice for system

administration purposes. The server machine ran an Ubuntu



12.04 distribution updated with its official security patches

and a Linux kernel 3.2 optimised for i686 architecture.

It must be highlighted that OWL is a project based on

Java technologies, so any influence of the operating system is

mitigated in some degree for the intermediate software layer

comprised for those Java technologies. Both Windows clients

and GNU/Linux server used Java 32-bit technology. Clients

used the Oracle Java Runtime Environment (JRE) v.1.7. OWL

server requires the use of a complete Java Development Kit

(JDK) which also includes a JRE. The JDK selected for

the server was the OpenJDK v1.7.0 32-bit implementation,

which follows the Java 7 specification. The usage of an Intel

hardware architecture of 64-bits (amd64) running both 32 and

64-bit software has a negligible impact over the network traffic

results. The network communication in our study is agnostic

regarding to the underlying CPU architecture.

V. RESULTS

The results were obtained running 10 testing sessions using

“automated clients”. The number of concurrent users ranged

from 1 to 10. Each session lasted 14 minutes. Network traffic

captured during the first and last minute of each session was

discarded to avoid patterns generated by the log in and log

out process. All the traffic was captured using libpcap.

A. Inter Departure Time for TCP traffic

A preliminary study of the autocorrelation of IDT of TCP

traffic showed certain degree of autocorrelation for sessions

with only 1 or 2 concurrent users. Figure 1 contains several

autocorrelograms. Each autocorrelogram shows the Auto Cor-

relation Function (ACF) for a given numerical sequence. Due

to space constrains, Figure 1 only contains autocorrelograms

for a subset of testing sessions (1,2,4 and 8 client sessions),

the remaining plots do not differ significantly but confirm

the presented observations. The traffic sent to a single user

presents certain autocorrelation, but this trend fade away in

the 4-client session. Beyond this number of players, the IDT

values can be considered as randomly distributed [15]. The

OWL server does not send updates on regular basis, on the

contrary, it propagates the position update packets when they

are received. The alternating between big update propagation

packets and small ACKs is the reason for the high degree of

inverse autocorrelation observed in the 2-player case.

The TCP server traffic is mostly reactive to OWL request,

without signs of periodicity nor bursty behaviour [8]. This

supposes a difference in relation to other games analyses

in the previous literature such as [6] and [3]. Weibull and

Exponential distributions are those who best describe the

outgoing TCP server traffic. The respective parameters for

these distributions (λ rate for Exponential; and α shape and β
scale for Weibull) were calculated using Maximum Likelihood

Estimation (MLE). Table I contains the estimated parameters

for each one of the testing sessions.

The evolution of the estimated parameters is consistent with

the increase of concurrent players. An increment in the value

of exponential λ means a higher frequency of packets and
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Fig. 1: Autocorrelation results for IDT

lesser IDTs. On the other hand, the decreasing trend of the

Weibull scale parameter β suggests a narrower spreading,

while values of the shape parameter α close to 0 indicate

that small IDT values prevail over the rest. A gaming context

where the number of players increases will require the server

to attend more request and will mean a bandwidth increment

and a reduction of IDT times between consecutive packets.

TABLE I: MLE parameters for Exponential and Weibull

Exponential Weibull
N.Users λ σ(λ) α σ(α) β σ(β)

1 4.54 0.0795 0.772 0.00955 0.18249 4.35e-03
2 14.22 0.1405 0.695 0.00576 0.05830 8.62e-04
3 23.70 0.1814 0.671 0.00422 0.03334 3.97e-04
4 35.38 0.2218 0.585 0.00299 0.01927 2.15e-04
5 47.47 0.2569 0.510 0.00223 0.01177 1.29e-04
6 61.31 0.2920 0.485 0.00185 0.00826 8.26e-05
7 80.00 0.3335 0.448 0.00147 0.00513 4.59e-05
8 99.44 0.3717 0.429 0.00124 0.00366 2.78e-05
9 122.46 0.4124 0.420 0.00108 0.00284 1.69e-05

10 126.06 0.4184 0.434 0.00110 0.00293 1.72e-05

The goodness of fit provided by the estimated parameters in

Table I has been measured using λ2 family of statistics. The

original formulation of λ2 proposed in [13] may face divide-

by-zero situations for intervals where the expected value for

the theoretical distribution is 0. Moreover, it is quite sensitive

to extreme values and specially to the tail of the empirical

distribution as can be observed in Table II, in the columns

labelled as λ2 for both Exponential and Weibull distribution.

While providing values quite low for 1, 2 and 3 client sessions,

λ2 greatly increases several orders of magnitude for greater

number of players. Thus, the value for the 4-client session is

2398, reaching 107 for 6 and 7 clients. It must be noted that

negative values and values close to 0 mean a high degree of



fitting between the theoretical and empirical distribution. On

the other hand, values greater in several orders of magnitude

are an evidence of lack of fitting, but cannot be considered an

absolute fitting metric, but as a way to compare the fitting of

samples from a common population. Thus, a λ2 value in the

order of thousands indicates a worse fitting that a value close

to 0, but does not translate into a several orders of magnitude

worse distribution. A proof of this is given by the huge values

of λ2 observed for the Exponential distribution in Figure 2.

A close inspection of the empirical data reveals that λ2 is

not representative of the deviation between the theoretical and

empirical distribution. When the more extreme values from the

empirical distribution tail were removed (less than 1% of the

observations), all the new λ2 values were in the range of tens,

as it was also observed in [5]. On the other hand, discrepancy

results for Weibull parameters were close to 0 for all the testing

sessions, indicating a very high degree of fitting between the

empirical data and the proposed theoretical distribution.

TABLE II: λ2 discrepancy for estimated parameters

Exponential Weibull

N.Users λ2 λ̂2 λ2 λ̂2

1 1.420e-01 11.471141 0.25207 11.741701
2 3.372e-01 1.176080 0.20700 1.348291
3 1.156e+01 1.166329 0.11331 1.146745
4 2.398e+03 1.304024 0.10902 1.179470
5 5.651e+06 1.426090 0.08907 1.201576
6 1.570e+07 1.565878 0.07524 1.139104
7 1.136e+07 2.791518 0.07025 2.108351
8 3.392e+05 2.811499 0.08808 2.097059
9 8.192e+03 3.929104 0.06901 3.069065

10 1.597e+00 3.741701 0.29100 3.078933

To avoid the divide-by-zero situations mentioned above,

[4] proposed an alternative discrepancy metric, λ̂2, which

shared the same theoretical basis and analytical behaviour that

original λ̂2. This new metric also deals better with tail values

and outliers, as can be observed in Table II, in the columns

labelled as λ̂2 for both Exponential and Weibull. Discrepancy

values for exponential distribution were sensibly smaller and

stable in this case. The discrepancy slightly increases with the

number of users. The trend for Weibull fitting is similar to the

Exponential one, the resulting λ̂2 values are even greater that

those observed for Weibull using the original λ2 metric.

Trends for the estimated parameters can be better appreci-

ated in the Figures 2 and 3. Figure 2 is composed of three

plots. The upper one reveals that rate λ for the exponential

distribution increases quadratically with the number of users.

This behaviour is plausible considering that in a n-client

session, each client update implies propagating n− 1 updates

to the rest of users. The one at bottom left shows λ2 for

estimated values of Exponential rate λ, values for 5, 6 and

7-client sessions reach values of several orders of magnitude

over the rest due to the presence of outliers and tail values

in the empirical distribution. The bottom right plot shows the

λ̂2 for estimated Exponential parameters. The distribution of

these values is much more uniform showing a slight increase

in discrepancy with the number of users.
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Fig. 2: Estimated Exponential parameters and λ2 discrepancy

Figure 3 is divided in four plots. The two situated at the

top of the figure show the evolution of the Weibull parameters

shape α and scale β estimated by MLE. Both of them show

an asymptotic decrease and are susceptible of being fitted by

analytical curves. The bottom left plot displays the λ2 values

for Weibull fitting, it suggests that the discrepancy values

follow a decreasing trend with some exceptions. The bottom

right plot corresponds to the λ̂2 values, their shape is quite

similar to its equivalent in Figure 2.
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Fig. 3: Estimated Weibull parameters and λ2 discrepancy

λ2 and λ̂2 plots in Figures 2 and 3 provided distorted or even

contradictory information about the goodness of fit between



the empirical data and the proposed theoretical distributions.

To determine which of the metrics were more suitable for the

case of study, Q-Q plots were used. The closer the values are

from the gray line, the better fit. Due space restrictions, Figure

4 shows quantile comparison only for 2, 4, 6 and 8 client

sessions, the obviated plots do not differ significantly while

confirming the results shown above. These Q-Q plots point

the distribution tails as the regions of maximum discrepancy

for both Exponential and Weibull distributions. Discrepancy

for exponential models increases with the number of clients,

so their increasing λ̂2 values are coherent with these plots. On

the other hand, Weibull distributions show smaller discrepancy

with the increase of users, this trend is not well captured by

the λ̂2 values in Figure 3 which may led to think that Weibull

discrepancy increases with the number of users. On the con-

trary, λ2 values suggest the same decreasing discrepancy trend

observed in the Q-Q plots.
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Fig. 4: Q-Q plots for IDT, Exponential and Weibull curves

B. Packet Size of Outgoing traffic

The autocorrelograms generated for PSO suggested a slight

increase of inverse autocorrelation with the increase of the

number of users. Figure 5 shows four ACFs for 2, 4, 6 and

8-client sessions. The 4-client ACF shows signs of inverse

autocorrelation for lag 1. This trend is confirmed in the plots

for sessions with more than 4 clients. This can be interpreted

as a certain probability of sending a big packet followed by

other significantly smaller or vice versa.

Outgoing TCP traffic shows a discrete set of packet sizes,

only some of them with a significant frequency. Figure 6

contains several histograms showing the overall amount of

packets of each size. For space constraints, these histograms

correspond to 2, 4, 6 and 8-client sessions respectively. An

important part of all the observed packets sizes fall within the

intervals [180-235] B and [290-340] B. To avoid increasing the

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

DPS Autocorrelation,
 2−client session

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

DPS Autocorrelation,
 4−client session

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

DPS Autocorrelation,
 6−client session

0 10 20 30 40

−
0
.2

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

DPS Autocorrelation,
 8−client session

Fig. 5: Autocorrelation results for PSO

complexity, these intervals have been represented by a pair of

single values calculated by weighted mean: 217 B and 325 B.

Packets of 1460 B size resulted the most frequent along the

testing sessions.
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The three first graphs in Figure 7 (top left and right, bottom-

left) show the evolution of packets represented by 217 B, 325

B and 1460 B (solid black line). Dashed red lines in represent

the best fitting polynomial curves for each packet size. These

curves have been calculated by Gauss-Newton algorithm for

non-linear least-square (weighted) estimation. The grade of

each polynomial has been chosen keeping a balance to avoid



over-fitting as well as inconsistent estimations such as negative

number of a determined packet size. The final plot (bottom-

right) displays the relative frequency of each packet size for

each testing session.
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The fitting curves calculated by least-square estimation have

been used to elaborate the deterministic model proposed in

Equation 1. Depending on the number of concurrent users n,

the model assigns a specific probability for each one of the

contemplated packet sizes. The polynomials used to determine

this probability are showed in Equation 2.

P (x;n) =











217bytes, p1(n)/pt(n)

325bytes, p2(n)/pt(n)

1460bytes, p2(n)/pt(n)

(1)



















p1(n) =− 35.8n3 +726n2
− 2232.0n +1825

p2(n) = + 1664.0n +1930

p3(n) = +502n2
− 1343.5n +927

pt(n) =− 35.8n3 +1228n2
− 1911.5n +4661

(2)

VI. CONCLUSIONS

The present paper has performed a study of the outgoing

TCP traffic of an Open Wonderland game server during

several testing sessions. This TCP traffic is mostly due to

avatar position and movement updates within the virtual world.

The number of concurrent users ranged from 1 to 10, while

keeping a high interaction rate to maximise network load.

Inter Departure Time (IDT) and Packet Size of Outgoing

traffic (PSO) have been the studied parameters, given their

significance for the QoE.

The IDT revealed that the OWL server does not transmit

update packets on periodic basis nor has bursty traffic. The

theoretical distributions which best described the IDT were

Weibull and Exponential ones. A set of parameters for them

were calculated by Maximum Likelihood Estimation (MLE).

To determine the goodness of fit of each distribution λ2 and

λ̂2 approached were used, together with Q-Q plots.
The PSO showed a slight increase of inverse autocorrelation

with the number of users. The user increasing implies a

quadratically increasing in the number of larger packets, which

translates in greater payloads for position update packets. The

experimental results have been used to propose a deterministic

model that depends on the number of concurrent users to

determine the probability of the most significant packet sizes.
Future work involves checking the validity of the proposed

models with more realistic player behaviour and confirming

the impact over the tail of the proposed IAT/IDT models.
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