
 

 

COMPUTING 
SCIENCE 

A Read-Write-Validate Approach to Optimistic Concurrency Control 
for Energy Efficiency of Resource-Constrained Systems 
 
 
Kamal Solaiman, Matthew Brook, Gary Ushaw and Graham Morgan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TECHNICAL REPORT SERIES 
 

No. CS-TR-1388 June 2013 



TECHNICAL REPORT SERIES 
              
 
No. CS-TR-1388  June, 2013 
 
A Read-Write-Validate Approach to Optimistic Concurrency 
Control for Energy Efficiency of Resource-Constrained Systems 
 
K. Solaiman, M. Brook, G. Ushaw, G. Morgan 
 
Abstract 
 
Modern smartphones feature multiple applications which access shared data on the 
solid state storage within the device. As applications become more complex, 
contention over this memory resource is becoming an issue. This leads to increased 
battery drain as the applications are forced to touch the solid state device repeatedly 
after failing to retrieve or store data due to contention from other applications. We 
describe an optimistic concurrency control algorithm, combining a novel Read-Write-
Validate phase sequence with virtual execution. The protocol is suitable for governing 
transactions operating on databases residing on resource-constrained devices. 
Increasing energy efficiency and reducing latency are primary goals for our algorithm. 
We show that this is achieved by reducing persistent store access, and satisfy real-
time requirements via transaction scheduling that affords greater determinism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2013 Newcastle University. 
Printed and published by Newcastle University, 
Computing Science, Claremont Tower, Claremont Road, 
Newcastle upon Tyne, NE1 7RU, England. 



Bibliographical details 
 
SOLAIMAN, K., BROOK, M., USHAW, G., MORGAN, G. 
 
A Read-Write-Validate Approach to Optimistic Concurrency Control for Energy Efficiency of Resource-
Constrained Systems 
 
[By] K. Solaiman, M. Brook, G. Ushaw, G. Morgan 
 
Newcastle upon Tyne: Newcastle University: Computing Science, 2013. 
 
(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1388) 
 
Added entries 
 
NEWCASTLE UNIVERSITY 
Computing Science. Technical Report Series.  CS-TR-1388 
 
Abstract 
 
Modern smartphones feature multiple applications which access shared data on the solid state storage within the 
device. As applications become more complex, contention over this memory resource is becoming an issue. This 
leads to increased battery drain as the applications are forced to touch the solid state device repeatedly after failing 
to retrieve or store data due to contention from other applications. We describe an optimistic concurrency control 
algorithm, combining a novel Read-Write-Validate phase sequence with virtual execution. The protocol is suitable 
for governing transactions operating on databases residing on resource-constrained devices. Increasing energy 
efficiency and reducing latency are primary goals for our algorithm. We show that this is achieved by reducing 
persistent store access, and satisfy real-time requirements via transaction scheduling that affords greater 
determinism. 
 
About the authors 
 
Kamal Solaiman is a Phd student in the School of Computing Science at Newcastle University. 
 
Matthew Brook is a Phd student in the School of Computing Science at Newcastle University. 
 
Dr Gary Ushaw is a Teachning Fellow in the School of Computing Science at Newcastle University. He worked 
for 15 years in the video games industry as Engineering Lead and Project Manager, with companies such as Sony, 
Ubisoft, Atari, BBC Worldwide and Rockstar, following a PhD attained from the University of Edinburgh's Signal 
Processing Group. 
 
Dr Graham Morgan is a lecturer in the School of Computing Science at Newcastle University.  His interests are in 
the area of distributed applications, including web services, networked virtual environments, fault tolerance and 
group communications. 
 
Suggested keywords 
 
OPTIMISTIC CONCURRENCY CONTROL 
TRANSACTIONS 
UBIQUITOUS DATABASES 



 

 

A Read-Write-Validate Approach to 

Optimistic Concurrency Control for Energy 

Efficiency of Resource-Constrained 

Systems 
Kamal Solaiman, Matthew Brook, Gary Ushaw, Graham Morgan 

School of Computing Science, Newcastle University 

Newcastle-upon-Tyne, United Kingdom. 

{kamal.solaiman, m.j.brook1, gary.ushaw, graham.morgan}@ncl.ac.uk 

Abstract - Modern smartphones feature multiple applica-

tions which access shared data on the solid state storage within 

the device. As applications become more complex, contention 

over this memory resource is becoming an issue. This leads to 

increased battery drain as the applications are forced to touch 

the solid state device repeatedly after failing to retrieve or store 

data due to contention from other applications. We describe an 

optimistic concurrency control algorithm, combining a novel 

Read-Write-Validate phase sequence with virtual execution. 

The protocol is suitable for governing transactions operating 

on databases residing on resource-constrained devices. Increas-

ing energy efficiency and reducing latency are primary goals 

for our algorithm. We show that this is achieved by reducing 

persistent store access, and satisfy real-time requirements via 

transaction scheduling that affords greater determinism.  

Keywords - Optimistic concurrency control; transac-

tions; ubiquitous databases 

I. INTRODUCTION 

The demands made on hardware resources by smartphone 

applications are increasingly complex.  Multiple applica-

tions run in parallel on these devices, raising issues with 

sharing the processor, memory access and network connec-

tion [18]. In this paper we focus on the shared solid state 

disk resource on the device. Accessing the disk is costly in 

terms of battery usage, so an algorithm which reduces the 

number of attempted data accesses will improve energy 

efficiency. If multiple applications attempt to access the 

memory concurrently, then contention problems arise, lead-

ing to more frequent disk accesses. Reducing the frequency 

of contention leading to a failed read or write (which must 

then be retried) will increase energy efficiency of the 

smartphone, as well as improve the throughput of memory. 

Concurrency control (CC) is the primary mechanism for 

coordinating simultaneous access to shared data. Transac-

tional systems rely on high performance CC protocols to 

achieve significant throughput while maintaining correct-

ness [10]. Optimistic concurrency control (OCC) protocols 

offer an alternative to pessimistic based locking whereby 

executing transactions validate with each other to determine 

if a conflict has occurred. The mechanisms by which these 

conflicts are detected and handled belong to a well-

established research area [1].  The primary performance 

concern for real-time systems is that of timeliness: transac-

tions commit before they reach their deadline. Systems un-

der high contention invariably struggle to allow transactions 

to complete before their deadline. Protocol design should 

allow as many transactions to meet their deadline as possible 

while maintaining correctness. This can come at the cost of 

other criteria such as throughput or response time.   

Optimistic approaches are more suitable for real-time ap-

plication than locking approaches. Research has focused on 

timestamp based techniques which show a high degree of 

concurrency and scalability. It also provides a smaller over-

head of unnecessary rollback which is a major disadvantage 

in optimistic approaches. The price paid in timestamp is the 

large overhead of maintaining timestamp management [9], 

which is acceptable in conventional OCC techniques to sat-

isfy the scalability needed for conventional database systems 

at the server.  

Forward validation schemes [2] are a very good concur-

rency control approach for mobile devices in broadcast wire-

less environments for many reasons [12], and are widely 

deployed [16, 17, 20, 21]. Furthermore, a forward validation 

scheme has a cheaper validation cost of 1/3 of timestamp 



 

 

[7]. So, we argue that the forward validation scheme is a 

suitable OCC approach for governing transactions operating 

on databases on resource-constrained devices. We describe 

an OCC algorithm based on a forward validation approach 

that utilizes a read-write-validate (RWV) phase ordering to 

address the real-time requirements of ubiquitous databases. 

We argue that, while still maintaining overall system cor-

rectness, this ordering provides significant performance 

improvements. We present results showing that we improve 

throughput while satisfying more real-time transaction dead-

lines. We theorized about this approach briefly in [11], and 

now we present results that confirm the ideas.  The non-

intuitive ordering we advocate, combined with the require-

ment of a rerun policy, improves performance by increasing 

energy efficiency and reducing latency. 

II. BACKGROUND AND RELATED WORK 

We describe related work in a manner that reflects our ap-

proach to deriving a solution. This description includes ad-

vancements made regarding the validation process (forward 

and backward validation schemes) and the introduction of 

virtual execution (rerunning aborted transaction using in-

memory values) to improve overall system performance. We 

then identify the contribution our protocol makes as a novel 

departure from existing techniques.  

A. Optimistic Concurrency Control 

Kung and Robinson [1] proposed the OCC approach using a 

three-phased transaction consisting of read, validate and 

write phases. During the read phase, transactions access data 

without restriction and make a local copy of this data. Any 

writes are made to the transaction’s local copy. The valida-

tion phase ensures that changes a transaction has made lo-

cally can be satisfied globally. Other executing transactions 

are considered to determine whether the write requests made 

by a transaction locally can be satisfied without invalidating 

the correctness of the overall read-write schedule. If so the 

transaction enters the write phase and the local changes are 

committed to the persistent store; otherwise the transaction 

must abort and restart. A transaction with no writes does not 

need to enter the write phase but must still validate. 

B. Forward and Backward Validation 

Härder proposed two schemes: Backward-Oriented and 

Forward-Oriented Optimistic Concurrency Control (BOCC 

& FOCC) [2]. In BOCC the read set of a validating transac-

tion is compared to the write sets of all transactions that 

have finished the read phase before the validating transac-

tion. In FOCC the write set of the validating transaction and 

the read sets of the transactions that have yet to finish the 

read phase are compared.  

Using BOCC, the validating transaction has to be abort-

ed. FOCC provides a degree of flexibility in that a number 

of resolution policies are possible. The validating transaction 

can be delayed and the validation phase restarted at a later 

time, or all conflicting transactions can be aborted so the 

validating transaction is allowed to commit, or only validat-

ing transactions are aborted. 

FOCC has found popularity with researchers due to this 

flexibility in resolution policy [7, 9]. For example, to satisfy 

real-time requirements, conflicts can be resolved based on a 

transaction’s deadline. However, a major drawback of 

FOCC is that concurrent transactions have to be blocked in 

their read phase while performing the validation and write 

phase in the critical section. 

C. Virtual Execution 

Virtual execution [6] allows transactions that are known to 

conflict to continue execution and complete the read phase 

with the goal of pre-fetching data for a subsequent rerun. By 

using the property of access invariance, significant perfor-

mance gains can be made by allowing the transaction to 

rerun using the pre-fetched data; there is no disk I/O over-

head typically required for the transaction during rerun. 

However, some of the pre-fetched data may have since been 

modified, which results in the rerun transaction operating 

with inconsistent data. Concurrency control techniques must 

be applied to overcome this problem [6].  

D. Contribution 

Our goal is to reduce contention of solid state disk access on 

smartphone devices by combining a FOCC validation 

scheme with a virtual execution approach. In [11] we made 

some observations on such a solution: (1) Transactions that 

enter rerun execute quicker than those in their initial run (as 

there is no disk access); (2) The validation phase presents a 

degree of non-determinism with respect to how long it will 

take (i.e., we can’t predict how many transactions need to be 

validated).  



 

 

As reruns execute with no disk latency, they can occur 

multiple times with minimal hindrance to satisfying transac-

tion deadlines. Therefore, it is better to keep transactions in 

rerun until we can determine that, when they leave rerun, 

they satisfy their deadline requirements irrelevant of the 

delay imposed by the validation step. This would prioritize 

rerun transactions without the concern for non-deterministic 

latency in the validation phase.  

Our assumptions regarding the structuring of a virtual ex-

ecution enabled OCC implied that the write phase could be 

moved to before the validation phase. When transactions are 

in a rerun state we can offset their validation until after the 

write phase. There are two benefits of this approach. Writes 

may become visible to transactions in the read phase earlier, 

affording more likelihood of reading up-to-date data from 

disk Also overall blocking may be reduced (in the original 

OCC protocols, transactions in the read phase need to be 

blocked as a transaction commits changes to the database - 

such blocking is not required in our protocol, as out-of-date 

reads are caught by the later validation step).  

The contribution made by this paper is the creation of a 

new virtual execution OCC in which the write phase occurs 

before the validation phase. We show that this approach 

reduces the frequency of disk accesses due to contention, 

leading to improved battery life for the mobile device. We 

further show that we improve system throughput and the 

likelihood that transactions complete within their deadline.  

III. PROTOCOL 

A. Read-Write-Validate 

Our protocol fundamentally changes the order of the tradi-

tional transactional phases [1]. The write phase now follows 

the read phase with the validation phase occurring after-

wards. Both the write and validation phases are collectively 

considered a single critical section, allowing only one trans-

action to execute in either phase [1, 2].   

We use a forward validation strategy [2] in combination 

with a “No Sacrifice” policy [4] that guarantees a transac-

tion entering the critical section will commit. This requires 

transactions conflicting with the validating transaction to be 

aborted. We employ a rerun policy so that transactions in 

their initial run will continue to the end of the read phase 

before being rerun.  

Using a critical section around the write and validation 

phases, the ordering becomes trivial as we guarantee system 

correctness (a serial schedule) in either scheme. However, 

without using forward validation coupled with a No Sacri-

fice policy, it would be more costly to employ RWV; if a 

validating transaction is aborted it is expensive to undo the 

changes made during the write phase. This would also result 

in an increased number of conflicts due to any transactions 

that have accessed the same data having to be aborted or 

rerun. An advantage of this strategy of never aborting vali-

dating transactions (NAV) is that the resources utilized by a 

validating transaction are not wasted [19]. With the addition 

of a rerun policy we see further performance improvements 

from a RWV ordering (as presented in the results section). 

Real-time centralized transactional databases need to 

handle transactions with timing constraints in the form of 

deadlines. Factors such as system contention have a direct 

impact on satisfying transactional deadlines; such factors 

occur during validation. Therefore we acknowledge that in 

the traditional OCC phase ordering, the validation step in-

troduces a degree of non-determinism with regards to how 

long writes will take to become visible in the database (de-

laying entering write phase).  

The validation phase is required to ensure system cor-

rectness with regards to transactions that are still executing 

rather than providing a direct benefit to the validating trans-

action itself. If the write phase occurs before the validation 

phase then we remove the non-deterministic timing con-

straints of the validation phase allowing the transaction to 

commit sooner. Consistency is still maintained in a virtual 

execution environment as the validation phase will detect 

transactions that are in conflict during rerun stages.  

We also remove a degree of blocking present in the origi-

nal read-validate-write ordering (RVW). Under RVW a 

transaction executing in the read phase will eventually have 

to be blocked to allow a transaction in the critical section to 

complete. Transactions partially through their read phase 

that do not conflict with the validating transaction that are 

allowed to continue execution may potentially enter a con-

flicted state. This arises if a value read by a transaction in 

the read phase is shared with the write set of a committing 

transaction. As a result, all concurrently running transactions 

must be blocked to allow the validating transaction to com-

mit. Any newly arriving transactions will also be blocked 

from entering the read phase.  



 

 

By employing a RWV ordering, we no longer have to 

block any transaction from progressing (we do not consider 

transactions waiting to enter the critical section as blocked). 

Having completed the write phase, a validating transaction 

only needs to validate against transactions that were active 

while the validating transaction was writing. These active 

transactions may have read data that has now been updated. 

Any newly arriving transactions (those arriving while a 

transaction is validating) cannot conflict with the validating 

transaction, as the data will have already been updated.  

B. Protocol Description 

A transaction that reaches the end of the read phase enters a 

pre-commit set (PCS). One member of the PCS may be 

chosen to enter the write phase by the scheduler. We employ 

an earliest deadline policy [3] to give priority to transactions 

that are closest to expiration. 

Transactions that are either in the read phase or are mem-

bers of PCS may be aborted and rerun if they are found to be 

in conflict with a validating transaction. We guarantee the 

validating transaction to commit and so we must rerun any 

other transactions that are in conflict. A transaction that is in 

its initial run will complete the read phase, regardless of 

being in conflict, and enter PCS. Allowing conflicted trans-

actions to complete the read phase improves performance 

[5] by only accessing the persistent data store once per read 

operation. A transaction that is rerun will have a local copy 

of all the required data for it to attempt execution again. 

We employ a forward oriented validation scheme which, 

during the validation phase of Ti, checks if there is an inter-

section between the write set WS(Ti) with any read set 

RS(Tj) for all running transactions. This includes transac-

tions executing in the read phase and members of PCS. If an 

intersection (i.e., a conflict) is found then: 

 If the conflicting transaction Tj is in the initial run, it is 

allowed to proceed with the read phase and is marked for 

rerun. Tj enters PCS upon completing the read phase but 

is not eligible to enter the write phase. At this point, Tj is 

updated with the values from other transactions it has 

conflicted with and will be rerun. 

 If Tj is in rerun then it is aborted. At this point, RS(Tj) is 

updated with WS(Ti) so that it can be rerun again with 

the updated read set.  

Arriving transactions may start the read phase at any time. 

We ensure correct execution as follows: 

 If a transaction enters the read phase while another trans-

action is in the write phase there is the possibility of 

reading inconsistent data. This will be detected when the 

transaction in the critical section finishes the write phase 

and enters the validation phase.  

 If a transaction enters the read phase while another trans-

action is in the validation phase then any reads are made 

against the updated values from the persistent store (as 

validation occurs after write). Any transactions entering 

the read phase at this point do not need to be validated 

against the currently validating transaction.  

In the event of a complete failure then, on restart, all trans-

actions that have not committed begin again and read from 

the database directly (as if they were in the initial run). Any 

validation that was occurring before the failure is lost. How-

ever, the transaction that is validating has already written the 

updates to the database which are available on restart. 

C. Pseudo-code 

We present pseudo-code illustrating the validation phase for 

a transaction Ti. We use the following conventions: 

 Active Transactions (AC) – This is the set of all current-

ly running transactions. It includes transactions in the 

read phase and those waiting to enter the commit phase.  

 Conflicted Set (CS) – CS(Tj) contains the updated read 

values from validating transactions that Tj has conflicted 

with. Each item (Ok) in CS(Tj) is cached until RS(Tj) can 

be updated. We cache these values rather than directly 

update the read set of Tj to make it clear that the writes 

would not be automatically updated if we chose to up-

date RS(Tj) directly. RS(Tj) can be updated when Tj has 

finished the initial run or, if it is in rerun, when it is 

aborted. Upon updating, CS(Tj) is discarded.  

We assume that a transaction executing in the read phase 

reads the required data and performs any required computa-

tion. Similarly, a transaction in the commit phase updates 

any values that were written to during its read phase. The 

scheduler handles rerunning identified transactions along 

with updating the read sets for conflicting transactions.  

The pseudo-code for the validation phase is as follows: 

for each Tj in AC do 

  if ((WS(Ti) ∩ RS(Tj)) ≠ {}) then 

 for each Ok in (WS(Ti) ∩ RS(Tj)) do 

   update Ok in CS(Tj); 

 end for 



 

 

 if Tj in initial run then 

   mark Tj for rerun; 

 else 

   update Tj with CS(Tj), rerun Tj; 

 end if 

  end if 

  end for 

discard WS(Ti); 

IV. SIMULATION AND RESULTS 

We describe the simulation model which demonstrates our 

protocol. We provide a brief overview of the structure of the 

model and the parameters used. We then discuss the results 

by comparing the performance with the original protocol.  

 

A. Simulation Environment 

We produced a simulation model that matches closely the 

accepted designs seen in the literature [7, 8]. We have intro-

duced a couple of modifications to this design to accommo-

date the rerun of transactions and the format of our later 

validation protocol. The model investigates different per-

formance characteristics of our protocol versus a forward 

validation approach with virtual execution. We present a 

range of results highlighting the performance benefits of 

later validation using a virtual execution policy.  

Our queuing model consists of a single-site database sys-

tem operating with a shared-memory multiprocessor. We 

model two disks and two CPUs with a queue per disk and a 

shared queue for the CPUs. The parameters for our simula-

tion can be seen in Table 1, and were taken from [7, 13, 15]. 

The transaction size remains the same for every transaction 

and we assume that the write set is a subset of the read set.  

 

Pages in database                   5000 

Transaction size  12-page read set, 4-page write 

disk access (read) 

disk access (write) 

               36   s 

               200 s 

CPU access                1.5   s 

disk access probability (1st run)                0.5 

disk access probability (rerun)                0 

Minimum slack factor                2 

Maximum slack factor                8 

Validation cost (per transaction)                0.5 s 

Table 1. Simulation Parameters 

When the transaction performs a read, a 36s cost is in-

curred to access the disk and a further 1.5s for processing 

the page. A write costs 200s with 36s to read the page 

beforehand. When the transaction enters the commit phase, 

200s per write is incurred. We use disk access probability 

for a page being present inside the buffer. For rerun transac-

tions this probability is zero, as we guarantee the page is 

present in memory. The validation cost is based on the num-

ber of transactions that have to be validated with a unit cost 

of 0.5s. Deadline assignment [9] is controlled by the mini-

mum and maximum slack factor parameters.  

Each simulation was performed using the same parame-

ters for 10 random number seeds. Each run consisted of 

10000 transactions. To allow the system to stabilize, the 

results from the first few seconds were discarded. We pre-

sent the mean values for the performance metrics analysed 

across experiments.  

B. Simulation Results 

Figs 1-6 show the average response time, throughput and 

number of late transactions when 50% and 75% of execution 

transactions are updating transactions. In each graph we 

present results for two protocols making use of a virtual 

execution policy. The first protocol (LV) is the one we in-

troduce in this paper using the RWV phases. The other (FV) 

is forward validation using the RVW phases.  

50004000300020001000

4000

3000

2000

1000

0

Rate (Transactions / Second)

T
ro

u
g

h
p

u
t 

( 
C

o
m

m
it

s 
/ 

S
e

co
n

d
 )

LV

FV

Fig. 1: Throughput with 50 % update transactions 

 



 

 

50004000300020001000

3500

3000

2500

2000

1500

1000

500

Rate (Transactions / Second )

T
ro

ug
hp

ut
 (

 C
om

m
it

s 
/ 

Se
co

nd
 )

LV

FV

Fig. 2: Throughput with 75 % update transactions 

 

Figs 1-2 show the throughput for an increasing rate of 

transactions. We measure throughput as the number of 

committed transactions, with the commit occurring at the 

end of the write phase for both phase orderings. All proto-

cols share a common progression; a point is reached where 

contention is too high and the throughput starts to degrade. 

The number of transactions missing their deadline (figs 5,6) 

is also impacting the throughput as these transactions are 

aborted and will never commit. As the rate increases, the 

number of late transactions increases as the throughput falls. 

However, fig 2 shows a plateau around 3500 transactions/s 

which represents a bottleneck in the write and validation 

phases’ critical section. This is not considered a problem as 

read-only transactions constitute the majority of a typical 

transactional traffic [14]. The graph still illustrates that later 

validation protocol sustains a higher level of throughput 

compared to the other approach. 

Figs 3-4 show the average response time for an increasing 

rate of transactions. The response time is only for transac-

tions that successfully commit. As the rate increases, trans-

action response time increases due to high contention. We 

see that, between 1500 and 5000 transactions per second, the 

LV approach has a lower response time than FV. This indi-

cates that the cost of the validation phase does not affect the 

transaction’s commit time in our approach 

50004000300020001000

5000

4000

3000

2000

1000

0

Rate (Transactions / second)

R
e

sp
o

n
se

 T
im

e
 (

M
ic

ro
se

co
n

d
)

LV

FV

Fig. 3 Average response time with 50 % update transactions 

 

50004000300020001000

5000

4000

3000

2000

1000

Rate ( Transactions / Second )

R
e

sp
o

n
se

 T
im

e
 (

 M
ic

ro
se

co
n

d
 )

LV

FV

Fig. 4 Average response time with 75 % update transactions 

 

After 5000 transactions, the average response time is sim-

ilar for both protocols. The response time stabilizes around 

4500 microseconds due to the deadline assignment; only 

transactions that have a sufficiently large deadline will be 

able to commit. Regardless of the benefits of our protocol, at 

this level of contention, transactions expire during the initial 

run in the read phase. The jump in fig 4 at a rate of ~3400 

and then decline at ~3700 is explained by the plateau in fig 

2. First the response times jump because executing transac-

tions need to wait before they are able to enter the write and 

validation phases, and then response times decline due to the 

increase of the miss rate at that arrival rate.  



 

 

50004000300020001000

90

80

70

60

50

40

30

20

10

0

Rate (Transaction / second)

La
te

 t
ra

n
sa

ct
io

n
s 

 %

LV

FV

Fig. 5. Late transactions with 50 % update transactions 

 

50004000300020001000

90

80

70

60

50

40

30

20

10

0

Rate (Transactions / Second )

L
a

te
 T

ra
n

sa
ct

io
n

s 
%

LV

FV

Fig. 6. Late transactions with 75 % update transactions 

Figs 5-6 show the percentage of transactions that miss 

their deadline. For each protocol, as the rate increases, the 

percentage of missed deadline also increases. Each protocol, 

at its peak, has a high percentage (around 80%) of missed 

deadlines. With a high level of system contention, transac-

tions experience longer delays in accessing the disk and the 

CPU. This results in transactions being more likely to miss 

the deadline during the initial run and never entering rerun.  

V. CONCLUSIONS 

In our earlier work [11] we realized that the utilization of 

virtual execution in OCC allows the write phase to be ac-

complished before the validation phase. This reversal does 

not inhibit correctness and our original idea was that it might 

bring performance benefits, particularly for real-time sys-

tems. This paper brings this idea to fruition by presenting a 

full description of our approach with validate and write 

phases reversed (read-write-validate).  

We have also demonstrated the performance using an ap-

propriate simulation (as used by earlier works in this area). 

We benchmarked our results against the original optimistic 

approach that utilizes a virtual execution model. We found 

that our approach significantly improves throughput and 

timeliness (transactions achieving deadlines) of the overall 

system when compared to the conventional approach.  

Our approach of changing the phase order to read-write-

validate, combined with virtual execution, requires signifi-

cantly fewer accesses of the solid state disk, as more conten-

tions can be resolved without touching the disk. This leads 

to better energy efficiency during operation of multiple ap-

plications, and therefore increases smartphone battery life.  

In future work, we intend to explore other analytical 

models (e.g., [22][23])  to further investigate our simulation 

results.  Additionally, we will create a real-world implemen-

tation and compare it with the simulated results. 

 

REFERENCES 

[1] Kung, H.T., Robinson, J.T.: On Optimistic Methods for Concurrency 
Control. ACM Transactions on Database Systems. 6, 213-226 (1981) 

[2] Härder, T.: Observations on Optimistic Concurrency Control 
Schemes. Information Systems. 9, 111-120 (1984) 

[3] Haritsa, J.R., Livny, M., Carey, M.J.: Earliest Deadline Scheduling for 
Real-Time Database Systems. In: proceedings of the 12th Real-Time 
System Symposium, pp. 232-242 (1991)   

[4] Lee, J.: Concurrency Control Algorithms for Real-Time Database 
Systems. Ph.D Thesis, University of Virginia: United States (1994) 

[5] Yu, P.S., Dias, D.M.: Analysis of Hybrid Concurrency Control 
Schemes for a High Data Contention Environment. IEEE Transactions 
on Software Engineering. 18 118-129 (1992)  

[6] Franaszek, P.A., Robinson, J.T., Thomasian, A.: Access Invariance 
and Its Use in High Contention Environments. In: proceedings of the 
6th International conference on Data Engineering, pp. 47-55 (1990)  

[7] Lee, J.: Precise Serialization for Optimistic Concurrency Control, Data 
& Knowledge Engineering. 29, 163-178 (1999) 

[8] Agrawal, R., Carey, M.J., Livny, M.: Concurrency Control Perfor-
mance Modeling: Alternatives and Implications. ACM Transactions 
on Database Systems. 12, 609-654 (1987) 

[9] Lee, J., Son, S.H., Using Dynamic Adjustment of Serialization Order 
for Real-Time Database Systems. In: proceedings of the Real-Time 
Systems Symposium, pp. 66-75 (1993)  

[10] Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control 
and Recovery in Database Systems. Addison-Wesley (1987) 

[11] Solaiman, K.., Morgan, G.: Later Validation/Earlier Write: Concur-
rency Control for Resource-Constrained Systems with Real-Time 
Properties. In: 30th International Symposium on Reliable Distributed 
Systems Workshop, pp. 9-12 (2011) 



 

 

[12] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran, and K. 
Ramamritham. Efficient Concurrency Control for Broadcast Envi-
ronments. In ACM SIGMOD, 1999. 

[13] Qin Z., Wang Y., Liu D., Shao., Real-Time Flash Translation Layer 
for NAND Flash Memory Storage Systems, Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), 2012 IEEE 
18th, PP. 35-44 ( 2012 ) 

[14] Ferro D. G., Yabandeh M., A critique of snapshot isolation, EuroSys 
'12 Proceedings of the 7th ACM european conference on Computer 
Systems, pp(155-168,2012 

[15] Stefan Manegold. Understanding, Modeling, and Improving Main-
Memory Database Performance. PhD thesis, CWI Amsterdam, 2002. 

[16] V. C. S. Lee, K. Wa Lam, and T.-W. Kuo, “Efficient validation of 
mobile transactions in wireless environments,” Journal of Systems 
and Software, vol. 69, no. 1–2, pp. 183–193, Jan. 2004. 

[17] S. Park and S. Jung, “An energy-efficient mobile transaction pro-
cessing method using random back-off in wireless broadcast envi-
ronments,” Journal of Systems and Software, vol. 82, no. 12, pp. 
2012–2022, Dec. 2009. 

[18] Bosch, G.; Creus; Tuovinen, A.-P, "Feature Interaction Control on 
Smartphones," Industrial Embedded Systems, 2007. SIES '07. Interna-
tional Symposium on, pp.302-309, July 2007. 

[19] Huang, J. and J.A. Stankovic, "Concurrency Control in Real-Time 
Database Systems: Optimistic Scheme vs. Two-Phase Locking," A 
Technical Report, COINS 90-66, University of Massachusetts, July 
1990. 

[20] Lei, X., Zhao, Y., Chen, S., Yuan, X.: Concurrency control in mobile 
distributed real-time database systems. Journal of Parallel and Dis-
tributed Computing, 69(10), pp. 866--876 (2009) 

[21] S. Jung and K. Choi, “A concurrency control scheme for mobile 
transactions in broadcast disk environments,” Data & Knowledge En-
gineering, vol. 68, no. 10, pp. 926–945, Oct. 2009. 

[22] Shi Z., Beard C., Mitchell K., “Analytical models for understanding 
space, backoff and flow correlation in CSMA wireless networks”, 
Wireless networks 1-17., 2012 

[23] Shi Z., Beard C., Mitchell K., ”Competition, cooperation and optimi-
zation in multi-hop CSMA networks with correlated traffic”, Intl Jnl 
of next generation computing, 3 (3), 2012 

 

 


	TRCover1388
	TRAbstract1388
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1388
	1388withoutcovers

