
Titre:
Title:

A Presence-Based Architecture for a Gateway to Integrate Vehicular
Ad-Hoc Networks (VANETs), the IP Multimedia Subsystems (IMS) and
Wireless Sensor Networks (WSNs)

Auteur:
Author:

Mohab Aly

Date: 2013

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Aly, M. (2013). A Presence-Based Architecture for a Gateway to Integrate
Vehicular Ad-Hoc Networks (VANETs), the IP Multimedia Subsystems (IMS) and
Wireless Sensor Networks (WSNs) [Mémoire de maîtrise, École Polytechnique de
Montréal]. PolyPublie. https://publications.polymtl.ca/1070/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/1070/

Directeurs de
recherche:

Advisors:
Alejandro Quintero

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/1070/
https://publications.polymtl.ca/1070/

UNIVERSITÉ DE MONTRÉAL

A PRESENCE-BASED ARCHITECTURE FOR A GATEWAY TO INTEGRATE

VEHICULAR AD-HOC NETWORKS (VANETs), THE IP MULTIMEDIA SUBSYSTEMS

(IMS) AND WIRELESS SENSOR NETWORKS (WSNs)

MOHAB ALY

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION

DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INFORMATIQUE)

FÉVRIER 2013

© Mohab Aly, 2013.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé:

A PRESENCE-BASED ARCHITECTURE FOR A GATEWAY TO INTEGRATE

VEHICULAR AD-HOC NETWORKS (VANETs), THE IP MULTIMEDIA SUBSYSTEMS

(IMS) AND WIRELESS SENSOR NETWORKS (WSNs)

présenté par : ALY Mohab

en vue de l’obtention du diplôme de : Maîtrise ès Sciences Appliquées

a été dûment accepté par le jury d’examen constitué de :

Mme BELLAÏCHE Martine, Ph.D., présidente

M. QUINTERO Alejandro, Doct, membre et directeur de recherche

M. PIERRE Samuel, Ph.D., membre

iii

DEDICATION

To my parents “Prof. Hassan ElNaggar”, “Dr. Ebtessam Abd ElAal”, my sister “Dr. Menna

ElNaggar” and my big family for their infinite love and support.

To the actors who were behind the scene, who gave me the love and courage I need every once

in a while. To “Dr. Ahmed ElShafee” for sharing his knowledge whenever I need, to “Dr.

Shahira ElAlfy” for her endless support, motivation and kindness and to “Dr. Sherif ElShafei”

who provided me the good means of teaching during my undergraduate studies.

To my close friends who really care for me “Menna H.”, “A. Serag”, “I. Abou Hashim”, “Alaa

Badr El-Deen”, “Mostafa M. Marzok”, “Islam Taha”, and “Salma ElShaarawi”

To my ”NU” colleagues, who care about my success every single time and motivate me to

continue whenever I feel down, specially “Muhammad Daif”, “Heba Shalaby”, “Mona Ragab”,

“Mohamed Naiel”, “Ahmed Othman”, “Ahmed M. Foda”, “Ahmed Zidan”, “Loay Elalfy”,

“Mohamed Kilany”, “Walid Mohamed”, “Ahmed Gamal”, “Mostafa ElAttar”, “AbdAllah

Motaal”, “Ahmed Salaheldin”, “Ahmed Ahmedin” and “Mohamed Samir ElBaz”.

To my “ACU” friends who were and still my source of motivation.

To my second family here in Canada, to “Ahmed Hamed”, “Yara Zayed”, “Dina Zayed”,

“Salsabeel Zayed”, “Mohamed Naiel” and “Esraa Awad”. They encourage me to keep going on

once I decided not to continue and return back to my beloved country. They helped me morally.

To “Dr. Iman M. AbdElAziz” for sharing her support and motivation to continue studying and

do great while proceeding in this project and thesis.

I would like to thank my residence’s friends “Karim Nagi”, “Adham Ismail”, “Ahmed A. Aziz”,

and “Yasser T. Shaaban” for the good times we spent all together.

To everyone who helped me finishing this work specially “Ahmed Ragab”, “Moussa

Ouedraogo” and “Serge ElHelou”.

To all my “Polytechnique” colleagues who were there whenever I needed any help and advice.

iv

ACKNOWLEDGEMENTS

To my director of research, Prof. Alejandro Quintero, who provided me the means, the

supervision and the pieces of advice to successfully complete this project.

To “Prompt Lab” and “LARIM Lab” colleagues who share knowledge, wisdom and joy with me

all the time while being here during my studies specially “Ryan Shayegan”, “Richard Jaramillo”,

“Salah-Eddine Benbrahim”, and “Mahsima Rahimi”.

I really appreciate…

v

ABSTRACT

On one hand, IP Multimedia Subsystems (IMS) are a research area that has been gaining

attention from the research community. It aims to provide cellular access to all Internet services.

It is a control architecture on the top of the IP layer whose goal is dependent on the provision of

the Quality of Service (QoS), integrated services and fair charging scheme throughout standard

interfaces. On the other hand, Vehicular Ad-hoc Networks (VANETs) are a new communication

paradigm that enables the wireless communication between vehicles moving with high speeds, as

well as the vehicles and the road side equipments found along the roads. This opened the door to

develop several new applications like, traffic engineering, traffic management, dissemination of

emergency information to avoid critical situations, comfort and entertainment and other user

applications. Moreover, VANETs are a sub-class of mobile ad-hoc networks; the performance of

the communication depends on how better the routing takes place in the network. Routing of data

depends on the routing protocols being used in the network. Combining the capabilities of IMS

world with the VANET world opens the door to deploy a wide range of novel multimedia

services. This dissertation proposes a presence-based architecture for the integration of IMS with

VANETs. The presence of the middleware is used to make an instantaneous awareness of the

VANETs changes as well as of the IMS format and to select the best delivery strategy between

the two architectures. The gateway which is the heart of our architecture is an overlay built on

the top of the IMS as well as the VANETs.

vi

TABLE OF CONTENTS

DEDICATION………………………………………………………………………………………………………...iii

ACKNOWLEGEMENTS……………………………………………………………………………………………..iv

ABSTRACT………v

TABLE OF CONTENTS……………………………………………………………………………………………...vi

LIST OF TABLES……………………………………………………………………………………………………..x

LIST OF FIGURES…………………………………………………………………………………………………...xi

LIST OF ACRONYMS AND ABBREVIATIONS……………………………………………….............................xii

LIST OF APPENDICES……………………………………………………………………………………………..xiii

CHAPTER 1 INTRODUCTION………………………………………………………………………………………1

 1.1 Definitions and Basic Concepts………………………………………………………………………......3

 1.1.1 IP Multimedia Subsystems (IMS) ……………………………………………………………………..3

1.1.2 Vehicular Ad-hoc Networks (VANETs) ……………………………………………………………....6

1.1.3 Wireless Sensor Networks (WSNs) …………………………………………………………………....7

 1.2 Aspects of the problem………………………………………………………………………………………...7

 1.3 Research Objectives…….……………………………………………………………………………………....9

 1.4 Outline…………………..……………………………………………………………………………………….9

CHAPTER 2 STATE OF THE ART…………………………………………………………………………………10

2.1 IMS & the Presence Framework………………………………………………………………………...10

2.2 Vehicular Ad-hoc Networks (VANETs) ……………………………………………………………….15

2.3 Wireless Sensor Networks (WSNs)……………………………………………………………………..21

2.4 Use Cases & Requirements for the Integration………………………………………………………....23

2.5 Integrating IMS and WSNs Architecture……………………………………………………………….25

 Integrating IMS and WSNs……………………………………………………………………………..26

vii

2.6 Integrating VANETs and WSNs Architecture………………………………………………………….28

2.7 Architecture for System Integration…………………………………………………………………….29

2.8 Integrating VANETs and IMS “3G technologies”……..……………………………………………….31

CHAPTER 3 PROPOSED ARCHITECTURE……………………………………………….………………………33

 Scenarios and Use Cases………………………………..……………………….……………………….33

 The First Scenario…………………………………...…..…….………………………………………….33

 The Second Scenario………………………………...…..……………………………………………….35

3.1 Architecture Design……………………………...……..……………………………………………….36

3.1.1 Assumptions…………………………………...……..……………………………………………….38

 Architecture Principles………..………………….……..……………………………………………….38

3.1.2 Architecture topology and interactions………...……..……………………………………………….40

 Global Architecture……………………………….……..……………………………………………….44

3.2 Overlay Rules…………………………………………..……………………………………………….44

3.2.1 Protocols……………………………………………..………………………………………….…….44

3.2.2 Procedures……………………………………...……..……………………………………………….46

 Self-Organization………………………………….……..……………………………………………….46

 Sequence Diagram………………………………………..……………………………………………….47

 Self-Recovery……………………………………...……..……………………………………………….49

3.3 Scenario………………………………………….……..……………………………………………….53

CHAPTER 4 IMPLEMENTATION AND VALIDATION………………………………….………………………55

4.1 Procedures……………………………………….……..………………………………………………..55

4.2 Performance Analysis.…..……………………….……..……………………………………………….57

4.2.1 Number of packets generated per request service.……..…….……………………………………….58

4.2.2 Number of Services found per Service Request....……..…….……………………………………….61

viii

4.3 Validation…..…………………………………………..……………………………………………….63

4.3.1 Requirements vs. Architecture………………………………..……………………………………….63

4.3.2 Architecture comparison…….………………………………..……………………………………….65

4.3.3 Vast simulation and results………………………………...…..……………………………………...68

 Simulation Configuration………………………………..……………………………………………….69

 Creating Network Objects………………………………..……………………………………………….71

 Creating Movement and Traffic…………...……………..……………………………………………….73

 Running a Simulation…...………………………………..……………………………………………….74

 NAM: Network Animator.………………………………..……………………………………………….76

 4.4 Mobility Model…..……………………………………..……………………………………………….78

4.4.1 Freeway Mobility Model…..………………………....……………………………………………….78

4.4.2 Map File…..…………………………………………..……………………………………………….79

4.5 Network Traffic…..…………………………...………..……………………………………………….84

4.5.1 Creating Network Traffic...…………………………..……………………………………………….85

4.5.2 The Network Traffic Programs: AWK throughput-latency scripts..………………………………….87

4.6 Performance Metrics…………………………………..…………………………………………..…….90

4.6.1 NS-2 Simulation Trace Format.……………………..…………………………………..…………….91

4.6.2 Reception Rate………………………………………..……………………………………………….92

4.6.3 Delay………...………………………………………..…………………………………………….....94

4.7 Simulation Results And Analysis..……………………..…………………………………………….....95

 Simulation for 50 Nodes………………………………..…………………………………………….....95

 Simulation for 100 Nodes………………………..……..…………………………………………….....96

 Simulation for 200 Nodes………………………..……..…………………………………………….....96

 Simulation for 400 Nodes………………………..……..…………………………………………….....96

ix

CONCLUSION…………………………………..………………………………….………………………………..99

REFERENCES...…...…………………………………..………………………………….………………………...104

APPENDICES………………………………………………………………………………………………………107

x

LIST OF TABLES

Table 4.3.1. Requirements vs. Architecture……………………………………………………………….64

Table 4.3.2. Comparison between proposed gateways for integrating VANET, WSN and IMS………....66

Table 4.3.3.1: Command-Line Options for wireless-simulation.tcl……………………………..75

Table 4.3.3.2: Data Contained in an NS-2 Trace………………………………………………...75

Table 4.6.1: Performance Metrics………………………………………………………………..90

xi

LIST OF FIGURES

Figure 2-1: Multimedia Subsystem (IMS) Core……………………………………….……….....5

Figure 2-2: Node types in VANETs……..………………………………………………………..6

Figure 2-3: IMS simplified architecture overview……………………………………………….11

Figure 2-4: CAE-2-X communication scheme.………………………………………………….18

Figure 3-1: General architecture………………………………………………………………....39

Figure 3-2: Overlay Gateway…………………………………………………………………….40

Figure 3-3: Global topology of the gateway.…………………………………………………….44

Figure 3-4: Self-Organization Process…..……………………………………………………….48

Figure 3-5(a): Node leaving the network..……………………………………………………….50

Figure 3-5(b): Leader node receiving the message………………………………………………51

Figure 3-7: Sequence Diagram for multimedia services & sensed data present to the vehicles...53

Figure 4-1: Message flow between entities of the architecture………………………………….56

Figure 4-2(a): Proactive to Reactive total packets ratio for punctual services…………………..60

Figure 4-2(b): Proactive to Reactive total packets ratio for punctual services…...……………...60

Figure 4-2(c): Proactive to Reactive total packets ratio for punctual services…………………..61

Figure 4-2(d): Proactive to Reactive total packets ratio for punctual services……...…………...61

Figure 4-3: Proactive to reactive average number of discovered services..……………………...62

Figure 4-4: NAM control…………………………………………….…..………………………77

Figure 4-5: Simulation topology with the gateway in the middle….…..………………………..83

Figure 4-6: Part of the trace file as an output of the tcl script……...…..……………..…………88

Figure 4-7: Throughput and latency trace files…………………….…..…………………...........89

Figure 4-8: Aggregated throughput for all the simulated nodes…..…..……………………........97

Figure 4-9: Aggregated latency for all the simulated nodes…………..…..……………………..98

xii

LIST OF ACRONYMS AND ABBREVIATIONS

3GPP Third Generation Partnership

ACK Acknowledgement

AODV Ad-hoc On-demand Distance Vector

CSCF Call/Session Control Function

GW Gateway

HSS Home Subscriber Server

ICMP Internet Control Messaging Protocol

IMS IP Multimedia Subsystems

ITS Intelligent Transportation System

LUNAR Lightweight Underlay Network Ad hoc Routing

MANET Mobile Ad-hoc Network

 OBU On Board Unit

PEDS Persistent Encrypted Data Storage

QoS Quality of Service

RSU Road Side Unit

SIP Session Initiation Protocol

UE User Equipments

VANET Vehicular Ad-hoc Network

WiFi Wireless Fidelity

xiii

WSN Wireless Sensor Network

LIST OF APPENDICES

APPENDIX 1 – Simulation Script……...…………………………………..………………………………….……106

APPENDIX 2 - Mobility……...…………………………………..………………………………….……………...113

APPENDIX 3 – Network Traffic……...…………………………………..………………………………….……..121

APPENDIX 4 – Performance Metrics……...…………………………………..…………………………………...125

1

CHAPTER 1 INTRODUCTION

Everything is becoming wireless. The fascination of mobility, accessibility and flexibility

makes wireless technologies the dominant method of transferring all sorts of information.

Satellite television, cellular phones and wireless Internet are well-known applications of wireless

technologies.

Moreover, recently, applications and technologies are rarely seen isolated. Users expect

to have access to a set of services without needing to know which system handles which service.

Thus, systems integration and standardization has become a key-point towards ubiquitous access.

This project focuses on integrating two technologies together, the IP Multimedia

Subsystem (IMS) and Vehicular Ad-hoc Networks (VANETs) in the presence of the Wireless

Sensor Networks (WSNs). Both of them are evolving technologies and have gain more interest

in the research community in recent years because of the great advantages and services they

provide. As in this work, the integration of both worlds provides further services and applications

in a standardized and decoupled environment. This work presents a promising gateway that

interconnects the IMS world with the VANET world and introduces a tiny contribution to its

research community.

The key element of the 3G network right now is the IP Multimedia Subsystems (IMS). It

is deployed in such a way that it can provide multimedia services to the end-users on the top of

the IP transport Layer [1]. Furthermore, it handles access from WiFi networks, and is continuing

to be extended into an access-independent platform for service delivery, including broadband

fixed-line access. Also it guarantees the provision of the seamless roaming between each of

mobile, public WiFi and private networks as well for a wide range of services and devices. It is

based on three main characteristics [2]:

1. The provision of the Quality of Service (Qos) to real-time sessions. That gives the

operator the chance to control the service a user can get; considering the variety from

one user to another.

2. The fair charging scheme to multimedia services is allowed. This is an important

factor that can be considered since sessions can be created among users or services

located in different networks.

2

3. Services integration throughout standard interfaces. IMS enables services such as

instant messaging, conferencing and third party call to cellular user through standard

interfaces.

On the other hand, Vehicular Ad-hoc Networks (VANETs) is a new challenging network

environment that pursues the concept of ubiquitous computing for future [3]. Vehicles are

equipped with wireless communication technologies and they act like computer nodes will be on

the road soon and this will revolutionize the concept of travelling. They are considered as an off-

shoot of Mobile Ad-hoc Networks (MANETs); however they have some distinguishing

characteristics too. The solutions proposed for MANETs need to be evaluated carefully and then

adapted in order to be used in VANET context. Besides, VANETs are also similar to MANETs

in many ways [3]. For example, both networks are multi-hop mobile networks having dynamic

topology. There is no central entity, and the nodes route the data themselves across the network.

Both MANETs and VANETs are rapidly deployable, without the need of an infrastructure.

Although, MANET and VANET, both are mobile networks, however, the mobility pattern of

VANET nodes is such that they move on specific paths (roads) and hence not in random

direction. This gives VANETs some advantages over MANETs as the mobility patterns of

VANET nodes is predictable. Another difference is the highly dynamic topology of VANETs as

vehicles may move at high velocities. This makes the lifetime of the communication links

between the nodes quiet short. Node density in VANETs is also unpredictable; during rush

hours, the roads are crowded with vehicles, whereas at other times, lesser vehicles are there.

Similarly, some roads have more traffic than other roads [3].

Wireless Sensor Networks (WSNs) are technology which is becoming more mature and

is gaining momentum as one of the enabling technologies for the future Internet. Therefore, it is

being applied ubiquitously and, in particular, to Intelligent Transportation Systems (ITS). They

consist of medium to large networks of inexpensive wireless sensor nodes capable of sensing,

processing and distributing information acquired from the environment through the collaborative

efforts of nodes [4]. WSNs provide significant advantages both in cost as well as in distribute

intelligence. On the one hand, installation and maintenance expenses are reduced because of the

use of cheap devices which do not required wiring. Furthermore, distributed intelligence enables

3

the development of diverse real-time traffic safety applications not feasible with centralized

solutions.

Moreover, WSNs cannot be regarded just as stand-alone systems intended for ITS; on the

contrary, they should be considered in the ITS context as additional components of a

heterogeneous system, where they cooperate with other technologies such as VANET.

1.1 Definitions and Basic Concepts

This section presents the background information pertinent to this project. Its goal is to

give the reader a better understanding as to what are the networks and the technologies used as

base for the integration.

Firstly a brief survey of IMS is presented. Later on, VANET is introduced as technology

and is explained in further details. Then a sufficient concern will be given for the WSN.

1.1.1. IP Multimedia Subsystems (IMS)

IMS [5] is a standardized network architecture that is designed to merge cellular

networks and the Internet. The third generation partnership (3GPP) has standardized IMS. The

purpose of this converged network is to provide a platform for all kinds of multimedia services,

both basic calling services as well as enhanced services. The services include among others

video sharing and Push-to-talk over Cellular [6]. IMS is designed to make it easy to develop and

deploy new services. Additionally, two or more services can be integrated into one new service.

IMS uses open standard IP protocols to enhance the compatibility between IMS and the Internet.

The goal is to deliver multimedia services between the fixed- and the cellular networks and

within the networks themselves, but without making these services available to the public

internet or allowing new operators on the public internet to provide services to the fixed and

mobile telecommunications users. The reason not to allow these new operators to offer services

to these users is that the mobile access operators want to keep their monopoly or near monopoly

positions [7]. 3GPP has defined a list of requirements that IMS must fulfill. Where IMS is

defined as: “An architectural framework created for the purpose of delivering IP multimedia

services to end-users.” [7]. These requirements state that the framework is needed to support IP

Multimedia sessions, quality of service (QoS), interworking with the Internet and the circuit

4

switched network, roaming, operators’ ability to strong control the users’ services, and that new

services do not need to be standardized [7]. The second requirement above concerning Quality of

Service (QoS), means that the user is to be guaranteed a certain amount of bandwidth and

bounded packet delay. Traditionally packet-switched networks only provided best-effort

delivery, which means that the IP packets are not guaranteed to arrive at the destination without

loss or corruption of packets or even within any specific time bound. Of course higher layer

protocols can be used to provide reliability if it is desired, but this is the reverse to the usual

model for circuit switched telecommunication where it is assumed that the network provides in

order delivery of bits with a bounded delay furthermore the error rate is determined by the links

used and error bounds are based upon engineering and management selections of the appropriate

link. Another contrast is that of availability of services, in the circuit switched model you either

have the service or you do not, while in the packet switched model you may have at least some

low quality service even in the worst of conditions [7]. Cellular networks have emphasized

roaming as a service. In IMS this means that a user can be in a foreign country (or non-home

operator’s network) and still be able to use his/her mobile operator’s services (i.e. Video sharing,

Push-to-talk over Cellular, etc.) [7].With the introduction of IMS, a mobile access network

operator will have the ability to monitor each service which a user is using. This will make it

easier for the operator to apply specific business model for each service as part of a use-by-use

cost model, while controlling what kind of services the user is allowed to use. The advantage is

that users will be able to compare the price of each service between the different operators, and

this will enhance the competition between the operators to retain and attract subscribers.

However, if the user is using a service that is not provided by the mobile network operator, then

the operator will only be able to see how much data is sent over the packet network to/from the

user. If the majority of users use these services, then these users may prefer a flat rate model. It is

up to the operator which business model to use, such as: flat rate, time-based, service based, or

QoS based. The signaling protocol that is used in IMS is SIP (Session Initiation Protocol), and it

works over multiple transport protocols (e.g., TCP, UDP, and SCTP).

5

1.1.1.1. IMS Components

IMS is an overlay control layer on top of an IP layer. As shown in Figure 1-1, four

logical layers are defined as part of the IMS architecture. The device layer represents the

different networks that could access IMS when connecting to an IP network. The transport layer

is responsible for initiating and terminating SIP sessions and providing conversion of data. In

addition to the IP network, the transport layer allows IMS devices to make and receive calls to

and from the PSTN.

The control layer is composed by the CSCF (Call/Session Control Function) and the

HSS (Home Subscriber Server), which are essential entities in the IMS architecture. CSCF refers

to a set of SIP servers (i.e. Proxy-CSCF, I-CSCF and S-CSCF) that process SIP signaling. And

the HSS is a central repository that contains user-related information [1].

Finally, on top of the IMS network architecture is the service layer. At this layer,

application servers are found. An application server is a SIP entity that hosts and executes IMS

services.

 Figure 1-1: Multimedia Subsystem (IMS) CORE [2]

6

1.1.2. Vehicular Ad-hoc Networks (VANETs)

VANET is the technology of building a robust Ad-hoc network between mobile vehicles

and each other, besides, between mobile vehicles and roadside units. As shown in Figure 1-2,

there are two types of nodes in VANETs; mobile nodes as On Board Units (OBUs) and static

nodes as Road Side Units (RSUs). An OBU resembles the mobile network module and a central

processing unit for on-board sensors and warning devices. The RSUs can be mounted in

centralized locations such as intersections, parking lots or gas stations. They can play a

significant role in many applications such as a gate to the Internet.

Figure 1-2: Node types in VANETs [8]

Referring to the introduction part, Vehicular Ad hoc Networks (VANET) is the subclass

of Mobile Ad Hoc Networks (MANETs). It is one of the influencing areas for the improvement

of Intelligent Transportation System (ITS) in order to provide safety and comfort to the road

users. VANET assists vehicle drivers to communicate and to coordinate among themselves in

order to avoid any critical situation through Vehicle to Vehicle communication e.g. road side

accidents, traffic jams, speed control, free passage of emergency vehicles and unseen obstacles

etc. Besides safety applications VANET also provide comfort applications to the road users. For

example, weather information, mobile e-commerce, internet access and other multimedia

7

applications [9]. The most well known applications include, “Advance Driver Assistance

Systems (ADASE2), Crash Avoidance Matrices Partnership (CAMP), CARTALK2000 and Fleet

Net” that were developed under collaboration of various governments and major car

manufacturers [9].

1.1.3. Wireless Sensor Networks (WSNs)

A sensor network is generally made up by a large number of sensor nodes deployed with

or without a pre-established structured in a specific area in order to monitor and to collect

information from the environment [10]. Since they do not necessarily rely on any pre-established

infrastructure, sensor networks can be deployed randomly in inaccessible terrains.

Two basic entities are found in a sensor network: a sink and sensor nodes. The sink,

generally centralized, gathers the information sent by the sensors; it also sends control

information towards the nodes and acts as an interface to the user. Each sensor node is composed

by, at least, four main components: A transmission or transceiver unit that provides network

capabilities; A sensing unit that collects the information from the environment; A processing

unit, which manages the procedures to collaborate with other nodes and has a small storage unit;

And a power source that gives energy to the node and that is usually in the form of a battery. A

wide range of applications has been enabled by sensor networks but two main categories can be

established: monitoring and tracking. Monitoring applications include healthcare, environmental

monitoring, power monitoring and traffic control among others. While tracking serves to object

surveillance purposes such as: animal, human or vehicle tracking.

1.2. Aspects of the problem

Integrating the sensing capabilities of a WSN in the IP Multimedia Subsystem and giving

the access to the IMS through a Vehicular Ad-hoc Network connectivity will open the door to a

wide range of new multimedia services. Basically it allows the provisioning of new services and

an optimized and efficient use of data.

On one hand, optimization and efficiency could be achieved once the information collected

by the WSN reaches both IMS as well as VANETs. To further explain this case we could

8

analyze a scenario for integrating the sensing capabilities of a WSN in the IP Multimedia

Subsystem and giving the access to the IMS through a Vehicular Ad-hoc Network connectivity.

Information collected by the sensors is gathered by wireless nodes that a vehicle owner can use.

To further explain this case we could analyze the following scenario. It becomes important

to support stable, high Internet access and multimedia services within VANET to obtain the

powerful new generation intelligent vehicular networks and applications. Gateway here is known

as the portal to these Internet services. Traditionally, gateways are facilitated between the given

architectures. Due to the high speed of the vehicles, the vehicles quickly move into and out of the

communication range of the gateway. Thus, it is difficult to stably access the Internet and

maintaining the multimedia services as well via the specified gateway.

On the other hand, provisioning of new services or integrations could be developed since

the data will already be available to be transmitted to the intended requester. Proactive actions

exposed in [11] include: gateway discovery and selection that could be selected by the vehicles

when integrating with the IMS and WSN as well. This is possible thanks to the standardization,

unification and integration of services proposed by the gateway.

To successfully enable the above benefits, some minimum requirements need to be

accomplished from the integration’s point of view. Independence is one of them; the integration

should require minimum changes in the three technologies involved. Additionally efficient

translation needs to be done to merge the contextual information from IMS / WSN into VANET.

Furthermore, to proactively react and optimize the use of information, the integration should

consider storage and processing capabilities. And finally, since mobility is considered in WSN,

VANETs, and in IMS users, the integration needs to allow nodes to join and leave the networks,

thus scalability and fault-tolerance are required. Also another important aspect is to consider the

quality of services (QoS) while transmission the multimedia services.

Several solutions have been proposed to bring information from sensor networks to other

networks or technologies like IMS and VANETs. A common approach to the integration often

used in the literature adds a centralized entity or gateway that connects all the technologies

together [12, 13]. These models present some drawbacks mainly because scalability, fault

tolerance, quality of service, and lightweight communication mechanisms are not supported or

9

not specified. Also they purpose the architecture is presented in a centralized data storage which

can lead to single point of failure within the system.

The criteria of selection the gateway also is an important aspect that must be taken into the

consideration, they did not mention the criteria for the selection of such gateway found.

1.3. Research Objectives

Our main goal is to design and build a gateway that will integrate IMS, VANET, and WSN,

enabling multimedia dissemination between the IMS and interested users in the VANET world.

More precisely, this project has the following goals:

1. Define a set of application-scenarios for the integration of VANET into traditional

IMS and WSN to have the multimedia services enabled within the system.

2. Propose an architecture for the integration of the three technologies.

3. Develop a prototype of the gateway as a proof of concept.

4. Validate the proposed architecture by evaluating and comparing the output results.

1.4. Outline

The rest of this dissertation is organized as follows. Chapter II presents the state of the art

regarding the integration of WSN with the Internet services and, more especially, with IMS. Also

it contains the primary trials for achieving such integration between the VANETs and the IMS

itself. In chapter III the proposed architecture is exposed in details. Chapter IV is devoted to the

performance analysis of the proposed gateway and also simulating the interaction between the

three different networks within the system. Finally, we conduct the conclusion and the future

works.

10

CHAPTER 2 STATE OF THE ART

This chapter presents the state of art from the different technologies and integrations

conceived in this project. Firstly, will further explain and describe the IMS architecture, after that

we will explain in more details the VANETs and show some of the standards that have been

proposed so far. Also we will pay attention for the wireless sensor networks and show some of

its properties. The third section shows the scenario that is the base to analyze and define the

requirements for the system. Then a brief survey on the integrations that have been done between

the three technologies specifically connecting the VANETs with the IMS to gain the advantages

of the multimedia services will be depicted. Later on, the benefits from integrating IMS, WSN,

and VANETs are presented along with the proposals that have been done in the literature.

Finally, benefits and weaknesses of the current overlay solutions for systems integration are

presented.

2.1 IMS and the Presence Framework

As described before, IMS aims to integrate services and to provide QoS and a differential

charging scheme. IMS architecture proposes several functional entities linked by standardized

interfaces; meaning that two functional entities could be implemented in a single physical node.

11

Figure 2-1: IMS simplified architecture overview [14]

Requirements

Referring to [15], IMS was conceived firstly to make more attractive the mobile Internet to users.

So, the 3GPP Release 5 defines IMS as an architectural framework for delivering IP multimedia

services to end-users. So the following requirements were needed:

 Support for establishing IP Multimedia Sessions, which means to support multimedia

sessions over packet-switched networks.

 A mechanism to provide QoS.

 Support for interworking with other networks. Users must be able to reach other users

regardless of what type of terminals they have or where they live.

 Support for roaming.

 Support for operators’ control: from methods to provide the operator with service control

to charging mechanisms.

 Support for secure communication. Security is a must nowadays. IMS takes it into

account by including its own authentication and authorization mechanisms among other

procedures.

12

The following releases and other groups’ works added new requirements to support the so-

called access-independence:

the fact that IMS provides support for different access networks (see [16]).

Entities

IMS is based on a number of entities which communicate among themselves. The most

relevant ones are going to be described in the following sections.

 Databases

The HSS (Home Subscriber Server) and the SLF (Subscription Locator Function) are the

two databases in the IMS architecture. The first one is the main data repository for all subscribers

and service-related data. It contains the user identities, registration information, access

parameters and service triggering information.

Depending on the number of subscribers, a network can contain more than one HSS. If it

is the case, then the second database is needed: SLF. It permits other entities to know which is

the HSS database that contains all the information about the user they need. So it simple maps

user’s addresses to HSSs.

 CSCFs

CSCF stands for Call Session Control Function and it is an essential node in the IMS

architecture. In fact it is not a node, but 4 differentiated entities: P-CSCF, S-CSCF, I-CSCF, E-

CSCF (the last one is out of the scope of this project because it is related to emergency

scenarios).

1. Proxy Call Session Control Function (P-CSCF):

It is the first contact point for users within the IMS. This means that all SIP signaling

from the UE will be sent directly to the P-CSCF and in the other way around.

It has 4 tasks assigned: SIP compression, IPSec security association, interaction with

Policy and Charging Rules and emergency session detection.

2. Serving Call Session Control Function (S-CSCF):

It is the central point of the IMS framework and it implements a SIP Server plus a SIP

Registrar. All SIP signaling an IMS terminal sends and receives passes through the

13

allocated S-CSCF, which inspects every SIP message and determines if it has to be sent

to another entity towards the final destination. Furthermore, it is also responsible for

handling registration processes.

3. Interrogating Call Session Control Function (I-CSCF):

It is the contact point within an operator’s network, located at the edge of an

administrative domain. It has assigned three main tasks: obtaining the name of the next

hop, assigning an S CSCF based on received capabilities from the HSS and routing

incoming requests.

The combination of the CSCFs and the HSS is also known as the IMS Core.

AS

An Application Server (AS) is an entity which provides value-added multimedia services.

Its functions are to process and impact an incoming SIP session, generate SIP requests

and send accounting information to the charging functions.

There are three types of Application Servers: SIP AS (native), OSA-SCS (interface to the

OSA framework) and IM-SSF (CAMEL services).

MRF

MRF stands for Media Resource Function, it permits the home network to have a media

source to play announcements, mix media streams, transcode and do media analysis.

BGCF

The first entity, the Breakout Gateway Control Function (BGCF), is a SIP server which

includes routing functionality based on telephone numbers; while the second one

provides an interface towards a circuit-switched network, which permits that IMS

terminals can make and receive calls to/from any circuit switched network.

14

Presence Framework

The presence service allows a user to be informed about the reachability, availability, and

willingness of communication of another user. It can provide an extensive amount of information

about a person to a set of interested users. Even more, services are able to read and analyze this

information to provide further services.

The presence framework defines four roles:

 Presence Entity – “Presentity”. It refers to the entity providing presence information (e.g.

status, capabilities and location). It has several Presence User Agents (PUAs) which

provide this information to the Presence Service. Each PUA can collect different pieces

of information.

 Presence Agent (PA) - It gathers information sent by the PUAs and obtains an idea of the

user’s presence.

 Presence Server - It is a functional entity that acts as either a PA, as proxy server for

SUBSCRIBE requests or as both. In IMS, this entity is represented as an Application

Server that acts as a PA.

 Watcher - It refers the user that requests presence information from a presentity.

It is built on top of the SIP event notification framework; which is based in

SUBSCRIBE/NOTIFY requests. A watcher subscribes to receive information from a presentity

for a period of time or for requesting some specific information. The presentity’s PA will send

the information to the watchers using a SIP NOTIFY request. Presence information is sent in the

body of the messages and it is a XML document called PIDF. The PIDF carries the semantics of

presence information between presence entities or roles. It is protocol independent and highly

flexible; in fact some extensions have already been proposed to overcome some limitations.

Presence service is divided in three processes. The first one is the publication process

where presentity’s PUAs send PIDF documents in a SIP PUBLISH message. IMS CSCFs

forward the request to the Application Server that represents the Presence Server; which finally

replies with an OK. The second process consists in the subscription of watchers. Through SIP

SUBSCRIBE transaction, watchers request to receive information from a presentity, watchers

can be users or even other services. Once new information reaches the Presence Server a SIP

NOTIFY is sent to subscribed users and services that can exploit the information [2].

15

2.2 Vehicular Ad-hoc Networks (VANETs)

The basic concept of VANET is straightforward: take the widely adopted and

inexpensive wireless local area network (WLAN) technology that connects notebook computers

to each other and the Internet, and, with a few tweaks, install it on vehicles. Of course, if it were

truly that straightforward, the active VANET research community would likely have never

formed and this thesis would have never been written. If vehicles can directly communicate with

each other and with infrastructure, an entirely new paradigm for vehicle safety applications can

be created. Even other non-safety applications can greatly enhance road and vehicle efficiency.

Second, new challenges are created by high vehicle speeds and highly dynamic operating

environments. Third, new requirements, required by new safety-of-life applications, include new

expectations for high packet delivery rates and low packet latency. Further, customer acceptance

and governmental oversight bring very high expectations of privacy and security.

 Even today, vehicles generate and analyze large amounts of data, although typically this

data is self-contained within a single vehicle and with a VANET, the horizon of awareness for

the vehicle or driver drastically increases. Communication in VANETs can be either done

directly between vehicles as one-hop communication, or vehicles can retransmit messages,

thereby enabling the so called multi-hop communication. In order to increase coverage or

robustness of communication, relays at the road side units (RSU) can be deployed. Road side

infrastructure can also be used as a gateway to the Internet and, thus, data and context

information can be collected, stored and processed somewhere. It warrants repeating that the

interest in vehicular inter-networks is strongly motivated by the wealth of applications that could

be enabled. First of all, active safety applications, i.e., accident prevention applications, would

benefit from this most direct form of communication. Second, by collecting traffic status data

from a wider area, traffic flow could be improved, travel times could be reduced as well as

emissions from the vehicles. As it was concisely stated as the tenet of the Intelligent

Transportation System World Congress in 2008: save time, save lives. The application classes

Safety and Efficiency can be used to classify applications based on their primary purpose (Cfr.

chapter 4, "Data dissemination survey"). However, the aspects of safety and efficiency cannot be

seen as completely disjoint sets of features [17].

16

Obviously, vehicle crashes can lead to traffic jams. A message reporting an accident can

be seen as a safety message from the perspective of near-by vehicles. The same message can be

seen by further-away vehicles as an input to calculate an alternative route within a transport

efficiency application

While being conceptually straightforward, design and deployment of VANET is a

technically and economically challenging endeavor. As described in the following part, key

technical challenges include the following issues [17]:

 Inherent characteristics of the radio channel

VANET present scenarios with unfavorable characteristics for developing

wireless communications, i.e., multiple reflecting objects able to degrade the

strength and quality of the received signal. Additionally, owing to the mobility of

the surrounding objects and/or the sender and receiver themselves, fading effects

have to be taken into account.

 Lack of an online centralized management and coordination entity

The fair and efficient use of the available bandwidth of the wireless channel is a

hard task in a totally decentralized and self-organizing network. The lack of an

entity able to synchronize and manage the transmission events of the different

nodes might result in a less efficient usage of the channel and in a large number of

packet collisions.

 High mobility, scalability requirements, and the wide variety of environmental

conditions

The challenges of a decentralized self-organizing network are particularly stressed

by the high speeds that nodes in VANET can experience. Their high mobility

presents a challenge to most iterative optimization algorithms aimed at making

better use of the channel bandwidth or the use of predefined routes to forward

information.

17

 Security and privacy

There is a challenge in balancing security and privacy needs. On the one hand, the

receivers want to make sure that they can trust the source of information. On the

other hand, the availability of such trust might contradict the privacy requirements

of a sender.

 Standardization versus flexibility

Without any doubt, there is a need for standardizing communications to allow

VANET to work across the various makes and brands of original equipment

manufacturers (OEMs). Yet, it is likely that OEMs will want to create some

product differentiation with their VANET assets. These goals are somewhat in

tension.

 From an application and socio-economic perspective, key challenges are as

follows:

 Analyzing and quantifying the benefit of VANET for traffic safety and transport

efficiency. So far, relatively little work has been done to assess the impact of

VANET as a new source of information on driving behavior. Clearly, the

associated challenge in addressing the issue of impact assessment is the modeling

of the related human factor aspects.

 Analyzing and quantifying the cost/benefit relationship of VANET. Because of

the lack of studies on the benefits of VANET, a cost/benefit analysis can hardly

be done.

 Designing deployment strategies for this type of VANET that are not based on a

single infrastructure and/or service provider. Owing to the network effect, there is

the challenge of convincing early adopters to buy VANET equipment when they

will rarely find a communication partner.

 Embedding VANET in intelligent transportation systems architectures. VANET

will be a part of an intelligent transportation system where other elements are

given by traffic-light control or variable message signs. Also public and

18

individual transportation have to be taken into account in a joint fashion.

Therefore, truly cooperative systems need to be developed [17].

As can be seen from the above lists of technical, application, and socio-economic aspects,

the field of vehicular application and inter-networking technologies is based on an

interdisciplinary effort in the cross section of communication and networking, automotive

electronics, road operation and management, and information and service provisioning. VANET

can therefore be seen as a vital part of Intelligent Transportation Systems (ITS).

Figure 2-2: CAR-2-X communication scheme. A typical VANET scenario showing a CAR-2-X

communication system and involved protocols of the IEEE 802 family. As shown in the figure,

the CAR-2-X communication system consists of three domains: the in-vehicle domain, the ad

hoc domain, and the infrastructure domain [17].

19

The concept of data dissemination is wide and meaningful, and within this work we

generally refer to it as the process of spreading some amount of data over a distributed wireless

network, which is a superset of a VANET.

Data exchanging on the roads is becoming more and more interesting, as the number of

vehicles equipped with computing technologies and wireless communication devices is poised to

increase dramatically. Communications between vehicles and within the same vehicle (inter-

vehicle, or InV) is becoming a promising field of research and we are moving closer to the vision

of intelligent transportation systems (ITS), which can enable a wide range of applications, such

as collision avoidance, emergency message dissemination, dynamic route scheduling, real-time

traffic condition monitoring and any kind of "infotainment" information spreading (i.e. movies,

gaming and advertisement).

However, it is extremely important to consider several aspects when approaching to any

kind of data transfer in a VANET, because nodes are not fixed but can move. Furthermore, in

this scenario, other complications can easily arise because, unlike the well known mobile ad-hoc

networks (MANETs), where nodes can freely move in a certain area, in VANETs, vehicles'

movements are constrained by streets, traffic and specific rules [17].

The following are only some of the several issues which VANETs are affected by:

 High mobility:

The environment in which vehicular networks operate is extremely dynamic, and

includes extreme congurations: in highways, relative speed of up to 300 km/h

may occur while density of nodes may be 1-2 vehicles per kilometer in low busy

roads. Because of the relative movement of the vehicles, the connectivity among

nodes could last only few seconds, and fail in unpredictable ways.

 Partitioned networks:

Vehicular ad hoc networks will be frequently partitioned. The dynamic nature of

traffic may result in large inter-vehicle gaps in sparsely populated scenarios, and

in several isolated clusters of nodes. The degree to which the network is

connected is highly dependent on two factors, such as the range of wireless links

20

and the fraction of participant vehicles, since only a fraction of vehicles on the

road could be equipped with wireless interfaces. Maintaining end-to-end

connectivity, packet routing, and reliable multi-hop information dissemination

will become extremely challenging in such networks.

As it concerns specially the data transmission, in VANETs there are several

additional issues to take into account:

 The signal fading, this becomes really fast due to the surrounding buildings;

 The strong interference and collision related to the high number of mobile

transmitters (vehicles);

 The flapping links, caused by fading effect and vehicles' speed.

Furthermore, while traditional vehicular networks rely on specific infrastructures, such as

road side traffic sensors reporting data to a central database, or cellular wireless communication

between vehicles and a monitoring center, we want to focus our effort on completely

decentralized data dissemination solutions, in order to avoid expensive infrastructures and

increase the overall scalability of the system. In fact, how to exchange traffic information among

vehicles in a scalable fashion is really an important problem to be solved in VANETs [17].

Now in the mean time for the multimedia services, multimedia services play an important

role in the VANET world. Authors in reference [18] highlight the importance of the Live

Multimedia Streaming (LMS) such world for their capability of providing comprehensive and

user-friendly information. They focused on the fundamental challenges that face the VANET

world while using minimal bandwidth resources, especially under highly dynamic topology of

VANETs and the lossy nature of vehicular wireless communications.

They based their proposal on the symbol-level network coding (SLNC), which has been

shown to be an effective approach to improve the efficiency of bandwidth utilization, by

exploiting both wireless symbol level-diversity and the benefits of network coding. In their work,

they introduced “CodePlay”, a new LMS scheme in VANETs that fully takes advantage of

SLNC through a coordinated local push mechanism. Streaming contents are then actively

disseminated from dedicated sources to interested vehicles via local coordination of

destributively selected relays, each of which will ensure the smooth playback for vehicles

21

nearby. “CodePlay” is designed to simultaneously improve the performance of LMS service in

terms of streaming rate, simulations show that CodePlay is potentially suitable for future LMS

applications in VANET. The solution proposed considers the continuous availability of the

multimedia services to the VANET systems.

2.3 Wireless Sensor Nodes (WSNs)

A wireless sensor network is generally composed by a large number of sensors that are

deployed over an area to detect or sense a phenomenon. These sensor nodes are seen as sources

of information, providing a rich set of contextual information such as: Spatial data (e.g. location),

physiological data (e.g. heart rate, blood oxygen or blood pressure) or environmental data (e.g.

temperature or soil properties). Additionally, they have the ability to compute simple tasks and to

communicate with other nodes to transfer information or to perform other networking activities

(e.g. routing).

The Sink or base station is the gateway or coordinator of the network. It collects

information from sensor nodes and queries them if necessary. Besides the basic functionality,

this functional entity is the entry point to the sensor network. Applications can create reports or

analyze the data collected throughout the Sink. It has been generally conceived as a single and

centralized entity in the WSN, however depending on the application several sinks and/or a

decentralized architecture can be deployed.

Sensor networks have several features that made them unique. Among them, sensor

nodes are densely deployed and prone to failures, the topology of the network varies in time due

to mobility or failure factors, the nodes are limited in power, computational capacity and

memory, and they may not have a unique global ID because they are densely deploy.

All these characteristics are being studied by researchers and several proposals for

protocols, standards and algorithms that could fulfill them in a satisfying way have been made.

Surveys in WSN [4, 10] have gathered this information and outline new challenges. Akyildiz et

al. present in [4] a survey based on the communication architecture of wireless sensor networks

and the proposals and challenges in the different layers (e.g. physical, data link, etc.). While Yick

et al. [10] described the state of the art by dividing it in three lines of study: internal platform and

operating system, communication protocol stack and network services. The following section

22

briefly describes some of the current standards for sensor networks, to further detail refer to [2,

10].

Standards

Wireless sensor networks requirements have been developed and design with low power

consumption as a key characteristic. These requirements can change from different types of areas

in sensor networks. Thus, several standards have been proposed. They include not only the

functions but also the protocols necessary to interact with other nodes in the network. Some of

the standards proposed for WSN are: IEEE 802.15.4, ZigBee, WirelessHART and IEEE

802.15.3.

IEEE 802.15.4 is a standard for low rate wireless personal area networks (LR-WPAN).

LR-WPAN characteristics are ease of installation, reliable data transfer, short-range operation,

extremely low cost battery life and a simple and flexible protocol. IEEE 802.15.4 allows the

formation of either peer-to-peer or star network composed by the two types of devices defined by

the standard; a full-function device (FFD) and a reduced-function device (RFD). The standard is

designed for applications that require short range communication to maximize node lifetime,

including residential, industrial and environmental monitoring, control and automation.

ZigBee is based on the IEEE 802.15.4 and defines the upper layers. It is designed for

applications that require low data rate, long battery life, and secure networking. The standard

defines three types of devices: ZigBee coordinator, ZigBee router and ZigBee end device. The

ZigBee coordinator starts the network, can store information about it and can act as a bridge to

other networks. ZigBee router links groups of devices and provides multi-hop communication.

Finally, ZigBee end device limits its function to transmit information collected to the parent

nodes; includes sensors, actuators or controllers. ZigBee has been proposed as standard for home

automation, healthcare monitoring and industrial control.

WirelessHART as ZigBee is based in IEEE 802.15.4. It provides a communication

protocol for process measurement, control and asset management applications. One of the main

advantages is that it is compatible with existing devices, tools and systems. Their architecture is

based on three main features: reliability, security and effective power management.

23

IEEE 802.15.3 is a physical and medium access control layers in high rate WPAN. It has been

enhanced to address the specific needs of digital imaging and multimedia applications; audio and

video.

The design of these platforms is tightly coupled with a range of applications, since energy

efficiency, cost and other design challenges can dramatically change with the application

requirements. Although these standards provide support for a wide range of applications, new

applications could be easily be defined, thus, a more practical platform could be useful [2].

2.4 Use Cases and Requirements for the Integration

Multimedia services appear as a promising area of IMS thanks to their intrinsic features

such as Internet provision and video / data streaming. IMS has been proposed to provide such

services to users allowing real-time access to the information from the field.

Assisting the drivers in hazardous situations and decreasing road dangerous, has been

extensively studied. Important processes like accident prevention and post-accident investigation

take place to enhance and improve the drivers’ awareness while getting in such dangerous

situations. Festag, Hessler, Baldessari, Le, Zhang, and Westhoff in [19], for instance, propose a

hybrid topology composed by road-side WSN – VANET that the vehicles are equipped with an

On-board Unit (OBU) and two wireless network interfaces; namely IEEE 802.11p and IEEE

802.15.4 and also that the sensor data are stored in a distributed and redundant database in the

sensor nodes. Moreover, it is difficult to design a common system architecture for both VANETs

and WSN. For this reason, they proposed a hybrid system architecture that combines the best of

the two worlds.

This proposal could be adapted to our case where the usage of IEEE 802.11p is applied in

VANETs and then it can interact with WSN which in turn interacts with IMS using the proposed

architecture in [2], as the presence service as entry point in the architecture ensures that the

gateway is able to interact with the IMS and also is scalable.

Once the information is ready to be collected, this could be forwarded to the integration

point with the VANETs. Depending on the role of each party within the environment, the

integration point could publish different types of information. For example, the VANET user

might request Internet access and video streaming from the IMS world. On the other hand, the

24

sensor nodes in the WSN monitor environmental data, store the collected data with the

timestamp and sector information, and communicate the collected and processed data to passing

vehicles via IEEE 802.15.4 ensuring its reliable collection.

WSN is a technology suitable to fit different requirements when monitoring critical and

normal conditions. Sensors are deployed directly in the field with a network infrastructure that

could run for years without man attendance [2]. In the sense of that, WSN aggregate the

measured values and communicate their aggregated value to an approaching vehicle. The vehicle

then generates messages and distributes it to all vehicles in a certain geographical region,

potentially using wireless multi-hop communication [19].

Furthermore, [20] has proposed several proactive actions and scenarios that could be

implemented in the future in IMS. Wireless Sensor Actuator Network (WSANs) for instance,

could optimize some process. WSAN are sensor networks that integrate a new entity entitled

actors that can perform appropriate actions upon the environment called actuation tasks [2].

Based on the previous scenario; some minimum requirements are defined to fulfill the

benefits of the integration between the three technologies “IMS-VANETs-WSNs”:

 Independence. The integration should be as independent as possible from both the IMS

and VANET. This will ensure the minimal changes to the IMS and the VANET and in

the integration point if different solutions want to be adapted.

 All services provided by the IMS “Internet access, video / data streaming provision, IP

Multimedia services, etc.” should be available to the VANET via the gateway.

 Translation from the information model used in each of the IMS, VANET, WSN and

vice versa. Here we can say that the presence of the Middleware between each of them is

an important factor that must be put into consideration.

 The presence of the appropriate provision of the Quality of Service (QoS) according to

the function of each IMS and VANET, different parameters must be satisfied including

reliability, availability, and priority, etc.

 Storage and processing capabilities to handle the requests from IMS as a way to support

both synchronous and asynchronous mode to access its services.

25

 Scalability and fault tolerance, allowing the multiple nodes to join and leave the

networks (IMS and mobile vehicles).

 Determination of gateway location. At the session setup, the VANET should be able to

determine the location of the gateway; also in return, the IMS should be able to determine

the gateway to send the requested services.

2.5 Integrating IMS and WSNs Architecture

In this section we are going to explain in details the integration methods between each of

the IMS and WSNs as well as the WSNs with VANETs. Since most of the proposals found are

dealing with these issues; we are going to extract the details and we will propose our architecture

for integrating the three technologies together.

Referring to [2], IMS is a platform that has been selected as a key component of third

generation (3G) networks. It is foreseen as a main component in service integration and

provisioning. Moreover, it provides unified access to information, whose suppliers could include

other networks like WSN.

A scalable framework on top of IMS [21] could facilitate the enhancement and

development of more intelligent, invisible and autonomous applications that exploit WSN

information (e.g. about people, places and objects). Strohbach et al. expose some of the benefits

in building such a framework in IMS: message routing across administrative domains, access to

heterogeneous networks, reusable core functionalities, extensive set of services and extended

flexible session control. Furthermore, actual services such as the Presence Service can be

extended to exploit WSN information.

Previously we described Presence Service. Under the basics of this framework, exploiting

WSN information by extending and using it as an entry point in IMS becomes logical. Firstly,

Presence already manages some rudimentary context information such as location and status and

the PIDF defined is highly extensible to support other types of information. Furthermore, it

allows not only users but also services (e.g. applications or other networks) to have access to

sensor’s information in real-time with a pre-established QoS. Thirdly and finally, already

26

existing services like SMS, MMS and IM can be used as they exist today and future integrations

(e.g. with Actuator Networks) can be foreseen.

Integrating IMS and WSN

Integrating IMS and WSN is recently been advocated since its importance is been widely

acknowledge as shown in the previous subsection. Gluhak and Schott in [13] present the e-

SENSE architecture that integrates wireless sensor networks and IMS. The purpose of this

architecture is to enable the delivery of context information from the sensors to the user in

different application environments offering significant advances compared to ZigBee based

systems.

Our focus is on the integration we will not explain the protocol stack of the e-SENSE

system but in the integration done of this system into IMS. A new service called e-SENSE

Service Enabler (SE) is added in IMS. This entity is in charge of providing sensor-based context

information from several e-SENSE systems, thus processing and storing information. The entry

point to integrate an e-SENSE system with the e-SENSE SE is the e-SENSE Gateway. This

functional entity registers to IMS, buffers, schedules and prioritizes the data and enables the

publish/subscribe services. However, when analyzed in the light of the requirements the solution

is not suitable. Firstly, the proposed solution introduces a new entity in IMS that does not assure

independence. Moreover, storage and processing are supported by this new entity and not by the

gateway. Additionally, the adaptation of the information received by WSN into IMS is not

explained. Scalability and fault tolerance are not considered and, since the gateway is a

centralized unit without load-balancing or recovery mechanisms, we could assume that it is not

supported.

Another work was exposed in [22] to integrate Personal Networks (PNs) and WSNs into

IMS. Their objective is to enable the future creation of smart environments where different types

of devices provide different services. The interconnection is done with a key component called

the PN Gateway. It uses TinySIP since it is meant to work in any hardware with limited

resources; TinySIP enables communication between a client on a traditional network and a

sensor node. The PN Gateway has access to different technologies e.g. WLAN, Bluetooth and

ZigBee. The gateway translates messages between TinySIP and SIP and it is directly connected

to a SmartDust Enabler which routes SIP messages between IMS user agents and the different

27

PNs. Although this proposal offers integration between WSN and IMS, some of the

requirements are not fully satisfied. It assures independency since minimal changes have to be

done to assure that the WSN will locate the PN Gateway, it supports partial scalability, considers

light weight communication mechanisms via TinySIP and somehow allows the publication of

information. However, this architecture offers neither storage nor processing nor translation. It

does not show how the different types of information and entities could be identified in IMS.

Furthermore, this solution does not implement recovery mechanisms in case the PN gateway

fails or is overloaded.

El Barachi et al. expose in [12] another architecture for the integration between the IMS

and WSN. The integration is made by defining a generic gateway that offers several information

management functions to acquire process, store and disseminate information and other support

functions to enable a real internetworking. The gateway integrates both architectures by

connecting with the WSN sink and acting in IMS as a Presence External Agent (PEA). The latter

will actually publish the information captured by WSNs and send it to an extended Presence

Server (capable of managing types of data and entities from WSN). The information is published

using one of three methods defined: interval-based publication on regular-time intervals (e.g.

every x seconds), event-based (certain events are detected) or trigger-based (information is

published upon the direct request from the PS). Once information reaches the gateway it is

processed and then stored. An event monitor is constantly analyzing the stored information to

determine if it needs to be publish, additionally a trigger handler module is sensing to see if there

is a request coming from IMS; if any of the above happens a publisher module formats the

document into an extended-PIDF and send a SIP PUBLISH with the information.

In the light of stated requirements the WSN/IMS gateway meets most of them. First of all

it is independent. The changes made to the PS are generic and are made to support the different

types of data (i.e. spatial, physiological and environmental) and the types of entities (i.e. a user, a

place and an object) that exist in WSN. Additionally, it stores, process, translates and publishes

information.

However, it does not scale and it is not fault tolerant because it is centralized and no

additional procedures have been defined for this purpose. The design will depend on one single

node to pass the information to the P2P network, which could easily become a bottleneck.

28

Although this last proposal is not completely suitable some of the work that has been used is

suitable to accomplish our objectives and will be considered further in the design process.

Specifically, they propose and demonstrate how the Presence Service could be used as

entry point for WSNs. Moreover, the already extended the standard XML-based PIDF to support

WSN types of information and to allow the distinction between user and non-user related

information. Thanks to [2] all of these pieces of information are provided in details.

2.6 Integrating VANETs and WSNs Architecture

Reference [19] presents the hybrid system architecture that combines the best of the

VANET and the WSN worlds. Their objective is to enable the creation of smart environments

where different types of networks provide different services. The interconnection is done with a

hybrid VANET-WSN gateway. The gateway collected all sensor information, maintains the

collected, aggregated data in a local database, and injects to data into the VANET. It uses

different components to enable such connection between the two worlds. It uses the

tinyLUNARInterface (tLI) – LUNAR means “Leightweight Underlay Network Ad hoc

Routing”, tinyLUNAR offers reactive routing for WSNs based on the label switching

mechanism, and nodes maintain simple and small forwarding tables, while the overhead for data

packets is maintained only with small size. In this mechanism, the process of discovering the

routes is done by flooding route requests.

Another supported feature which is the Geocast, which is a networking protocol using

geographical positions for addressing and routing. The core protocol components of the Geocast

are beaconing, location service, and forwarding. One of the main featured also presented in such

architecture is the middleware. They defined the middleware to be used only with the VANET

environment. They defined it as the main data repository in a vehicle, which is a dynamic

representation of the vehicle’s environment. It maintains the fused sensor data, information

exchanged with other vehicles and static data (such as a digital map). They used this featured

component to utilize the stored data by control algorithms for driver assistance and

communication applications. They referred to a typical example of a VANET middleware in

[23]. In addition to the data storage, the middleware has important tasks for cross-layer

communication exchange, security and privacy. In the light of our requirements the

29

VANET/WSN gateway meets most of them. First of all it is independent. The changes made to

the architecture are generic and are made to support the different types of data (i.e. spatial, and

environmental) and the types of entities (i.e. a VENT user, a place and an object) that exist in

both the WSN and VANET. Additionally, it supports storage, process and publishing

information.

This last proposal is quiet suitable to accomplish our objectives and will be considered

further in the design process. Specifically, they propose and demonstrate two types of

architectures, the centralized and the distributed modules deployed in both the RSU and the OBU

respectively.

2.7 Architecture for System Integration

Here we have shown that how integrations between each of the IMS and WSN, as well as

WSN and VANET – they all considered a gateway to interconnect the different types of

networks. However this is not the only way to do it. In the following section we will show the

available methods that can be used to interconnect IMS with VANET technology and will select

the most suitable for our involved project.

There are mainly four layers: Application, Middleware, Geocast / tLI, and IEEE 802.11p

and IEEE 802.15.4 that have been studied and compared in detailed in [18]. Also another

methods and layers have been considered in [2]. These layers and approaches will be explained

in further details below.

 As in [19], they proposed the usage of IEEE 802.15.4 in which communication over

small distances and geographical areas can be achieved. Also they used the IEEE 802.11p and

applied it in the VANET. They made useful use of its feature of sending data over medium

distances and distributing the information in geographical regions via the multi-hop

communication. The sensor nodes in the WSN monitor the environmental data, store the

collected information with timestamp and geo-information (sectors), and communicate the data

to passing vehicles via the IEEE 802.15.4. The storage is encrypted and distributed over multiple

nodes in a persistent way. For communication among the sensor nodes, the WSN is randomly

divided into clusters, where each cluster is managed by a cluster head. The sensor nodes transmit

data to their cluster heads, which transmit the aggregated data to other cluster heads. Data from

30

the WSN are injected into the VANET by vehicles in the communication range of a sensor. The

data transmission from a sensor to a vehicle can be periodic, solicited by the passing vehicle, or

both. Once the vehicle has received the sensor data, it can distribute the information to relevant

in a geographical region by the Geocast protocol.

The OBU of a vehicle plays an important role in the architecture since it acts as a

gateway between the WSN and the VANET and decides about injection and forwarding of

relevant sensor data. As an alternative to the WSN with a distributed data storage, a RSU acts as

a gateway between the WSN and VANET. The RSU collects all sensor information, maintains

the collected, aggregated data in a local database, and injects the data into the VANET.

A vehicle’s OBU has a dual protocol stack. For communication in the VANET the OBU

executes Geocast and IEEE 802.11p beneath the VANET middleware and application; where the

middleware is the main data repository in a vehicle, which is a dynamic representation of the

vehicle’s environment. It maintains the fused sensor data, information exchanged with the other

vehicles and static data (such as a digital map). The stored data are utilized by control algorithms

for driver assistance and communication applications. The typical example of the VANET

middleware is the local dynamic map. In addition to the data storage, the middleware has

important tasks for cross-layer communication exchange, security and privacy. Moving to the

other point, the applications implement the application protocol, typically based on SAE J2735

[24] for message encoding and TPEG for event encoding [25].

 A sensor node executes IEEE 802.15.4 and tinyLUNAR, as radio and networking

protocol, the middleware tinyPEDS and applications. For the defined protocol stacks, the

tinyLUNAR offers a low-overhead, topology based, reactive routing for WSNs. Based on the

label switching mechanism, nodes maintain simple and small forwarding tables, while the

overhead for data packets is only one byte. Routes are discovered by flooding route requests,

which can address nodes according to flexible criteria; e.g. node role, content, position, etc.

 tinyPEDS is a distributed data collection and storing scheme with security enhancement

for WSNs. It used concealed data aggregation techniques in order to minimize the size of the

data transmitted in the network, thus increasing the system lifetime. tinyPEDS has further

reliability and security enhancements, such as access control and sensor reading outliers

detection.

31

And as in [2], they purpose a P2P overlay gateway for the integration of the mobile sink-

based WSNs and IMS. They categorized the architecture of the gateway into five sets. The first

set interacts with the IMS Presence Service, the second one interacts with the mobiles sinks. The

third set handles the storage, the fourth one processes the information, and the fifth set enables

the interaction between the four mentioned sets. Also they defined the roles of each component

in the gateway. The Sink Entry Point (SEP) allows the connectivity with the mobile sinks; to

interact with the IMS Presence Service they defined the Presence Service Entry Point. The

presence of the processor within the model to transform, aggregate or compress information,

storage acts as the peer that handles the storage process in the overlay.

Furthermore, they introduced three super peers; the first one is the Super Sink Entry Point

(SSEP) which is in charge of the SEPs, also it interprets and analyzes information from the

mobile WSN to determine whether it should be stored, processed or sent directly to the presence

service. The second super peer is the Super Data Management (SDM) which manages the

storage and processor peers. Finally, they defined the SPSE. It handles Presence Service Entry

Point (PSE) peers and publishes the information received to the presence service in IMS.

2.8 Integrating VANETs and IMS “3G technologies”

Reference [26] presents the guidelines for integrating VANET with the 3G technologies.

To enable such integrated architecture, vehicles are clustered according to their different metrics.

A minimum number of adequate vehicles is selected to serve as a liaison between VANET and

the 3G technologies. By considering the following scenario of two different tracks over a

particular road (e.g., highway), with a track for each direction. The key components of the

architecture are IEEE 802.11p-based VANET vehicles, a Universal Mobile Telecommunication

System (UMTS) “Node B” and the main components for the UMTS core network.

Communication over the VANET network is multi-hop and on a peer-to-peer basis. VANET is

linked to UMTS via selected VANET mobile gateways using the Universal Terrestrial Radio

Access Network (UTRAN) interface. As mentioned before the vehicles are equipped with both

IEEE 802.11p and UMTS interfaces, lying within or moving into the 3G region, are called

Gateway Candidates (GWCs). The rest of the vehicles, that do not lie in the 3G Active Region,

are not equipped with the UMTS interface, or do not have their UTRAN interfaces enabled, and

32

that they are called Ordinary Vehicles (OVs). Among the gateway candidates, a minimum

number of Cluster Heads (CHs) per direction are elected as optimal gateways (GWs) using

different metrics. The number of the gateways is required to be minimum, so as to avoid the

bottleneck at the UMTS Base Station (BST) and save UTRAN resources. Gateway candidates

are grouped in clusters using dynamic clustering mechanisms, and only the selected gateways

will have their 3G UTRAN interfaces activated. However, the IEEE 802.11p interface is enabled

and activated on all the VANET vehicles. The Dynamic Clustering Operation is mentioned in

details (See [26]).

Gateway management and selection is also performed in a dynamic manner using

different metrics. It consists of three mechanisms, namely “multi-metric mobile gateway

selection”, “gateway handover” and “gateway discovery/advertisement” mechanisms. The

gateway selection mechanism is used to select the minimum number of adequate gateways to

optimally communicate with the backhaul UMTS network. It is based on the Simple Additive

Weighting (SAW) technique using metrics such as the mobility speed of the Cluster Head (CH),

its UMTS Received Signal Strength (RSS), and the stability of its link with the source vehicles.

The first vehicular source broadcasts a Gateway Solicitation (GWSOL) message within the

VANET, using the Time To Live value (TTLs). The performance of the overall architecture was

evaluated using computer simulations and interesting results were obtained.

Now that we have described the possible methods to interconnect each of the three

technologies, we could say that the proxy is a suitable solution for our requirements but it needs

to overcome the fault-tolerance and scalability issues. Middleware offers a solution for fault-

tolerance in the network by introducing the concept of translation between different formats; a

logical layer on top of the protocol stack. Combining these two approaches could be a solution

for our integration.

A gateway made up by considering the middleware and some specific specs seems like a

possible solution that will help integrate the three technologies together.

33

CHAPTER 3 PROPOSED ARCHITECTURE

This chapter presents the architecture designed to integrate VANET, IMS and WSN

together. Firstly, we could analyze the next scenarios to attain optimization and efficiency of

such systems together.

Multimedia services in all the form of video stream, voice, Internet access, etc. within the

VANET system have always been considered, a lot of efforts have been undertaken to try having

these services in the VANET world and in improving their quality of service (QoS), and their

availability.

Good to mention that vehicles are connected via continuous wireless communication with

the road infrastructure on motorways, exchange data and information relevant for specific road

segments and multimedia services to increase the overall road safety and enable co-operative

traffic management as well as the allowance of the multimedia services to be accessible

throughout the vehicle while moving. So we are dealing with the Vehicle to Infrastructure (V2I)

communication.

Scenarios and Use Cases

Scenarios are the predominant basis for evaluating the applicability of the proposed

architecture in the given environment. Two scenarios are being considered in our case.

The First Scenario:

Roads have always been dangerous, and a lot of efforts have been taken to improve their

safety. Vehicles, education, road signs have been improved throughout generations.

Nevertheless, dangers remain and with the rise of computer and wireless technologies, new

solutions are available to assist the driver in hazardous situations and to decrease road dangers.

Vehicles are equipped with wireless devices, so that they can communicate with each

other. The primary application of this technology is to let vehicles exchange about their current

context. In detail, the information exchanged can be two types, (i) periodic exchange status

messages among the vehicles in direct communication range and (ii) safety messages triggered

34

by a critical event and distributed in a geographical region. We foresee that WSN roadside

islands will be installed in specific dangerous locations to support drivers with current road and

weather condition. In this case, connection between VANETs and WSNs will be considered.

Typically, WSN technologies help where neither the vehicle’s sensors nor the driver can

detect the danger, e.g. very localized road condition, animal crossing the road our of the forest,

etc. The roadside WSN islands significantly extend the sensing range of a vehicle. Hence, either

the driver or the vehicle itself could initiate appropriate reactions according to the current

environmental conditions with the overall aim to increase the driver’s safety.

The scenario of a combined WSN and VANET architecture aims at the provisioning of

two complementary services:

1) Accident prevention. When a car passes by a sensor network, it retrieves fresh

environmental data collected by the roadside sensors. Data can include various

physical quantities, such as temperature, humidity and light, and also detect moving

obstacles (such as animals). The received information are processed in the vehicle’s

OBU and potentially displayed to the driver. Hence, wireless sensor nodes

complement other sensors installed in a car (such as radar). However, wireless sensor

nodes are external devices that in principle can measure road conditions data more

accurately than an on-board sensor. In addition, the data of the wireless sensor node

may include a set of data covering a period of quantities collected over a time-span

and make the data more plausible.

Once a vehicle has processed the sensor data, it may interpret the data as a dangerous

situation and trigger a safety warning message. For this message, the vehicle

determines a geographical region defined by a geometric shape and broadcasts the

message to its neighbor vehicles. The communication system of the vehicle ensures

that the data packets are reliably distributed to all vehicles located within a region. As

a result, vehicles that receive the information are warned about dangerous spots ahead

of time and can take appropriate countermeasures.

35

2) Post-accident investigation. In this use case, sensor nodes continuously measure and

store the environmental data. These data include the collected quantities (e.g.

temperature) and also event data, such as previously detected obstacles and vehicles.

Storing these information over a long period may be of interest for a forensic team. In

contrast to the accident prevention service, such a liability service will be limited to a

well specified group of end users, e.g. insurance companies or the road portal. These

authorized users can retrieve the sensor data from the roadside WSN island from

(nearly) any time in the past for forensics purposes. Typical examples are retroactive

discovery of accident causes and assessment of drivers’ behavior with respect to the

road conditions at the time of the accident.

The two complementary services described above pose various functional and

performance-related requirements for the data communication and storage. A fundamental

assumption is that a communication system for vehicle-to-roadside communication will only be

rolled out if the costs for the roadside equipment, installation, and maintenance are minimal. This

leads to a system architecture with extremely low cost autonomous sensor networks and without

the deployment of dedicated roadside units. Since sensor nodes may disappear over time due to

their restricted energy capabilities, both communication among sensors and data storage need to

be distributed and redundantly organized. Likewise, sensor nodes’ data transmission to

approaching vehicles and dissemination of data for persistent storage require energy-efficient

and the trustworthiness of the data begin communicated from the WSN to the vehicles. In

addition, as the data stored for a relative long duration within the roadside WSN, they shall not

be stored in plain-text. In turn, in order to minimize costs, software-based security solutions are

preferred over costly hardware components or tamper-resistant modules on sensor nodes.

The Second Scenario:

Cellular networks are deployed at various locations on the road and that the IMS is

connected to them to supply the vehicular users with the various forms of its multimedia

services. As the vehicles have various and different speeds, we have to make sure of the arrival

of such real time services to them. In this case, connection between VANETs and IMS will be

considered.

36

In the real time applications, the data gathered become important and useful only if users

can have access to it in the same time they are needed and anywhere they are requested. These

two specifications can be fulfilled by the presence of the gateway, where the multimedia services

are already available when the connection between the IMS and VANET is established.

Our aim is to combine them all together (VANETs, WSNs, IMS) to successfully enable

the above benefits and scenarios, so some minimum requirements need to be accomplished from

the integration’s point of view. We will list these in order to satisfy our architecture and

approach.

3.1 Architecture Design

General Purposes

REQ 1. The gateway shall be designed to be independent. The integration should be as

independent as possible from both the IMS and VANET. This will ensure the minimal

changes to the IMS and the VANET and in the integration point if different solutions

want to be adapted.

REQ 2. All services provided by the IMS “Internet access, video / data streaming

provision, IP Multimedia services, etc.” should be available to the VANET via the

gateway.

REQ 3. Determination of gateway location. At the session setup, the VANET should be

able to determine the location of the gateway; also in return, the IMS should be able to

determine the gateway to send the requested services.

REQ 4. The gateway shall be designed hiding the implementation details to applications.

However, it should provide feedback about what is happening on the network, avoiding

unnecessary details.

REQ 5. When the maximum time set for a message between WSN and VANET expires,

the gateway shall select an alternative way to send the messages to the intended

destination.

37

REQ 6. The presence of the appropriate Quality of Service (QoS) according to the

function of each IMS and VANET, different parameters must be satisfied including

reliability, availability, and priority, etc.

REQ 7. The gateway inherits the main characteristics of the peer to peer system

architectures: scalability, fault tolerance and the resilience as well.

Extensible

REQ 8. The gateway should be designed to easily adaptive to the required functionalities.

End-to-End delay

REQ 1. Information transmitted shall be delay-constrained. It means that the total time a

message takes to reach a target shall not exceed a time-constraint.

REQ 2. When the maximum time set for a message expires, the gateway shall select an

alternative way to send the messages to the intended destination.

The goal of the design is to accomplish all the requirements exposed in chapter III. We

admit that the gateway is a simple and straightforward solution to interconnect two or more

technologies together [2].

As mentioned in the previous requirements, the gateway inherits the main characteristics

of the peer to peer systems which are a part of the required features. In addition to that, storage

capabilities have already been proven to be feasible in the VANET architecture in case of

dealing with the data collected from the sensor nodes only [27].

By using the vehicles acting as mobile nodes in the VANET world and the sensors acting

as collectors in the WSN and the presence of the user agents in the IMS. Requirements can be

satisfied and a solution can be implemented with the existing infrastructure to build out the

gateway.

38

We propose a gateway to fulfill the defined requirements and needs, and we design the

solution from this decision. Once the architecture is presented; a full detailed analysis on how the

requirements are met by the proposal will be done in chapter IV.

3.1.1. Assumptions

Our idea is to provide a gateway that will interconnect VANET, IMS and WSN all

together; however there are some assumptions that need to be done at this point as a way to

present achievable at this stage in the design process.

Concerning the entire system, we assume that all entities of the system (i.e. WSN,

VANET, gateway, etc.) are configured to know each other. However, during the design of the

architecture we try to ensure that minimal changes and adjustments will have to be made in case

the format changes.

Architecture Principles

The principles to our architecture are based on the gateway which will be the central

point of the integration. Figure 3-1 depicts the general architecture, including the overlay

gateway which is divided into six groups. Each one of these groups is in charge of providing one

or more services and has one leader node.

39

Figure 3-1: General architecture

The first group is in charge of the interaction with the VANET world, meaning that it

manages all the integration with this technology. This group is the entry point to the VANET

system; it is in charge of publishing the information and to process the requests of the VANET

towards the IMS and WSN.

The second group is similar to the previous one, but offers connectivity to the IMS world.

In this group, the interaction with the IMS Presence Service is done, meaning that it manages all

the integration with this technology. This group is the entry point to the IMS; it is responsible for

connecting with SIP Servers (CSCFs) in the IMS, and to publish the information to the Presence

Server and to process requests from IMS towards both the VANET and the sensor networks

(SN).

The third group is responsible for the interaction of the WSN with the whole system. This

group interacts and connects the sensor nodes with the gateway. Moreover, it receives the

(The dotted line in the figure indicates that these two criteria can be deployed within the gateway or to

not be considered according to the needs/importance of the information collected by the sensor

nodes).

Gateway

 Cache Processor

IMS

Ingress Spot

 Sensors

Ingress Spot
VANET

Ingress Spot

Interconnection

 Group
P-CSCF

IMS

VANET

WSN

40

information sent by the nodes and is able to send requests to the sensors when requests for

specific information arrived.

The fourth and fifth groups deal with handling data management processes when the

information from sensor nodes is ready [these groups are working only while dealing with

VANETs and WSNs]. They are in charge of caching and processing information respectively.

Caching information allows VANET users to have an instant copy of the small data segment

collected by the sensors (referring to the first scenario introduced). Processing of information is

done through predefined parameters; it consists for example in the aggregation of the data

collected from sensors in a specific area.

Finally, there is one last group whose role is to interconnect services in the gateway. It

manages all interactions between the other groups mentioned, allowing the communication

between them. This group is formed by the leader node from each group.

3.1.2. Architecture topology and interactions

Cache

Second Level

VANET Ingress Spot

Figure 3-2: Overlay Gateway

Sensors Ingress Spot

P. Service Ingress Spot

 DMU

Data Management Unit

SVI S

SPI S SSI S

First Level

Processor

Real network

41

Figure 3-2 shows the topology that has been designed based on the key principles of the

architecture. This topology is depicted as a two-tire topology where the first level provides all

other services, and the second level is exclusively for caching information from sensor nodes.

Each of the six groups defined in the previous section had two or more participant roles

interacting to accomplish their functions; we will explain in more details the following

subsections. Once the roles and the interactions are described, the topology will be further

analyzed and presented.

Factors

When describing the principles of our design and architecture, we describe the six groups

that compose it. Each one has a leading role that enables the services as was previously defined.

A functionality is an identification that determines the services and the logic provided by each

node in the overlay.

The first group is in charge of providing an integration point with the IMS. This group

has two participant roles; the Presence Service Ingress Spot (PSIS) and the Super Presence

Service Ingress Spot (SPSIS). The PSIS acts strictly as an entry point, it provides connection to

IMS CSCF’s servers, enabling the communication between the IMS and the gateway. This role

interacts exclusively with the SPSIS. The SPSIS is the leader of the group; but it also has the

ability to provide the connection with the IMS. Moreover, it sends requests and responses to and

from IMS and other groups in the gateway.

The second group is the one in charge of the connection with the sensor network; made

exclusively through the sensor nodes. This group includes the Sensor Ingress Spot (SIS) and the

Super Sensor Ingress Spot (SSIS). SIS allows the connectivity with the sensor nodes, enabling

the transference of messages between networks. The SSIS is the leader node of this group. It is in

charge of SIS nodes, interprets and analyzes information received from the WSN and is capable

to determine whether this data should be stored, processed or sent directly to the VANET users.

As the SPSIS, this leader also has the ability to play the basic role, connecting the sensor nodes

with the gateway. Although and SIS could play the role, at a given time only one can do it.

The third group is in charge of the connection with the VANET world; made through the

moving vehicles on the road. This group includes the VANET Ingress Spot (VIS) and the Super

42

VANET Ingress Spot (SVIS). SVIS allows connectivity with the moving vehicles; enabling the

transference of the messages between the VANET users. The SVIS is the leader node of this

group. It is in charge of VIS nodes.

The fourth and the fifth groups, as defined in the architecture, handle caching and

processing of information, they share the same leader. The leader (i.e. DMU) manages the group

and the interaction between its groups and the rest of the groups in the gateway.

The processing group is composed by the Processing role that can transform, aggregate or

compress information and the DMU; as mentioned before, the DMU is also the leader.

The final group is composed of the Super nodes (i.e. SVIS, SPIS, and SSIS) from the

seven groups previously stated. They collaborate with each other to offer their services to the

overlay and allow access to the other groups found within the architecture.

Interactions

In this part, the interactions that are made inside the group members will be highlighted.

The communication and message exchange depends in the source and the destination of the

messages.

The first group is the IMS Ingress Spot that offers connection with the IMS. As explained

before, the SPIS connects all the PISs to the gateway. When a message is received by the PIS

from the IMS, it is forwarded by the leader to the SPIS. Equally, when a message is received

from another entity in the leader’s group, the SPIS sends the message to one of the PISs so it can

be forwarded to the IMS.

The second group is the Sensor Ingress Spot group that connects with the sensors WSN.

The SSIS receives data from and sends requests to the WSN through the SISs. Each SIS is

connected to one or more sensors. Once information is collected from the sensors WSN, the SIP

receiving the information, forwards it to the SSIS. It decides where the data should go (whether

to store, to process or to publish), thus it sends a request to one of the other nodes in the leader

group. Additionally, when a request is sent to the group to retrieve information from the WSN,

the SSIS will forward the request to all SISs.

43

The third group is the VANET Ingress Spot that gives the connection with the VANET

world entities. As mentioned, the SVIS connects all the vehicles to the gateway. When a message

is ready to be received; it is transferred by the SVIS to the VIS.

The fourth and fifth groups are related to caching and processing of information gathered

from the sensor nodes. Firstly, the DMU receives requests from the SPIS, SSIS and the SVIS. If

these requests are related to some basic information about the environment; these requests will

be resent to the caching nodes in the second level of the architecture which will later send a

response with the information to the DMU if a copy is found there. Secondly, if processing of

data is demanded, the DMU forwards the request to one of the processor nodes that will perform

the action and return the transformed data.

Finally, interactions inside the Interconnection Group are explained. We mentioned

before that the SSIS decides whether the information should be stored, processed or published. If

storage or processing needs to be done, then the SSIS sends a message to the DMU and if it

needs to be published then it is routed to the SVIS.

The SPIS handles publication towards the IMS Ingress Spot group, thus it receives the

requests and disseminate it according to the definitions inside the group. When information is

requested from IMS and reaches the SPIS, it forwards the request to the DMU.

Finally, there is the DMU which responds to requester nodes asking to store, to process

or to retrieve any information. Storage and process are handled inside their respective groups;

however retrieval of information is first analyzed by the node. If history data is required or if the

time of the stored data is below the demanded time threshold, information is retrieved from the

Storage group; otherwise the DMU sends the request to the SSIS so the retrieval is made directly

from the sensor nodes WSN.

44

Global Architecture

Now that the gateway architecture, its roles and its topology have been explained in a

detailed way, we will show how we connect and integrate the gateway with the vehicles, IMS,

and the sensor nodes. At this point, the topology and the basic of the integration will be

described, the process on how they are connected to each other is explained below in the next

subsection. The following figure [figure 3-3] shows the gateway connected with the vehicles and

in this case using the traditional IMS architecture.

Figure 3-3. Global topology of the gateway

3.2 Overlay Rules

This section presents the rules governing the architecture described in the above section.

This includes the information models used inside the gateway, the protocol used by nodes to

communicate with each other and the description to different procedures supported by the

overlay.

3.2.1 Protocols

Protocols allow nodes in the network to communicate with each other in a standard

language. A protocol defines the rules of the syntax, semantics and the synchronization within

the network. It not only defines the messages that can be exchanged between nodes but also their

structure and the rules for exchanging them (e.g. the answer expected).

Gateway

IMS connectivity VANET

connectivity

Sensor Network

connectivity

Data Management

Unit

Connectivity

functionality

Interconnection

functionality

Support

functionality

 mapping

Caching SN’ data Access control

45

To become a suitable protocol for the gateway, it should accomplish the requirements

defined before. Basically the protocol needs to:

- Enable the self-organizing and self-recovery mechanisms. This means it should allow

nodes (i.e. vehicles / sensor nodes) to join / leave the network and form / leave groups.

- Allow information caching, processing, retrieving and publication (i.e. in case of data

collected by sensor nodes).

- Be as simple as possible. The protocol should be simple and low consuming since it is

intended to be installed in VANET, WSN, and the gateway with limited capacity.

- Enable the scalability. It should enable more nodes (i.e. vehicles / sensor nodes) to join

the network without overloading.

- If possible, be standard. Even more, available standard protocols should be analyzed to

determine whether or not they can be reused.

We selected the Session Initiation Protocol (SIP) to be the protocol for the gateway since

it meets our requirements. Firstly, SIP is a standards protocol, widely deployed and easily

extensible. It has already been implemented to work in devices with limited capacity and its

structure is simple.

Secondly, the different procedures are enabled by some of the existing extensions. Here

we present a brief introduction about the characteristics of this protocol. The SUBSCRIBE /

NOTIFY methods included within the RFC3265 (It’s about the Session Initiation Protocol –

Specific Event Notification) [28]. It provides an option for asynchronous notification of events.

The event-notification framework is proposed to enable entities in the network to subscribe to

receive the current state or updates from a remote node. If the state changes in the remote node,

NOTIFY messages are used to inform it to subscribers. The Presence Framework, for instance,

uses this extension to control the vehicles registered to each “presentity”. This event-notification

framework enables the creation of groups inside the gateway where the information needs to be

disseminated from the super node “leader” to one or several participants in an asynchronous

way.

46

Additionally, the INFO method described within the RFC2976 (It’s about the SIP INFO

Method) [29] enables the exchange of the application level information. Its goal is not to change

the state or the parameters of the session but to send information required by applications. The

advantage behind this extension is that it allows the application to determine the message body.

Moreover, as the self-organizing is enabled by SIP multicast addressing, since in the

beginning, the nodes do not know who their super node “leader” is, they send a message to a

multicast address that will allow its location.

3.2.2 Procedures

In the previous section we described the protocol that rules the exchange of messages among

the gateway, in this part we show how those messages are used by different entities in the

architecture to enable the effective functioning of it. We described each of the main procedures;

the roles involved in the process and the message exchanges between them.

Self-Organization

Self-organization is mandatory since we are considering an ad-hoc network built out from

moving vehicles as well as the sensor nodes that do not know each other at the creation of the

network.

The mechanisms defined for discovering the other nodes is the SIP multicast addressing.

A multicast address is assigned to all leader nodes and known by all nodes in the network. We

assume that each node knows the functionality it can play and provide in the architecture and

with the gateway and thus, the groups it needs to connect to. The joining process depicted in

Figure 3-2 explained here below

The gateway should be functional when at least one vehicle / one sensor node is

available, so we decided that first node to join the network is the SVIS and / or SSIS. Once it

starts to play its role, it creates two groups; the first one is for being leader node, meaning that it

enables the reception through the multicast address. And the second one is for the Vehicle

47

Ingress Spots and the Sensor Ingress Spot respectively, offering the connectivity for the moving

vehicles and the sensor nodes.

When another node joins the network, it determines the roles it can play and the groups it

should join. Then, it sends a SIP INFO message to the multicast address requesting the address

of their leading node in charge of its group (the selected leader). The answer is sent by any of the

leading peers in another SIP INFO message indicating whether there is a leading node (sending

its address) or not.

If there is no leader yet, the node becomes the leader node for the group. This implies that

the multicast address is assigned to it and that the reception of the SIP SUBSCRIBE messages

from nodes belonging to its groups is enabled.

Sequence Diagram

 Sequence diagram in (figure 3-4) present a dynamic view of the system. Two main

processes are described, presenting the main capabilities the system offers. On one hand, a

detailed presentation and description of the nodes (i.e. vehicles / sensor nodes) joining the

networks. It shows how the components participate in order to find the leader of the group and

interact with it. On the other hand, if the leader is not present, the new joining node will be the

leader for that group and will accept new nodes to join in the network. In the next subsection, a

detailed description of the self-organization process is elaborated.

48

Confirm Join

Sending SIP INFO

Sending SIP INFO

Finish joining msg
Send enable reception

message

Leader msg

Set functionalities

Analyze priorities

Analyze targets

Leader msg

Send Identification

msg

Start joining

process

Identify roles

and group
Enable reception of msgs

from multicast address
Change role

to Leader
End joining

process
Send SIP SUBSCRIBE to

leader node
Leader

found?
Enable reception of SIP

SUBS from other nodes

nodes

For roles, send SIP INFO

to multicast address

Send role msg

Send msg

Set functionalities

Analyze priorities

Analyze targets

Send msg

Figure 3-4: Self-Organization Process

48

49

For example, if a node joins the network (i.e. VANET) and identifies that it should play

the role of leading other nodes. The node takes for each role the groups to which it should be part

of. First for the leading role, it sends a multicast SIP INFO requesting the address of the SVIS

that handles the VANET group; if there is no leader then this node changes its role and becomes

the SVIS. Once this happens, the node enables the reception of SIP INFO message through the

multicast address and of SIP SUBSCRIBE request from other joining and participating nodes.

Otherwise, if the leader node has already been selected, it sends a SIP SUSBCRIBE to it and

after all, it got the confirmation back that it has joined successfully the network.

 For self-recovery purposes, we decided that all participating nodes (i.e. vehicles /

sensors) within a group should be aware of the group members. So, each time a group changes

(i.e. a node joins or leaves the group) the leader sends a SIP INFO message with “infoGroup”

action and the list of all members to all nodes registered in the group.

In some roles (e.g. VIS, SIS) information is received by the simple nodes and they need

to communicate it to the leader. For these cases, once a node joins the group, the leader peers

sends a SIP SUBSCRIBE request to the node which allow that each time the peer gets

information it forwards it with a SIP NOTIFY message.

Once the gateway is set up (there is at least one node playing each role), the SVIS, and

SSIS registers to the VANET, and WSN respectively by sending a SIP REGISTER. The VIS,

and SIS roles can be played by the leader nodes, thus implying that the gateway could be

considered as set up even with the two leader nodes and no other nodes in these two groups.

Self-Recovery

There are three possible scenarios where self-recovery is required for the system. The

first one is when a node (i.e. vehicles / sensors) leaves voluntarily, the second one when it is

unexpected, and the third one when a node is forced to leave the system. At this point in the

project we will only consider the voluntarily departure from the overlay.

Each node is responsible for informing other participating members of its departure. To

do this, it uses a SIP INFO message with a “leaving” action in the message body. The following

49

50

presents how self-recovery process is done depending on the role of the node leaving as depicted

in figure 3-5.

Figure 3-5(a): Node leaving the network

NO

YES

NO

YES

NO YES

Start departure

Get active

roles

Select Role

Is it a leader

node?

Send SIP INFO

with “leaving” to

all nodes

Wait SIP INFO

message with

“departureAccepted”

Is it a leader

node?

End departure

Send SIP INFO

with “leaving” to

simple nodes

Wait response of

new leader from

simple nodes

Send SIP INFO with

“leaving” to other

leaders nodes with

new leader

Is it Storage

group?

Send SIP INFO

with “leaving” to

leader nodes

51

YES NO

NO

NO

NO

YES

YES

YES

Start node departure

Receive SIP

INFO with

“leaving”

Is it from

another leader?

Add new node to

the group

End node departure

Analyze the role

Is it Storage

node?

Is it a SEP or a

PSE?

Is it a

Processor?

Send SIP INFO

message to other

nodes in the group

with “recover”

Select another node

from the group to

replace it

Send SIP INFO

message to other peers

in the group with

“recover”

Send SIP INFO with

“departureAccepted”

Figure 3-5(b): Leader node receiving the message

51

52

When a node is leaving, as shown in figure 3-5(a), the first thing it needs to verify and

identify at the same time is the role that is actually playing in the overlay. For each node it

should analyze if it is a simple node acting in the network or a leader node. If it is a participating

node acting normally within the network, it sends a SIP INFO message to its leader node

informing that the departure process has begun. In case it is a cache or processing node, they

should send the message to their leader node as well as to other nodes within the group, since

they are all connected in a fully meshed way. When the node itself is the leader of the group, it

sends the message to all of the normal participating nodes in its groups and waits for a reply from

one of the nodes found that will be playing as a new leader to such a group. Alternatively, in the

case of the cache or processing node departure, the normal nodes responsible for the selection of

the leader are the cache and processing group within the network. Once they receive the

message; they forward the decision to the other leader nodes in the leader group. Afterwards, the

nodes wait to receive a SIP INFO message with “departure accepted” to remove the role and do

the same procedure with all roles till there is no active role. At the end, it gets disconnected.

On the other hand, figure 3-5(b), the leader node when it receives a SIP INFO message

with leaving part on it, if the message is from another leader node then a new leader has to be

selected in order to replace it and the node just updates the references only. But if it comes from

a normal node participating within the network, it determines the group to which the node

belongs to and then, the role it is participating with. When a processing node is leaving, the

leader node sends a “replace processor” request to all nodes within the group. Moreover, when a

cache node will be left, the leader node sends a “retrieve and restore” action to all nodes found

within this group where a restore measure should be executed to get the pieces of information

store inside it. When it is one of the Ingress Spots “i.e. VIS, PIS, or SIS”, the leader node will

choose another node to replace this leaving node, in case of the SIS connected with a sensor

node. It sends a SIP INFO message with “restore” to the selected node, informing the actions the

actions that should be taken into consideration and waits for the SIP INFO message

“restoreGranted” that means that it has been accepted and established a new connection.

Otherwise, it is a processing node in which case the leader node only tries to get any information

still in the node. Last, once actions have been decided, the leader node sends the SIP INFO

message to the node leaving with the expected “departureGranted”.

53

3.3 Scenario

Now we have shown the proposed architecture design of the gateway, its procedures,

factors, and the rules governing interactions and roles. This subsection will show how the

architecture comes together in a specification scenario. It explores the scenario briefly described

in chapter III in greater details.

Firstly, we assume that the overlay is already designed and organized and that there is at

least one node in each role. Connections with the vehicles, IMS, and sensor nodes have also been

established. Finally, moving vehicles are subscribed in the PS to receive both the multimedia

services and also the contextual information from the sensor WSN.

SIP PUBLISH

200 OK

SIP NOTIFY

200 OK

Figure 3-6: Sequence Diagram for multimedia services & sensed data present to the vehicles

SIP NOTIFY

200 OK

SIP PUBLISH

SIP INFO update

SIP PUBLISH

SIP PUBLISH

200 OK

SIP PUBLISH

SPIS CSCFs PS SIS SSIS SVIS VIS Vehicle PIS

200 OK

200 OK

200 OK

54

Figure 3-6 shows the exchange between functional entities within the integration for the scenario

where the multimedia services and the sensed data are ready and presented to the VANET

architecture. The SPIS receives the information “multimedia services” and analyzes the request.

When it determines that the information is to be published, the SPIS translates the data from the

gateway information model to the corresponding format agreed before. Once this done, the node

sends a message to one of the PSI in a SIP PUBLISH message. The PIS receives the message

and forwards it the IMS CSCFs servers that are already configured to send the presence SIP

PUBLISH message to the Presence Server (PS). A SIP NOTIFY is sent from the PS to the

vehicle containing the services requested from the vehicles.

On the other hand, Sensors in WSN are periodically sending updates then they resend the

information towards the gateway through the SIS. Since the leader node has previously

subscribed to the SIP, it received a SIP NOTIFY message, after that, it analyzes the information

and in this case determines that the services are already presented and ready to be sent so the data

should be published in both the IMS and the sensor nodes. It sends a SIP NOTIFY to the SPIS

which has also subscribed before.

Up to this point the information has reached IMS and the sensor nodes and is available to

the vehicles’ users. As the example scenario shows, a SIP NOTIFY is sent from the PS to the

moving nodes “vehicles” and the multimedia services are sent accordingly.

55

CHAPTER 4 IMPLEMENTATION AND VALIDATION

In the previous chapter, the detailed architecture intended to meet the system

requirements was presented. Now, this work is validated in order to guarantee that it certainly

matches and achieves the requirements.

This chapter shows the process of the implementation and validation of the overlay

gateway proposed and depicted in the previous chapter. First of all, as implementation, we

analyzed the performance of our architecture as compared to the other architectures in the

literature. As explained before, while different solutions can be found in the literature - the bulk

of these solutions are based on a fixed architecture for a proactive integration of even Vehicular

Ad-hoc Networks (VANETs), or Wireless Sensor Networks (WSNs) and the services they

provide in the IP Multimedia Subsystems (IMS) architecture, as opposed to the reactive

architecture that we propose. For this reason, we will use the same analytical model for the

proactive architectures presented in [30] and compare it to the model developed for our solution.

We will compare the performance of these two types of architectures with respect to first

the average number of packets generated per requested services, second - the number of services

found per service request.

Based on [30], an extension to the IMS architecture to support dynamic discovery of

WSNs and the services is provided, independently from their location and the protocol stack they

implement. The solution used User Equipments (UEs) as Gateways (GWs) towards the targeted

area where WSNs could be existed through the implementation of a tunneling layer. They

analyzed the performance of the proposed architecture in a comparative study which we will

base our study and analysis on. The same concepts and techniques will be applied as we are

dealing with WSNs in our architecture and moreover we are going to add the vehicles to the

main study which are the main aspect of our research.

4.1 Procedures

In this section we will highlight the discovery and integration procedures, describing

messages exchange between the requesting entities (i.e. vehicles, sensor nodes, and IMS) and the

gateway (GW) through the tunneling layer. The message flow between the involved entities is

represented in the following figure.

56

Multiple exchanges Data Exchange and Acknowledgement

Request To Send

Tunneling layer Tunneling layer

Gateway

1. tunnel-est req

2. tunnel-est rsp

3. session-est req

4. session-est rsp

5. session-tear req

6. session-tear conf

7. tunnel-tear req

8. tunnel-tear conf

Request To Send

Clear To Send Clear To Send

Data Exchange

Disconnect req Disconnect req

Disconnect conf

Disconnect conf
 Disconnect conf

Release Release

req: Request

rsp: Respond

est: Establish

conf: Confirm

Requesting entity

Figure 4-1: Message flow between entities of the architecture

57

- Tunnel / Session Establishment and Tear Down the Connection between the

Gateway and the External World (i.e. vehicles, sensor nodes, IMS):

For each User Equipment (UE) - Gateway (GW) in the targeted area, the tunneling layer in

the previous architecture (figure 4-1) stars by sending a tunnel establishment request (tunnel-est

req, message 1) containing the locally assigned tunnel ID to which the tunneling layer of the

gateway responds with a tunnel establishment response (tunnel-est rsp, message 2) also

containing the locally assigned tunnel ID. Once this response is received the tunnel is established

and the tunneling layer assigned to the vehicles/sensors/IMS sends a session establishment

request (session-est req, message 3) containing the destination tunnel ID and a unique session ID

for both sides of the tunnel, to which the tunneling layer in the gateway responds with a session

establishment response (session-est rsp, message 4) containing the destination tunnel ID and the

same session ID. The reception of this response at the tunneling layer concludes the tunnel and

session establishment procedures between the external world and the gateway and triggers the

discovery procedures between both of the two worlds.

Once the communication with the gateway terminated, the session and the tunnel are silently

dropped. Optionally a tear down procedure can take place starting with closing the session by

sending a session tear down request (session-tear req, message 5) containing the tunnel and

session IDs, then closing the tunnel by sending a tunnel tear down request (tunnel-tear req,

message 7) containing the ID of the tunnel and 0 as session ID. Each of these requests is

answered by the tunneling layer on the other side of the tunnel with a tear down confirm

(session-tear conf, message 6 and tunnel-tear conf, message 8 respectively). And finally the

release of the two communication tunnels will be occurred.

Based on the previous indications, right now we are going to assess the performance of the

system.

4.2 Performance Analysis

We define the following parameters to achieve our objectives:

 number of vehicles in the selected region

 number of sensors in the targeted area

 average number of packets per requesting service (packet per unit time)

58

 frequency of packets sent to request service(s) (packet per unit time)

 frequency of service packets responded (packet per unit time)

 average probability that a IMS offers the requested service

 average probability that a WSN offers the requested service

4.2.1 Number of packets generated per requested service

Here we are considering the following: The punctual services that are answered only

once. For the punctual services after analyzing the presented works in [31], the average number

of packets per unit time (i.e., “second”) to get the aimed service(s) for the proactive architectures

 is dependent on the average number of packets per request service(s) from each of

the vehicles and sensors, the frequency of packets sent to get the service(s) and the

responded packets for that service(s) to/from the gateway respectively.

 can be defined as the number of entities to be serviced (vehicles or sensors) multiplied by

the average number of packets per requesting service (i.e., for both the vehicles and sensors)

multiplied by the gain of the gateway.

The gain of the gateway can be identified as the ratio of the serviced frequency to the

requested service one.

The above sentence can be formulated mathematically as:

 = (no. of vehicles + no. of sensors) × average number of packets to request × gateway’s gain

Applying the above general form to the notations that we defined previously:

Considering the zero impact case, we assume that all the services are already presented in

the core network when a request(s) is/are sent and that all the entities found will get a response

when they send requests to the gateway (will not be equal zero), a response (i.e., service) will

be available when a request(s) is/are popped-up.

fServ

O/P

fReq

I/O Gateway

Gain

59

On the other hand, for our reactive architecture the average number of packets per unit

time (i.e., “second”) is independent of the frequency of both the requested and service

packets responded; the service retrieval is done once the request(s) is/are sent to the gateway. In

other words, this is a different case rather than that of the proactive architecture which already

includes the services in the gateway, but here once a request(s) is/are sent, the gateway will

process it and then retrieve the service, finally it responds with the packets of such service.

Also it depends on the packets sent to start making connection establishment between the

requesting entity and the gateway (i.e., tunnel establishment request and session establishment

request) plus the average number of packets per requesting service to the gateway.

 can be defined as that each entity (i.e., vehicle or sensor) sends to request a connection

establishment with the gateway as mentioned above and also considering the average number of

packets sent to get the required service(s). The above statement can be formulated

mathematically as:

NReact = (requesting entity) × [average number of packets to req. + tunnel est. req. + session est. req.]

Applying the above general form to the notations that we defined previously:

By consulting (figure 4-1) again “page 63”, “2” represents the main processes between

any entity and the gateway throughout the “tunneling and session establishment’s requests”.

Once they are ready and established the flow of requesting services and services response can be

taken into action.

From equation (1) and (2) we can calculate and compute the ratio of proactive to reactive

number of packets per service as in the following equation:

Using Matlab we plotted these equations in figure 4-2. Figures 4-2.a and 4-2.b represent

equations (1) and (2) respectively. In equation (1) we vary the total average requested packet’s

number between 1 and 20, and the service request frequency between 0.1 and

20.

In equation (2) we vary only the relevant parameter which is the number of vehicles and

sensor nodes between 1 and 10.

Finally figures 4-2.c and 4-2.d represent equation (3) for the number of existed networks

between 1 and 5 respectively. In equation (3), we vary the number of connected vehicles and

60

sensors between 1 and 10, which varies the proactive to reactive total packets’

number ratio / between 0.05 and 0.2.

 Here for simplicity, we consider the number of vehicles and sensor nodes

is the same for both the proactive and reactive architectures. Also in this equation we vary the

requests to services ratio as for equation (1).

The results in figure 4-2 show clearly that the proactive architecture yields a lower packet

overhead when the average number of packets per request of the vehicles and sensor nodes is

equal 1, but this advantage is quickly lost as compared to the reactive architecture when the

average number of packets per request to service frequency increases. This result is normal

because the packet overhead in the proactive architectures depends on the number of vehicles,

sensor nodes, and the average number of packets per request and the service provided frequency

ratio. In the reactive architecture, this overhead depends solely on the number of vehicles and

sensor nodes.

b. Reactive architecture a. Proactive architecture

61

Figure 4-2: Proactive to Reactive total packets ratio for punctual services

4.2.2 Number of Services found per Service Request

In the case a proactive architecture, there is no actual service discovery, since all

available services are already registered in the central server. Still we will represent the average

number of discovered services per unit time (i.e., “second”) as the number of

connected vehicles and sensors according to the average probability of IMS and/or

WSN to offer the requested services ,

 can be viewed as the number of vehicles multiplied by the average

probability of the IMS which provides the requested service(s) plus the number of sensors

multiplied by the average probability of WSN to provide the requested information. The reason

for choosing the average probability for each of the service’s provider is justified since we do not

know the exact probability of providing the service(s) or not for each type (IMS, WSN) to each

of the requested entities (i.e., vehicles and/or sensors).

d. NReq = 5 c. NReq = 1

62

The above statement can be formulated mathematically as:

On the other side, in case of the reactive architecture that we purpose, the average

number of discovered services per unit time (i.e., “second”) depends on the number

of the discovered vehicles and sensors , according to the average number of requests sent

from the vehicles and sensors to the gateway and the average probability of getting this

service requested from the requested network , . So the average number of discovered

services for our reactive architecture can be represented mathematically as:

 =

The Matlab plotting of these equations (4, and 5) is represented in figure 4-3. Naturally as

the reactive to proactive deployment level ratio increases, the number of services discovered by

the first architecture is higher than the second.

From equation (4) and (5) we can have the ratio of proactive to reactive number of

packets per service as:

Figure 4-3: Proactive to reactive average number of discovered services

ratio

 Figure 12. Proactive to reactive total packets ratio for continuous services

63

4.3 Validation

The validation process is done from three perspectives: firstly we will show how the

architecture meets the requirements, secondly we will compare our proposal with the

architectures that integrate VANETs, IMS and WSN and were described in the state of the art;

finally, it is our goal to prove through a simulation that using the proposed gateway as part of

the solution increases scalability and fault-tolerance when compared with a centralized gateway

solution.

4.3.1 Requirements vs. Architecture

Before verifying how the architecture assesses the requirements, let us review what they

are as defined in chapter II:

 Independence. The integration should be as independent as possible from both the

VANET, IMS and WSN.

 All types of information related to all types of entities sensed by a WSN should be made

available to IMS.

 All types of multimedia services of all types should be available to the VANET users

throughout the IMS.

 Translation from the information model used in the sensor network to the information

model used in IMS and vise versa.

 Translation from the information model used in IMS to the information model used in

VANET and vise versa.

 Publication of the information into IMS.

 Scalable and fault-tolerance.

 Support lightweight communication mechanisms.

Although the architecture was defined in the light of these requirements, it is important to

validate which features of the architecture satisfy which requirement. Table 4.3.1 presents a

matrix where each requirement is achieved by one or several features presented in the proposed

architecture.

64

Table 4.3.1: Requirements vs. Architecture

Independence, for instance is achieved by several features including the use of a gateway

and defining a new information model. Using a gateway as an integration point provides

independence from the two technologies merged as was shown in chapter II section 2.7, it

requires minimal or no changes in the architectures involved since all translation is done by the

gateway. Additionally, independence from the gateway point of the view is also achieved by the

information model used inside. It assures that minimal changes will need to be done in case the

information model from the VANET, WSN or the presence service in IMS change.

The provisioning of all types of information and entities from VANET or WSN in IMS is

accomplished by the extended PIDF that we have chosen to use in our architecture. This

extension allows the modification of presence information to add non-user related information.

Translation is provided as explained in the previous chapter by three services that were

defined in the overlay. The first one is the service that translates between the information model

from the VANET and the gateway. The second one is the service that translates between the

information model from the mobile sink WSN and the one from the gateway. And the third one

is between the extended-PIDF and the information model from the gateway. The information

 Gateway as

integration

solution

Service

definition

Extended

PIDF

Information

Model

Vehicles

1. Independence X X

2. Information and

entities from

WSN

 X

3. Translation X X

4. Publication X

5. Storage X

6. Processing X

7. Traditional and

P2P IMS

X

8. Scalability X

9. Fault-tolerance X

10. Light-weight

communication

 X

65

model is flexible enough to support both models. Thus, the features included in the architecture

to meet the requirement are the defined services and the information model.

Publication is supplied by the service defined as part of the IMS entry point group. This

service allows the publication of information in IMS by using SIP PUBLISH. Similarly,

Processing is done in the service that has been defined for this purpose; which is supplied by the

processing group and the information model.

Data Storage is met by two features, the P2P architecture and the service definition. The

service definition as shown before with the other information management processes, is achieved

through the service that has been for this purpose and that is supplied from a specific group (i.e.

Storage group). However, this is also possible thanks to the P2P overlay; since the feasibility to

provide distributed storage in P2P networks has been proved.

Traditional and P2P IMS were considered all along the design. Having a P2P overlay as

gateway makes the future integration with P2P IMS more natural. Additionally, this feature also

helps achieved the Scalability and Fault-Tolerance, which, as seeing before, are characteristics

in P2P systems. However, it is important to clarify that in our project we do not consider

unexpected departure, which is also important to improve the fault-tolerance in the solution.

Finally, the fact that we build our gateway with the presence of user agents obliges us to

work with lightweight communication mechanisms.

4.3.2 Architecture comparison

Once it has been proved that the proposed architecture meets the requirements defined

according to the motivations, we will compare the solution with other gateways proposed for the

integration of these three technologies. The proposals that have been chosen for the comparison

are WSN/IMS gateway from El Barachi et al. [12], the e-SENSE architecture proposed by

Gluhak and Schott in [13] and the PN gateway to integrate Personal Area Networks and Sensor

Networks with IMS described in [22] by Arbanowski et al. Moreover, the VANET-WSN

gateway proposed by Festag et al. in [19].

Table 4.3.2 depicts the comparison between proposed architectures; it shows for each

requirement whether it is Supported, Not Supported, Partially Supported or Not Considered in

the design.

66

Table 4.3.2: Comparison between proposed gateways for integrating VANET, WSN and IMS

S: Supported, N: Not supported, P: Partially supported and N.C: Not considered

Requirement Overlay

Gateway

WSN/IMS

gateway

e-SENSE

architecture

PN

Gateway

VANET-

WSN

gateway

1. Independence S S N S S

2. All types of Information and

entities

S S S N P

3. Translation S S N N S

4. Publication S S S N S

5. Storage S S S N N

6. Processing S S S N S

7. Enable traditional and P2P

IMS

S N.C. N.C. N.C. N.C.

8. Scalability S N N P N

9. Fault-tolerance P N N N N

10. Lightweight communication

mechanism

S N N S S

The PN gateway proposed by Arbanowski et al. considers some of the non functional

factors that other proposals do not. The design is meant to work in hardware devices with limited

resources like wireless sensors or other tiny smart devices. For this purpose they use TinySIP

(standard protocol for any kind of resource constrained device) to enable interactions between

nodes through SIP messages. It is independent from IMS since the connection is made through

an entity called SmarDust Enable or via specific device that connect directly to CSCFs servers.

However, this solution does not explain how the information will be processed, stored and

publish in IMS or other entities.

The e-SENSE architecture supports most of the information management procedures we

defined, except for translation which is not needed in this proposal. As mentioned in chapter two,

the functional entity added in IMS is the e-SENSE Service Enabler SE that provides sensor-

based information, thus including all types of information in IMS. It additionally offers storage

and processing of information. This entity receives the information from one or several e-SENSE

Gateways. The gateway offers publication of information to the e-SENSE SE. Translation is not

67

supported because there is no need of translation, the information is delivered as sensor-based

information and not in other format.

However, this solution does not support the non functional requirements related to

scalability, fault-tolerance and lightweight communication mechanisms. The main drawback of

this solution is that it is not independent from IMS. It adds a new server to IMS called the e-

SENSE SE, instead of using one of the existents such as the presence service. Furthermore,

storage and processing is supported by the e-SENSE SE and not by the gateway.

WSN/IMS gateway proposed by El Brachi et al. supports all information management

requirements. It is a generic gateway that proposes minimal changes to the Presence Server in

order to support diverse types of information. These types of information are also included in the

proposal of the extended PIDF. Additionally, the gateway supports processing, storage,

translation and publication of information.

Scalability, fault-tolerance and lightweight communication mechanisms are not

considered as part of the solution. Additionally, P2P IMS is not considered for future scenarios

and the integration may not be done straightforward since it can become a bottleneck.

VANET-WSN gateway proposed by Festag et al. supports most of the information

management procedures we defined, except for storage which is not needed in this proposal.

Scalability, fault-tolerance are not supported for this proposal and they did not considered at all

the multimedia services presented by the IMS. Furthermore, the gateway supports Processing,

translation and publication of information as well.

As can be seen in the analysis, our architecture meets all the requirements; it was

previously exposed which features in the architecture contributed to their accomplishment. The

only one that is partially supported is the fault-tolerance, due to the lack of definition for an

unexpected departure of a node in the overlay. However the procedure can be later extended and

is flexible enough to support the changes.

68

4.3.3 Vast simulation and results

In this section we evaluate the performance of the proposed solution through extensive

simulation. We simulate our solution on Network Simulator 2 (NS-2).

Simulation is distinct as the process of designing a model of a real system and conducting

experiments with this model for the function of understanding the behavior of the system and/or

evaluating various strategies for the operation of the system. NS-2 is a packet level simulator and

essentially a centric discrete event scheduler to schedule the events such as packet and timer

expiration [32]. Centric event scheduler cannot accurately emulate “event handled at the same

time” in real world, that is, events are handled one by one. The C++ classes of NS-2 network

components or protocols are implemented in the subdirectory “NS-2”, and the TCL library in the

subdirectory of “tcl”. NS-2 is simply an event driven simulation tool that has proved useful in

studying the dynamic nature of communication networks. Simulation of wired as well as wireless

networks functions and protocols (e.g., routing algorithms, TCP, UDP) can be done using NS-2.

In general NS-2 provides users with a way of specifying such network protocols and simulating

their corresponding behaviors [32, 33].

NS-2 provides users with executable command ns which take on input argument, the

name of a Tcl simulation scripting file. Users are feeding the name of a Tcl simulation script

(which sets up a simulation) as an input argument of an NS-2 executable command ns. NS-2

provides the Network component like Node, Link, Queue, etc. they are created from the

corresponding C++ classes; The other are compound components, that is, they are composed

multiple simple C++ classes like Link are composed of Delay (emulating propagation delay) and

Queue. We can say that in NS-2, all network components are created, plugged and configured

from TCL. NS-2 provides the Event Scheduling that is associated with time. class Event is

defined by {time, uid, next, handler}, where time is the scheduling time of the event, uid is the

unique id of the event, next is the next scheduling event in the event queue that is a link list, and

handler points to the function to handle the event when the event is scheduled. Events are put

into the event queue sorted by their time, and scheduled one by one by the event scheduler [32,

34].

69

NS-2 has four main components: NS itself, Network animator (NAM), Pre-processing

and post-processing. The primary component is ns, the actual simulator. This provides the

software backup for programming networks models. The programming environment provides an

interactive mode because the frontend OTcl interpreter allows for the direct programming of the

simulator. It is also possible, and often times more efficient, to simply use a text editor to write

scripts and run them from a terminal’s command line [32, 35].

The second component is the network animator or NAM. This is a simple animator with

two-dimensional (2D) graphics that help the user visualize and monitor the simulation both as a

whole, and as individual components. The GUI only requires the trace files (created from the

simulation scripts) as input. Pre-Processing and Post-Processing are also important components

of NS-2. Examples of Pre-Processing are traffic and topology generator. An example of Post-

Processing is simple trace analysis, i.e., xgraph and/or gnuplot, often developed using scripting

languages such as AWK, Perl and Tcl. NS-2 provides the substantial support to simulate bunch of

protocols like TCP, UDP, FTP and HTTP. NS-2 is discrete event simulator i.e. timing of events

is maintained in a scheduler. Using xgraph/gnuplot (plotting programs) we can create graphical

representation of simulation results. All the work done is under the Linux platform.

Simulation Configuration

The beginning of a simulation script is primarily used to configure the network

components of a simulation. For example, components such as the topography, queues, wireless

channel, routing protocols, etc. are usually configured at the top of a simulation scripts.

Typically, an array, opt, is used to store various elements that control a facet of the

simulation. A block of code is used to initialize array elements of opt. For example, the

command set opt(x) 1000 assigns 1000 to the array element x. When a topography object is later

created, the size of x component of the topography is assigned the value contained in opt(x). By

putting all of the options in a block of code, the user can easily go back and make any changes to

the simulation. The following sample of code is used to set some of the elements of opt that are

later used when creating network objects:

70

Set simulation options

set opt(chan) Channel/WirelessChannel ;# channel type

set opt(prop) Propagation/TwoRayGround ;# radio-propagation model

set opt(ant) Antenna/OmniAntenna ;# antenna type

set opt(x) 1000 ;# x size for topography

set opt(y) 1000 ;# y size for topography

....

Many of the network objects are configurable through the OTcl linkage, as discussed in

the previous section. For example, the following code sample configures the 802.11protocl’s

slot-time to 13 μs and SIFS to 32 μs. In addition, the wireless physical layer settings are also

configured through the OTcl linkage.

set the 802.11 parameters.

Mac/802_11 set SlotTime_ 0.000013 ;# 13 us

Mac/802_11 set SIFS_ 0.000032 ;# 32 us

....

Phy/WirelessPhy set freq_ 5.9e+9 ;# 5.9 GHz

Phy/WirelessPhy set bandwidth_ 6.0e6 ;# 6 Mbps

Numerous other aspects of simulation can be specified at the start of the simulation

script. To use the same physical layer setting as DSRC, the wireless channel’s frequency is set to

5.9 GHz and the bandwidth is set to 6 mbps. By setting the variables identical to those specified

by DSRC standards, a simulation is able to realistically approximate a VANET.

The file ns-2.35/tcl/lib/ns-default.tcl sets various simulator components to their default values;

this file can also be used to identity what simulation components a user is able to configure.

71

Creating Network Objects

After all of the configuration options have been set, the next step is to create the

necessary network objects. To simulate a wireless network, a number of network components

must be created. Some of the components needed to simulate a wireless network are Simulator,

Topography, god, and WirelessChannel. The following code is used to create a new instance of

the ns simulator and to create some of the standard objects that are needed for a wireless

simulation:

create a new simulator object

set ns_ [new Simulator]

create the topography

set topo [new Topography]

$topo load_flatgrid $opt(x) $opt(y)

create god, the god object must

be created for a wireless network

set god_ [create-god $opt(nn)]

create a channel object

set chan_ [new Channel/WirelessChannel]

....

Continue setting up the simulation.

Most wireless simulation will follow the same format as the source code listed above.

This code first creates an instance of the simulator. Next, the topography of the simulation is

created. It is followed by the creation of a god object, and finally a channel object is instantiated.

72

After the basic network objects have been created, the next step is to configure the mobile

nodes. The mobile nodes are configured by issuing a command similar to the one that follows:

configure the nodes of the simulation

$ns_ node-config -adhocRouting $opt(rp) \

-llType $opt(ll) \

-macType $opt(mac) \

-ifqType $opt(ifq) \

-ifqLen $opt(ifqlen) \

-antType $opt(ant) \

-propInstance [new $opt(prop)] \

-phyType $opt(netif) \

-topoInstance $topo \

-channel $chan_ \

-agentTrace $opt(at) \

-routerTrace $opt(rt) \

-macTrace $opt(mact) \

-movementTrace $opt(movt)

As previously discussed, the elements of opt are set at the beginning of the simulation

script. Most of the parameters used to configure a mobile node are from the opt array. The NS-2

documentation describes the configuration option for a mobile node. After the nodes have been

configured, the user is free to actually create mobile nodes. The following code creates an array

of mobile nodes:

Create the mobile nodes for the simulation.

for {set i 0} {$i < $opt(nn)} {incr i} {

set node_($i) [$ns_ node]

73

$ns_ initial_node_pos $node_($i) 10

}

After the mobile nodes are created, the network events are scheduled to complete the

simulation. An example of an event that must be scheduled is the transmission of a packet. In

addition, the user will typically add some functions such as one that performs clean up when the

simulation is completed. The execution of clean-up function is scheduled as are all the other

events that occur in a simulation. After all of the simulation is configured, the final step is to run

the simulation. A simulation is executed with the following command:

....

Run the simulation; this command is typically

found at the very end of a simulation script.

$ns_ run

Creating Movement and Traffic

In the case of VANET, a mobility model is needed for the movement of nodes. It is

important that the simulation of a VANET is as realistic to an actual VANET as possible.

Typically, a separate file contains all of the commands needed to move the nodes during the

length of the simulation. To insert the code contained in another Tcl file into the main simulation

script, the source command is used. The following commands are required to execute all of the

commands contained in the file mobility.tcl:

set opt(sc) "mobility.tcl" ;# mobility scenario

....

Source the mobility scenario file to execute

all of the commands with the mobility file

source $opt(sc)

74

Section 4.3.3.1 contains a detailed description of the mobility model used for the

simulations. The user has a number of options available for creating network traffic (transmitting

packets). To being, all of the commands needed to send packets could be included in the main

simulation script. The drawback to this approach is a large number of lines of code may need to

be added to the simulation script, and this approach would reduce the readability and

manageability of the simulation.

Another alternative is to use a program such as constant bit rate generator “cbrgen.tcl” to

generate all of the traffic. In this case, the user supplies a few command line options to the

program, and the output of the “cbrgen” program is written to a file. Another choice is for the

user to write his/her own program to generate the network traffic. This solution offers the user to

the greatest control over the generation of traffic.

If a separate file is used that contains all the commands needed to transmit packets, the

file containing the network traffic must be also sourced, in the same manner as the mobility

scenario. The following code is used to source a traffic file:

Source the file that contains the broadcast traffic.

puts "sourcing traffic file"

source $opt(cp)

Section 4.3.3.2 contains a detailed description of the network traffic used in the

simulations.

Running a Simulation

To run a simulation, the user types ns wireless-simulation.tcl, and the ns interpreter

executes all of the commands contained in the wireless-simulation.tcl script. The time it takes to

execute a simulation can range from a few minutes, to several hours, to days, depending on the

complexity of the simulation.

A number of command-line options are available to the user when conducting a

simulation with the wireless-simulation.tcl simulation script. The following table contains a list

of the command-line options for wireless-simulation.tcl.

75

For many of the simulations that a user will run, a single parameter of the simulation is

varied, and a number of simulations are run to determine the effect that the changing the

parameter has on the simulation results. In this scenario, it is beneficial to create another script

with bash or Perl or AWK to launch consecutive simulations and automate as much of the

simulation process a possible.

Table 4.3.3.1: Command-Line Options for wireless-simulation.tcl

Option Description

nn

stop

seed

sc

cp

tr

nam_tr

x

y

pkt_size

 help

The number of nodes contained in the simulation.

The time to end the simulation.

The seed for the random number generator.

The name of the mobility scenario file.

The name of the traffic connection pattern file.

The name of the trace file to write the output to.

The name of the nam-trace file to write the output to.

The size of the x-axis of the topography.

The size of the y-axis of the topography.

The size of the periodic broadcast packets.

Displays help to the user.

Table 4.3.3.2: Data Contained in an NS-2 Trace

Event Time From node

To node Packet type Packet size

Flags Source address Source port

Destination address Destination port Sequence number

As a simulation executes, the results of the simulation are written to the trace file. A trace

contains detailed account of the events that occurred during a simulation. A trace is also used to

record the time at which specific events occurred, and each event is written on separate line of

the trace to make parsing the file easy. In addition, the user can specify what events are written to

the trace. Some of the events that can be written to a trace are routing events, MAC layer events,

76

and mobility events (e.g., the position and movements of nodes). Furthermore, the simulation

time can be improved if tracing is turned off for events of no interests.

The typical data contained on a line of a trace is given in Table 4.3.3.2. The text-based

data of the trace is usually parsed with a script, which is typically written with Perl or AWK, to

evaluate a simulation’s performance.

 NAM: Network Animator

The NAM: Network Animator is a visualization tool that can be used to further examine

a simulation. The NAM program is written with Tcl/TK, and NAM is used for visually

displaying a simulation. To use NAM, the user must enable the creation of a nam-trace file

during the simulation. As a simulation executes, the results are written to a nam-trace. The

format of a nam-trace is similar to a regular trace generated by the NS-2 simulator. When a

simulation is complete, the results of the simulation will be written to the nam-tace; it is then

used as input to the NAM program.

The following commands are issued to enable the creation of a nam-trace:

set opt(x) 1000 ;# x size for topology

set opt(y) 1000 ;# y size for topology

set opt(nam_tr) "nam-trace.tr" ;# name of the nam-trace file

....

Set the file to write nam trace to and enable

writing to the nam trace.

set namtracefd [open $opt(nam_tr) w]

$ns_ namtrace-all-wireless $namtracefd $opt(x) $opt(y)

77

In order to execute NAM, at the command line interface, the user has to type nam nam-

trace.tr, where the nam executes the NAM program and the name-trace.tr is the name of nam-

trace file. Once NAM has started, the interface to the NAM is similar to a video player. For

example, the user can either fast-forward or rewind a simulation any time. Also, the user can

control time resolution and will be capable of either speed up or slow down the simulation.

Figure 4-4: NAM controls

NAM gives the user some visual feedback for the simulation which already done, this is

an advantage for it, but on the other hand, the drawback of it is that it does not present the user

with quantitative results.

78

4.4 Mobility Model

Most of the mobile ad-hoc simulations are using the random waypoint mobility model;

with the usage of this model, each node in the network will randomly choose a location to move

towards, and it will randomly select a velocity with which to move towards that destination.

The velocity is selected randomly from [0, velocitymax], where velocitymax is the

maximum velocity allowed for a node. Subsequently, the node will continue moving towards its

intended destination until it reaches there. When it arrives, it will pause for the moment of time

specified by its “pause timer”. Then, the node will randomly choose another destination to travel

towards. The random waypoint model is provided by the setdest tool within the NS-2.

While the random waypoint model is frequently used to model the ad-hoc networks, this

model is not so good to model a VANET because of the vehicle’s movement uniqueness.

Vehicles, in a VANET, cannot haphazardly travel anywhere with the topography. They are only

able to move where there is an adequate road. Since a vehicle’s movement is constrained by the

structure of the road, the random waypoint model is considered to be unrealistic model for the

VANET world. For this reason, an alternative mobility model must be used for the given

VANET.

4.4.1 Freeway Mobility Model

The freeway mobility model is one of the possible models that can be used as a

foundation of the node’s movement. The freeway model emulates the movement of the vehicles

on a freeway. The freeway model uses maps to create the mobility of the nodes. Nodes are only

able to move where the road is identified by the map. With the given model, a map can contain

several and different freeways, and each one of them may have multiple lanes. Moreover, the

lanes within a freeway can be travelled in either one or two directions.

Freeway Model Characteristics

The following model is characterized by the following:

- Each node is restricted to move only within its own lane of the freeway. To simplify the

complexity of this model, the model sacrifices some realism. As a result, vehicles do not

have the ability to change lanes as they would on a real freeway.

79

- A safety distance will be maintained so that the node cannot exceed the velocity of the

node in front of it, if they are within the safety distance. Formally, the safety distance can

be defined as the following: if distancei,j < safety_disntace, then velocityi(t) < velocityj(t),

if j is ahead of i in its lane.

USC Mobility Generator Software

The USC Mobility Generator [36] software implements the freeway model, also it creates

the NS-2 mobility traces for a number of different mobility models, including the freeway

mobility model. The source code for the USC Mobility Generator is available from the project’s

website for free. After the freeway.cpp source code is obtained, the source code must be

compiled. When we execute the freeway program, the user will be prompted the following

information:

1. The number of number within the simulation.

2. The node’s acceleration speed (the software authors recommended setting the

acceleration of the nodes to 10% of the maximum velocity).

3. The map’s name that contains the description of the freeways.

4. The name of the file to create. (Where the NS-2 mobility trace will be written).

After these four items are specified, the freeway program will be executed and then writes an

NS-2 mobility trace to a file that will be used afterwards to get the information. The mobility

trace file can be later sourced within an NS-2 simulation script.

4.4.2 Map File

A Topography file is a critical component that determining the topology of the network

we are using. Hence, the map file is defining and determining all the freeways that exist in the

simulation. As a result, it is possible to model any of the freeways by supplying the correct data

(in the form of a map file) to the freeway program.

80

The following is the specification of the map file format. The specification was taken

from the manual.txt file of the USC Mobility Generator program:

FREEWAY

FREEWAY_NUM <total_number_of_freeways>

LANE_NUM <total_number_of_lanes>

LANE_BEGIN <freeway_id> <lane_id_in_this_freeway>

 <lane_id_in_all_freeway> <direction>

 <number_of_phases_of_this_lane>

PHASE <phase_id> (<phase_start_x0,phase_start_y0>)

 (<phase_end_x1,phase_end_y1>) <v_min> <v_max>

PHASE <phase_id> (<phase_start_x1,phase_start_y1>)

 (<phase_end_x2,phase_end_y2>) <v_min> <v_max>

....

The documentation that comes with the USC Mobility Generator thoroughly describes all

of the above fields. To create a map file for the simulation you would like to run, the program

create-map.pl was written with Perl language. The create-map.pl program, available in the

Appendix, generates an approximation of a circular map. The inner-radius is specified for the

map, and the inner-radius is the distance, in meters, from the center of the map to the inner-lane

of the freeway. The default size of the inner-radius is 300 m. Freeway lanes are then placed each

5 m a part. Examples showing the previous explanation, if the inner-radius of the freeway is 300

m, the next lane of the freeway is 305 m followed by another lane placed at 310 m. Lanes are

added to the freeway until the number of lanes specified for the freeway is reached.

By default, the program creates an eight-lane freeway, with four lanes traveling in each

direction. Moreover, the user can change the inner-radius of the circle to decrease or increase the

freeway’s size. Also, the user can specify the number of points that are going to be used to

construct the freeway. A map becomes more circular as more points are used to construct the

map file.

81

The following description is a portion of a map file generated with the create-map.pl

program:

FREEWAY

FREEWAY_NUM 1

$node_(0) set X_ 797.63441

$node_(0) set Y_ 537.59997

$node_(0) set Z_ 0.0

$node_(0) radius 230.81019207872924

$node_(1) set X_ 790.57495

$node_(1) set Y_ 574.60697

$node_(1) set Z_ 0.0

$node_(1) radius 230.81019207872924

....

$node_(4) set X_ 742.70510

$node_(4) set Y_ 676.33558

$node_(4) set Z_ 0.0

$node_(4) radius 230.81019207872924

$node_(5) set X_ 718.69059

$node_(5) set Y_ 705.36413

$node_(5) set Z_ 0.0

$node_(5) radius 230.81019207872924

...

$node_(20) set X_ 232.72646

$node_(20) set Y_ 646.93487

$node_(20) set Z_ 0.0

$node_(20) radius 230.81019207872924

...

$node_(40) set Y_ 224.02775

$node_(40) set Z_ 0.0

$node_(40) radius 230.81019207872924

82

...

$node_(0) set X_ 807.55556

$node_(0) set Y_ 538.85330

$node_(0) set Z_ 0.0

$node_(0) radius 230.81019207872924

$node_(1) set X_ 800.26078

$node_(1) set Y_ 577.09387

$node_(1) set Z_ 0.0

$node_(1) radius 230.81019207872924

...

$node_(8) set X_ 631.99158

$node_(8) set Y_ 780.49639

$node_(8) set Z_ 0.0

$node_(8) radius 230.81019207872924

...

$node_(49) set X_ 810.00000

$node_(49) set Y_ 500.00000

$node_(49) set Z_ 0.0

$node_(49) radius 230.81019207872924

...

$node_(34) set X_ 398.02439

$node_(34) set Y_ 813.84865

$node_(34) set Z_ 0.0

$node_(34) radius 230.81019207872924

...

$node_(49) set X_ 835.00000

$node_(49) set Y_ 500.00000

$node_(49) set Z_ 0.0

$node_(49) radius 230.81019207872924

83

Figure 4-5: Simulation topology with the gateway in the middle.

The sample map file displayed above contains one freeway that is made up of circular

road. Furthermore, in each circular path, the vehicles will be adopted to be organized in a

circular way. The above values indicate these points in the map. The velocity of the vehicles on

this freeway can be defined within the create-map.pl. For each single vehicle within the freeway,

it is possible to assign different values to the velocitymin and velocitymax. Within that case, the

minimum and maximum velocity are set throughout this freeway by these values: velocitymin is

17.0 m/s and velocitymax is 25.0 m/s. Figure 4-6 contains a screen shot from the NAM program

when the defined map is used for our simulation.

84

The create-map.pl starts by providing each node an initial x, y, or z coordinate. As the

current implementation of NS-2 version 2.35, the z coordinate has no effect on the simulation,

but the z coordinate must be mentioned. After the node’s initial positions are set, the nodes are

then put into motion. In this case, node (0) is set to travel towards the x coordinate 797.63441

and the y coordinate 537.59997 at velocity of approximate 17 m/s. Node(0) will continue to

travel to its destination until periodically node(0)’s destination and velocity will be altered by the

trace generated to send it to a new destination point.

The file provides the movement of the mobile node within the simulation. The radius of

the freeway was made large enough so that the transmission on one-side of the road would not

affect a concurrent transmission on the other side of the road. Also, the diameter of the inner lane

of the freeway is 600 m, and the circumference of the inner-lane is approximately 1880 m. One

difference that was considered was the portion of the road to model for that simulation. If the

diameter of the road was increased, more nodes would be considered and added to the network to

have the same amount of the network traffic that would result in increasing the length of the

simulation.

4.5 Network Traffic

 Different kinds of networks exist, and the traffic pattern of each of the existing networks

differs from one to another. Moreover, the simulation’s traffic pattern should resemble the actual

VANET’s traffic.

Most network favor certain applications and most network application favor the use of a

specific transport protocol. For example, the majority of the traffic on one network may use TCP

while another network found maybe use the UDP as a primary traffic. The transport protocols

used will affect the traffic profile of the network. Another example is that the transport protocol

used to deliver VoIP messages in a VANET is UDP. Because of the nature of the VoIP traffic,

no transport-layer connection is established before transmitting.

The network applications used also affects the traffic profile. For instance, some

applications have bursty traffic, while other applications provide a constant stream of packets to

the network. Typically, applications that use the HTTP protocol have bursty traffic, and VoIP

applications transmit a steady stream of bytes.

85

The NS-2 simulator comes with a number of stand-alone programs that generate

simulation traffic. The problem with using the applications provided by NS-2 for creating

network traffic is they only create unicast traffic. The program cbrgen.tcl is one of the famous

programs for creating network traffic. For instance, the cbrgen.tcl program creates random

TCP/UDP connections between nodes and uses the FTP application protocol for generating

constant bit rate traffic in the TCP connection for example. In case of a VANET, TCP

connections are usually not established before application data is transmitted. For this reason, an

additional piece of application was created traffic-w-jitter.pl to generate the network traffic for

the simulations.

4.5.1 Creating Network Traffic

Agent are got attached to the node after creating that node in the simulation script.

Agents represent endpoints where network layer packets are constructed and consumed, and they

are used in the implementation protocols at various layers [37]. A number of different agents

exist for ns-2 including UDP Agent, TCP Agent, Null Agent, MessagePassing Agent, etc. To

create a new TCP agent, the next piece of code is used:

Add Transport agents

set udp [new Agent/UDP]

$ns_ attach-agent $n(0) $udp

set udpsink [new Agent/LossMonitor]

$ns_ attach-agent $n(1) $udpsink

$udp connect $udpsink

The code listed above creates a new UDP agent object and establishes a connection

between the nodes n(0) and n(1).

After a transport agent is attached to the node, an application agent is then typically

attached to a transport agent. Some of the application agents that are available for NS-2 are CBR,

FTP, Worm, etc. The following code is used to attach a CBR application to a UDP agent:

Add application

set cbr [new Application/Traffic/CBR]

86

$cbr set packetSize_ 128

$cbr attach-agent $udp

After the CBR application is attached to a transport agent, a node can then schedule the

application.

In terms of the VANET simulation, dealing with the streaming options, the

MessagePassing agent is one of the agents that can be used for sending and transmitting the

packets requesting the streaming services. The benefit of using this agent is that the

MessagePassing agent allows the users to specify both the address and a port for a transmission

and a reception.

For the simulations, the port number to which a packet is sent provides a way to

determine what application sent which packets.

The MessagePassing agent is the base agent class used in the simulations. It is an

extended class, and a new class is created for each access category used in the simulation. For

instance, the class VoIP extends the MessagePassing class. The VoIP class defines two methods,

recv and send_voice, that are used to receive and transmit voice.

The following code defines a new class, VoIP that extends the base class

Agent/MessagePassing:

Voice class used to send Voice

messages to a node(s) “gateway” one-hop neighbors.

Class Agent/MessagePassing/Voice

-superclass Agent/MessagePassing

Agent/MessagePassing/ Voice instproc recv

{source sport size data} {

This empty function is needed so receive works.

}

Agent/MessagePassing/ Voice instproc send_message {} {

$self instvar node_

global ns_ Voice _PORT ValidPort_ADDR opt

87

send the Voice message

$self sendto $opt(pkt_size_emer) 0 $Voice_ADDR $VoIP_PORT

}

The following code creates Voice agents and attaches an agent to each of the node in the

simulation. Each node attaches the agent to a determined port, in this case Voice_port is port 17.

Attach a new Agent/MessagePassing/Voice

to each node on port $Voice_PORT, 17

for {set i 0} {$i < $opt(nn)} {incr i} {

set em_agent($i) [new Agent/MessagePassing/Voice]

$em_agent($i) set class_ 0

$em_agent($i) set prio_ 0

$node_($i) attach $em_agent($i) $Voice_PORT

}

4.5.2 The Network Traffic Programs: AWK throughput latency scripts

Because there is no standard NS-2 program that creates network traffic identical to a

VANET’s traffic profile, the programs throughput.awk and latency.awk, listed in the Appendix,

was created to calculate the network performance in regards to its throughput and latency.

The programs throughput.awk and latency.awk use the variables of time in which these

variables determine the duration of the transmission for the simulation. The result of the

execution of this program is a file containing all the commands to generate network traffic

performance for the throughput and the latency of the simulation.

88

The following result was the generated traffic file after executing the “wireless-

simulation.tr”:

Figure 4-6: Part of the trace file as an output of the tcl script.

The next outputs “throughput and latency of the network” were generated by running the

throughput.awk and latency.awk scripts on the pervious trace file, and it results the following:

89

Figure 4-7: Throughput and latency trace files

90

4.6 Performance Metrics

A metric provides a standard measure for accessing the performance of a specific subject. To

evaluate the simulations, metrics are needed to determine the effectiveness of the used protocols

to send and receive voice and/or video as well as other data. The two quantitative metrics

[Throughput and Latency] are used to evaluate the performance of the simulation found.

Some details about the Throughput and the Latency can be found in the following table.

Table 4.6.1: Performance Metrics

Metric Description

Throughput
Latency

-The percentage of packets successfully received at a specific distance.

-The amount of time it takes from when a packet is passed down the

requesting entity until it is placed on the gateway.

Throughput measures the percentage of packets successfully received at a given

distance. Because of the unreliable nature of the voice/video transmission, a percentage of the

frame transmitted will fail to be delivered. As discussed before, the probability that a frame will

be received is affected by the distance between the sender “vehicle” and the receiver “gateway”.

Therefore, the distance between the requesting entity and the gateway is considered when the

reception rate is calculated. As the distance between nodes increases, the probability of reception

decreases. The metric reception rate is used to determine how far a protocol’s performance is

from the best case scenario.

Latency measure the amount of time it takes from when a packet is passed down from

the requesting entity until it got reached the gateway.

Two AWK scripts are created, throughput.awk and latency.awk, for the purpose of

evaluating the simulations. The program throughput.awk is used to define the overall reception

rates at specific distance. Furthermore, the program latency.awk measures the access delay for

the simulation. At the completion of the simulation, the programs throughput.awk and

latency.awk parse the simulation trace and calculate the performance metrics.

91

4.6.1 NS-2 Simulation Trace Format

The simulation results are written to a trace file. To measure the quantitatively the

performance of the network protocol used, the appropriate data must be extracted from this trace

file. Consequently, the format of the trace file follows a specific style with fields being placed in

specific locations and the “NS-2 manual” describes in detail the format of a trace [43].

An ns-trace is divided into fields; each trace field is delimited by an obvious white space.

As a result of the presence of the separation of the fields by white space, the file will be easily

parsed with a language such as Perl or AWK. Also, to simplify parsing a trace, each trace field is

in a specific location. For example, the first trace field records the type of the event that is

occurring. Some of the valid simulation events are: s for send, r for receive, d for drop, and M

for mobility. Moreover, the second field records the time that the event occurred. In addition, the

third field is the node ID that is used to uniquely identify each node. The format of data

contained in the trace file is described in the NS-2 documentation. Numerous other fields, that

can be extracted, also contain information about the simulation. While some of the field’s

content is always the same (e.g., the second field always contains the time of an event), the

content of many of the fields varies based on the type of the event. For instance, the fields after

the third column have different meanings for mobility events as compared to send events.

The following is a sample output from a trace:

...

M 1.00000 48 (1178.05, 245.00, 0.00), (1200.69, 245.00), 22.64

M 1.00000 49 (2681.49, 255.00, 0.00), (2660.85, 255.00), 20.64

s 1.001393522 _34_ AGT --- 0 message 200 [0 0 0 0] ------- [34:42 -1:42 32 0]

s 1.001488522 _34_ MAC --- 0 message 260 [0 ffffffff 22 0] ------- [34:42 -1:42 32 0]

s 1.003523553 _37_ AGT --- 1 message 200 [0 0 0 0] ------- [37:42 -1:42 32 0]

r 1.003568779 _9_ MAC --- 0 message 200 [0 ffffffff 22 0] ------- [34:42 -1:42 32 0]

r 1.003568890 _1_ MAC --- 0 message 200 [0 ffffffff 22 0] ------- [34:42 -1:42 32 0]

...

92

4.6.2 Reception Rate

The program throughput.awk, listed in the Appendix, calculates the reception rate metric

for each access category involved in an NS-2 simulation. In terms of the calculation of the

reception rate, the distance between the nodes and the gateway in the simulation must be

maintained. The reception rate of an access category is the percentage of the packets that are

successfully received at a specific distance from the sender for the length of the simulation. In

addition, reception rate is evaluated on the percentage of packets received at certain intervals.

The following is a sample of the output generated from the execution of the AWK script

throughput.awk program (moreover, the --file switch is used to specify the name of the file to

save results in a format to easily generate a graph)

./throughput.awk --file=throughput.awk trace50.tcl

Number of nodes 50

1.154210 0.012875

1.206741 0.015077

1.257024 0.028996

1.308272 0.036529

1.360030 0.055334

1.410475 0.067778

1.460722 0.093478

1.512531 0.104537

1.563246 0.148594

1.613565 0.155726

....

2.128669 0.520727

2.180389 0.604732

2.230531 0.684612

2.284945 0.676777

2.335876 0.813641

2.386517 0.844861

2.436932 0.918861

2.487327 0.976639

2.539740 1.011423

2.589993 1.116604

....

3.259042 2.173040

3.311033 2.270844

3.363914 2.409066

93

3.414016 2.566810

3.464476 2.741328

3.514562 2.786706

3.567352 2.835908

3.617489 3.063929

3.667984 3.199017

3.720016 3.182816

....

4.029718 4.030891

4.080281 4.219450

4.130424 4.410329

4.181370 4.464330

4.239665 4.039495

4.292671 4.564871

4.342709 5.067826

4.392724 5.137279

4.444738 5.170435

4.498722 5.045807

....

Within an NS-2 simulation script, a user can turn on the tracing mobility events and

specify how often the location of a node is written into the trace. The more often a node’s

position is written within the trace, the more accurate the position is when determining the

location of the node. The drawback of frequently updating the location of a node is that it

increases the run-time of the simulation being held. For the simulations, the node’s locations are

written to the trace file every 100 ms. As a result, the location of the node within the topography

must be maintained when calculating the rate of the reception. Each single line that starts with an

M specifies and signifies a mobility event. When a trace line starts with an M is read, the node

location is updated within the program reception.pl

When the reception.pl program begins the execution, the trace file is first opened. To

open the trace, the command-line option --trace is performed. After the trace is opened, the

program starts to read and analyze each line within the file. The only events of interest are those

that occur at the s for send, r for receive and d for drop.

A line starting with a s indicates that a packet is sent. For each packet sent from the node,

the neighboring nodes within the transmission range of the sender are recorded. When a packet is

transmitted, the ID of the packet and the gateway that should receive the packet are recorded. In

addition, a line that begins with a r signals that a packet was received. When a packet is received

for a packet ID, the receive count at the distance between the nodes and the gateway is

94

incremented by one. Also, a d indicates that a packet was received in error, the percentage of

packets successfully received at each distance is calculated, and the results are displayed to the

user for the interpretation process.

4.6.3 Delay

The program latency.awk, listed in the Appendix, calculates the delay metric for the

simulation. A number of different access categories may be used in the simulation, so the access

delay must be determined for each access category. The program, latency.awk, calculates the

average access delay and the number of frames dropped for each access category.

The following is a part of the output generated from the execution of this program:

./latency.awk --file=throughput.awk trace50.tr

1.001380 0.000000

1.001380 1.001380

1.001381 2.002760

1.002158 3.004141

1.002159 4.006300

1.002159 5.008458

....

2.273925 2222.044764

2.276815 2224.318689

2.276815 2226.595504

2.276815 2228.872318

2.276815 2231.149133

....

3.120341 4618.551937

3.120341 4621.672278

3.120341 4624.792619

3.120699 4627.912960

3.125947 4631.033659

....

4.814757 11936.560486

4.815071 11941.375243

4.816570 11946.190315

4.816595 11951.006884

4.816884 11955.823479

....

95

Upon execution of the latency.awk, the program begins by opening a trace file, and starts

reading each line of the trace file. The only events of interest in determining the delay are send

events (e.g., trace lines that starts with s). Each line contained in a trace is read by the

latency.awk program. If a line begins with s, the event for the line starting with an s is processed

by the program.

4.7 Simulation Results And Analysis

To determine the effectiveness of the gateway we proposed in Chapter III, a number of

simulations were conducted. The simulations compared the performance of gateway for

providing its services against the ratio of requests from the requesting entities found within the

architecture.

The simulations used the freeway mobility model, which was discussed in Section 4.4. In

addition, the metrics used to evaluate the performance of such gateway were those discussed in

Section 4.6. Also the network traffic was generated with the traffic-w-jitter.pl program that was

discussed in Section 4.5. Furthermore, the length of the VANET simulations was set to 60 s.

A number of different simulations were conducted. Each simulation varied the number of

nodes contained within the freeway. By increasing the number of nodes, one is able to observe

the effect of increasing the traffic of the network has on the performance of the gateway. The

simulation varied the number of nodes in the simulation by 50 nodes, and simulations were

executed for the freeway containing the following number of nodes: 50, 100, 200 and 400.

Simulation for 50 Nodes

 For the simulation conducted with 50 nodes, this configuration results in a relatively

sparse network. For this reason, modifying the rate of requests has a minor impact on both of the

reception and response rates of the gateway.

In this simulation, because not too many nodes are trying to simultaneously send requests

to the gateway, the access delay remains short. Overall, there is no big difference in the

gateway’s reception rate as the reception rate was already fairly well.

96

Simulation for 100 Nodes

Figure 4-8 contains the reception rate for a simulation with 100 nodes. In this simulation,

the reception rate of the gateway slightly increases. One surprising finding is the reception rate

actually became worse at large distances between nodes “vehicles” and the gateway. The access

category of the gateway maintained an acceptable access delay and the performance of this

aspect of the simulation is acceptable too.

Simulation for 200 Nodes

 Figure 4-9 contains the reception rate for a simulation with 200 nodes. The results of the

simulation for 200 nodes were barely near to the simulation for 100 nodes. The reception rate

increased for the gateway access category when vehicles maintain distance closer to it. One thing

that is observable from the simulation is that as the traffic on the network increases, the

difference in the reception rate between access categories increases. The access delay for all of

the access categories remained acceptable.

Simulation for 400 Nodes

 A final simulation was conducted with 400 nodes. This simulation models the case where

the network becomes fully saturated with network traffic “requests and responses”. The results of

the reception rate for the simulation were worse than that of the simulations carried out with 200

nodes. And in terms of delay, responses from the gateway to these 400 nodes are the worst

amongst the other simulations.

 The following figure groups the average throughput of each of the carried simulations

(50, 100, 200 and 400). It indicates that the average throughput of the gateway for handling 50

nodes “vehicles” is the best among other numbers of nodes. As the number of nodes is small,

they could be served better and get the aimed services quickly with a small delay. Also it shows

that the performance of the gateway degrades when serving 400 nodes “vehicles”.

97

Figure 4-8: Aggregated throughput for all the simulated nodes.

The next figure shows the average latency between the gateway and the nodes to be

serviced with the real time application(s). It shows that the 50 nodes have a small latency to get

the requested service(s) compared with the case of the 400 nodes, this is obvious because serving

small number of nodes will result in a shorter time rather than that of serving larger number of

nodes.

98

Figure 4-9: Aggregated latency for all the simulated nodes

99

 CONCLUSION

In this dissertation we have proposed an architecture that services as a gateway to connect

VANETs, IMS and WSNs. This architecture allows the provisioning of new services to users

“vehicles” and an optimized and more efficient use of the multimedia services collected in the

IMS as well as the information collected in the WSN.

The main contribution opens the door to a wide set of current and future applications in

IMS to be provided to the vehicles via the presence of the gateway.

This last chapter presents a summary of the work that has been exposed in this project.

Later on, future applications and possible extensions to overcome the limitation of the current

proposal are described.

5.1 Summary of the work

Gateway has been proposed as a solution to integrate the three different mentioned

networks and improve the overall VANET life time by implementing efficient data collection

and data querying among the IMS and WSN.

This gateway enables applications such as multimedia services, environmental

monitoring, accidents detection and prevention, etc., to be transmitted to the moving vehicles and

hence make good use of collected services. In the scenarios exposed before, for instance, the data

gathered is important and useful if it can be accessed in real-time. Thus, it could be further

enhanced by using IMS enablers such as messaging and multimedia sessions. Our architecture

was designed based on several requirements defined in chapter two and obtained from the

analysis of the scenarios stated above in chapter III.

This proposal also not only offers the possibility to access information from one or more

sensors but it also stores and processes data when required (in case of dealing with the

information presented by WSN).

Moreover, during the design process, independence was constantly considered to ensure

minimal changes in the involved technologies or when proposing future extensions.

Independency is presented in the architecture from three different perspectives; firstly no

changes are needed from the sensors in the WSN and/or vehicles side and only minimal are

required in the presence services.

100

Secondly, we propose the use of an independent information model to transport data

inside the gateway. And finally, the architecture was designed in components which make the

proposal easily flexible to be overlay middleware-and protocol-independent.

Moreover, the gateway here proposed considers factors such as scalability and fault-

tolerance; which have hardly been considered in current proposals.

The integration with IMS was done through and already existing IMS service, the

presence framework. This service already offers some basic contextual information and its

information model (i.e. PIDF) was extended to support the non-user related data that could be

recovered from a cellular network or a WSN.

To prove our concept, the architecture for a peer in the overlay was designed and a

prototype based on this architecture was implemented. Also it was mathematically proved using

Matlab and then Network Simulator 2 (NS-2).

The creation of a gateway to use the sensing capabilities from WSNs and the requests

from vehicles in the presence service exposed in the IMS architecture opens the door to a wide

range of applications and other services in IMS, providing effective and real-time feedback to

users. Furthermore, IMS services can be also connected with the gateway and receive VANET

and WSN requests and/or information through several PSEs.

Additionally, the architecture of the gateway in which one or more cellular networks

cooperate to deliver information “multimedia services”, gives better results regarding self-

recovery and scalability.

5.2 Publications

This work done in this project has been submitted to the 9
th

 International Wireless

Communications and Mobile Computing Conference (IWCMC 2013), Cagliari, Sardinia, Italy –

and it’s under review right now. The conference will be held on July 1
st
 to July 5

th
, 2013.

5.3 Limitation of the work

The work that has been proposed presents several limitations that should be taken into

consideration when using this proposal and when defining a future research path. Initially, the

gateway extensively relies on a data dissemination protocol to provide the status of the

disseminated information. If the protocol does not offer such information, it automatically

101

becomes useless in the architecture. Secondly, we did not pay too much attention about the

topology being used inside the simulations; we used the simplest topology which is the circular

way/road topology where the vehicles are adopted and organized in a circular motion and that

the simulations should also be focused on the performance analysis of the protocol in real

scenarios (i.e., rural, city, urban and highways) in order to see the efficiency of such gateway on

the rate of requests it faces from each of the VANET users and WSNs subscribes. Moreover, we

have to support different speeds of the vehicles while being on the road so we can adopt the

different changes found while being on the road.

Furthermore, in this architecture, we put an assumption that each type of the tunneling layers

found that receives a message has a way to send back an acknowledgement about the

successfully or unsuccessfully reception. If this functionality in such types is missing, the

delivery cannot be guaranteed.

5.4 Future Works

At this stage, our proposal only includes a procedure of self-recovery for voluntarily

departure. A future extension would include the procedure when a node (vehicle, sensor or

ingress spot) fails. The recovery process should consider the different roles present in the

overlay, since the actions could differ from one another. This extension will increase the fault-

tolerance of the architecture, complementing the already defined self-recovery process.

The implemented prototype that was presented in this thesis is a subset of the

architecture. A future phase will be extending they prototype to support more functionalities.

Processing of information should be further detailed to determine when and how data

should be sent to the Data Management Unit and the processor group. The storage process in

case of WSN systems should also be further analyzed, data distribution is especially important is

these types of networks since it should be determined where data is stored and how efficiently

retrieve it.

Flexibility when considering these new functions should be constantly present, since each

service could change depending on the target application. It is important to define a clear way of

indicating when information should be stored, processed or published and where should the

retrieval process takes place (e.g. from the stored information or directly from the cellular

network or the WSN).

102

In a final phase the efficiency of the proposed architecture concepts will be verified in the

field test.

The previous is applicable in case of the WSNs, moving to the VANET world. The

following are some areas of future work to improve the performance of the gateway and the UDP

protocol for a VANET system:

- Adaptive transmission rate, An algorithm that throttles the rate at which the vehicle’s

state is transmitted.

- Adaptive transmission range, the transmission range can be adjusted to keep the

network load on the channel below a certain threshold.

- Extensive mathematical and simulation mode, larger model could be developed to

determine the maximum improvement that can be expected from adjusting the gateway

and the rate of its connecting the entities and the transmission between the requesting

node and the other party that provides the requested service(s).

5.4.1 Adaptive Transmission Rate Control

Due to the hidden terminal problem and other interference, it is unrealistic to achieve a

100% delivery rate without retransmission in a wireless network even for example Safety

messages typically need to be repeatedly transmitted at a certain rate to ensure reliable delivery.

If the network is highly loaded, the rate of transmission should be decreased eventually

within the network regarding the requests from the vehicles side. The authors of [38] propose the

VCWC protocol which is only based on application-specific properties to help controlling the

channel congestion and when the network seems to be kind of free (i.e., after some calculations

are done), the algorithm will notify the nodes to augment the rate of requests whenever they

would like to.

We will utilize the aforementioned channel feedback, packet collision rate and number of

nodes within the transmission range, to effectively adjust the transmission rates for all the traffic

classes. For example, when the packet loss rate is larger than some threshold, we then first

minimize the transmission rate of all traffic classes. If this is not enough, we will further drop all

non-safety related messages and reduce the transmission rate of low priority safety messages,

and so on.

103

5.4.2 Dynamic Transmission Power Control

Controlling the communication range between the gateway and the requesting entity, by

adjusting the power of the transmission, can be used to mitigate the adverse effects caused by

nodes being densely populated. The choice of the communication range has a high impact on a

fundamental property of an ad-hoc network, the connectivity. In a VANET, a static transmission

range cannot maintain the network connectivity due to the non-homogenous conditions. It is

shown in [39, 40] that a dynamic transmission range is needed to maintain connectivity in non-

homogenous networks to take advantage of power saving and increased capacity.

 The transmission range of all nodes can be adjusted, using the power control, to keep the

network load below a certain threshold. By adjusting the transmission range to the minimum

range required by a multimedia (i.e., real time application), the load on the channel can be

reduced as a result of having highly accurate information of gateway.

In a final phase, the efficiency of the proposed architecture concepts will be verified in

the field test.

104

REFERENCES

[1] G. Camarillo and M. A. Garcia-Martin, The 3G IP multimedia subsystem (IMS): merging the

Internet and the cellular worlds: Wiley, 2011.

[2] M. V. Pulgarin, R. Glitho, and A. Quintero, "An Overlay Gateway for the Integration of IP

Multimedia Subsystem and Mobile Sink Based-Wireless Sensor Networks," in Vehicular

Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd, pp. 1-5, 2010.

[3] I. Khan, "Performance evaluation of Ad hoc routing protocols for Vehicular ad hoc networks,"

Mohammad Ali Jinnah University, 2009.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks,"

Communications Magazine, IEEE, vol. 40, pp. 102-114, 2002.

[5] (March, 2012). Wikipedia, IP Multimedia Subsystem. Available:

http://en.wikipeida.org/wiki/IP_Multimedia_Subsystem#Media_Servers

[6] "3GPP TSG SA WG3 Security-S3#31, MMS Security Considerations," ed.

[7] G. Camarillo and M. A. Garcia-Martin, The 3G IP Multimedia Susbsystem (IMS): Merging the

Internet and the cellular worlds, Second edition Wiley, Copyright 2006,, 2006.

[8] M. M. I. Taha, "Broadcasting Protocols in Vehicular Ad-Hoc Networks (VANETs)," MSc.,

Electrical Engineering, Assuit University, 2008.

[9] T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato, and Y. Nemoto, "A stable routing

protocol to support ITS services in VANET networks," Vehicular Technology, IEEE

Transactions on, vol. 56, pp. 3337-3347, 2007.

[10] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer networks,

vol. 52, pp. 2292-2330, 2008.

[11] Y. W. Lin, J. M. Shen, and H. C. Weng, "Gateway Discovery in VANET Cloud," in High

Performance Computing and Communications (HPCC), 2011 IEEE 13th International

Conference on, pp. 951-954, 2011.

[12] M. El Barachi, A. Kadiwal, R. Glitho, F. Khendek, and R. Dssouli, "The design and

implementation of a gateway for ip multimedia subsystem/wireless sensor networks

interworking," in Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th, pp. 1-5,

2009.

[13] A. Gluhak and W. Schott, "A WSN system architecture to capture context information for beyond

3g communication systems," in Intelligent Sensors, Sensor Networks and Information, 2007.

ISSNIP 2007. 3rd International Conference on, pp. 49-54, 2007.

http://en.wikipeida.org/wiki/IP_Multimedia_Subsystem#Media_Servers

105

[14] (March, 2012). Once upon a release - IP Multimedia Subsystem (IMS) architecture story.

Available: http://ictbackyard.com/archives/tag/ims

[15] R. Martínez García, "Diseño y desarrollo de una CNG orientado a Linux Embedded," 2011.

[16] G. Camarillo, M. A. García-Martín, and M. A., The 3G Multimedia Subsystem [online]: Merging

the Internet and the Cellular World. United Kingdom: John Wiley & Sons Ltd., 2004.

[17] G. Grilli, "Data dissemination in vehicular networks," PhD thesis University of Rome" Tor

Vergata", Rome, Italy, 2010.

[18] Z. Yang, M. Li, and W. Lou, "Codeplay: Live multimedia streaming in vanets using symbol-level

network coding," in Network Protocols (ICNP), 2010 18th IEEE International Conference on, pp.

223-232, 2010.

[19] A. Festag, A. Hessler, R. Baldessari, L. Le, W. Zhang, and D. Westhoff, "Vehicle-to-Vehicle and

Road-Side sensor communication for enhanced road safety," in Proceedings of the 15th World

Congress on Intelligent Transport Systems, 2008.

[20] J. Burrell, T. Brooke, and R. Beckwith, "Vineyard computing: Sensor networks in agricultural

production," Pervasive Computing, IEEE, vol. 3, pp. 38-45, 2004.

[21] M. Strohbach, J. Vercher, and M. Bauer, "A case for IMS," Vehicular Technology Magazine,

IEEE, vol. 4, pp. 57-64, 2009.

[22] S. Arbanowski, L. Lange, T. Magedanz, and L. Thiem, "The dynamic composition of personal

network services for service delivery platforms," in Circuits and Systems for Communications,

2008. ICCSC 2008. 4th IEEE International Conference on, pp. 455-460, 2008.

[23] Z. Papp, C. Brown, and C. Bartels, "World modeling for cooperative intelligent vehicles," in

Intelligent Vehicles Symposium, 2008 IEEE, pp. 1050-1055, 2008.

[24] J. B. Kenney, "Dedicated short-range communications (DSRC) standards in the United States,"

Proceedings of the IEEE, vol. 99, pp. 1162-1182, 2011.

[25] (April, 2012). Traveller Information Services Association. Available: http://www.tisa.org

[26] T. Taleb and A. Benslimane, "Design guidelines for a network architecture integrating vanet with

3g & beyond networks," in Global Telecommunications Conference (GLOBECOM 2010), 2010

IEEE, pp. 1-5, 2010.

[27] N. K. Warambhe and S. Dorle, "Implementation of Protocol for Efficient Data Storage and Data

Dissemination in VANET," International Journal of Advanced Research in Computer Science

and Electronics Engineering (IJARCSEE), vol. 1, pp. 65-71, 2012.

[28] (March, 2012). "RFC3265". Available: http://www.ietf.org/rfc/rfc3265.txt

[29] (March, 2012). "RFC2976". Available: http://ietf.org/rfc/rfc2976.txt

http://ictbackyard.com/archives/tag/ims
http://www.tisa.org/
http://www.ietf.org/rfc/rfc3265.txt
http://ietf.org/rfc/rfc2976.txt

106

[30] S. Helou, A. Quintero, and F. Khendek, "Architecture for the architecture for the reactive

discovery and integration of WSNs and their services with IMS," unpublished|.

[31] A. Outtagarts and O. Martinot, "iSSEE: IMS Sensors Search Engine Enabler for Sensors

Mashups Convergent Application," International Journal of Computer Science Issues, IJCSI, vol.

6, pp. 1-7, 2009.

[32] R. P. Gupta, V. K. Sharma, and V. M. Shrimal, "Investigation of Different Parameters of

Dynamic Source Routing with varied Terrain Areas and Pause Time for Wireless Sensor

Network."

[33] D. B. J. D. A. Maltz and J. Broch, "DSR: The dynamic source routing protocol for multi-hop

wireless ad hoc networks," Computer Science Department Carnegie Mellon University

Pittsburgh, PA, pp. 15213-3891, 2001.

[34] S. Panda and R. Mohapatra, "Implementation and Comparison of Mobility Models In Ns-2,"

2009.

[35] K. Fall and K. Varadhan, "the VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC, the

NS Manual," ed.

[36] F. Bai, N. Sadagopan, and A. Helmy, "User manual for important mobility tool generators in NS-

2 simulator," University of Southern California, 2004.

[37] "The NS manual (formally NS notes and documentation)," ed, 2006.

[38] X. Yang, L. Liu, N. H. Vaidya, and F. Zhao, "A vehicle-to-vehicle communication protocol for

cooperative collision warning," in Mobile and Ubiquitous Systems: Networking and Services,

2004. MOBIQUITOUS 2004. The First Annual International Conference on, pp. 114-123, 2004.

[39] J. Gomez and A. T. Campbell, "A case for variable-range transmission power control in wireless

multihop networks," in INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE

Computer and Communications Societies, pp. 1425-1436, 2004.

[40] R. Ramanathan and R. Rosales-Hain, "Topology control of multihop wireless networks using

transmit power adjustment," in INFOCOM 2000. Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, pp. 404-413, 2000.

107

APPENDIX 1– Simulation Script

1.1 wireless-simulation.tcl

#===

Wireless simulation, a simulation of a UDP (and/or broadcast)

protocol

for vehicular ad hoc networks (VANETs).

Nathan Balon

University of Michigan - Dearborn

CIS 695

Modified by:

Mohab Aly

Ecole Polytechnique de Montreal - Montreal

Computer Engineering Department

#===

#===

Options

#===

set opt(chan) Channel/WirelessChannel ;# channel type

set opt(prop) Propagation/TwoRayGround ;# radio-propagation

model

#set opt(prop) Propagation/Shadowing

set opt(ant) Antenna/OmniAntenna ;# antenna type

set opt(ll) LL ;# link layer

set opt(ifq) Queue/DropTail/PriQueue ;# interface queue

set opt(ifqlen) 100 ;# max packet in ifq

set opt(netif) Phy/WirelessPhy ;# network interface

type

set opt(mac) Mac/802_11 ;# mac type

set opt(rp) DumbAgent ;# routing protocol

set opt(nn) 50 ;# number of mobile

nodes

set opt(pkt_size) 128 ;# size of UDP packet

(or broadcast message)

set opt(cp) /home/mohab/Downloads/ns-allinone-2.35/ns-

2.35/tcl/mobility/traffic2.tcl ;# connection pattern traffic file

#set opt(cp) /home/mohab/Downloads/ns-allinone-2.35/ns-

2.35/indep-utils/cmu-scen-gen/cbr-100-test ;#connection pattern

traffic file

set opt(sc) /home/mohab/Downloads/ns-allinone-2.35/ns-

2.35/tcl/mobility/topology_50_2500 ;#mobility scenario

#set opt(sc) /home/mohab/Downloads/ns-allinone-2.35/ns-

2.35/tcl/mobility/scene/scen-3-test ;#mobility scenario

108

#set opt(sc) /home/mohab/Downloads/ns-allinone-2.35/ns-

2.35/tcl/mobility/map50.txt ;#mobility scenario (circular road)

set opt(tr) trace.tr ;# trace file

set opt(nam_tr) nam-trace.tr ;# name trace file

set opt(seed) 1.5 ;# seed the random number generator

set opt(stop) 80.0 ;# time to end simulation

set opt(x) 1000 ;# x size for topology

set opt(y) 1000 ;# y size for topology

set opt(lm) ON ;# log movement

set opt(at) ON ;# agent trace

set opt(rt) OFF ;# routing trace

set opt(mact) ON ;# mac trace

set opt(movt) ON ;# movement trace

set opt(cw) 20

#set opt(modified) 2 ;# use modified broadcast

set opt(sliding) 0.1 ;# threashold to slide CW

#===

slot times

#Mac/802_11 set CWMax_ 1023

#Mac/802_11 set SlotTime_ 0.000013 ;# 20us

#Mac/802_11 set SIFS_ 0.000032 ;# 10us

physical layers headers and rates

#Mac/802_11 set PreambleLength_ 32 ;# 144 bit

#Mac/802_11 set PLCPHeaderLength_ 40 ;# 48 bits

#Mac/802_11 set PLCPDataRate_ 6.0e6 ;# 1Mbps

#Mac/802_11 set dataRate_ 6.0e6

#Mac/802_11 set basicRate_ 6.0e6

Queue/DTail set drop_front_ false

Queue/DTail set summarystats_ false

Queue/DTail set queue_in_bytes_ false

Queue/DTail set mean_pktsize_ 250

Queue/DTail/PriQ set Prefer_Routing_Protocols 1

Queue/DTail/PriQ set Max_Levels 4

Queue/DTail/PriQ set Levels 4

Mac/802_11e set cfb_ 0

Mac/802_11 set RTSThreshold_ 3000 ;# bytes

Mac/802_11 set ShortRetryLimit_ 7 ;# retransmittions

Mac/802_11 set LongRetryLimit_ 4 ;# retransmissions

added parameters to 802.11e

Mac/802_11e set update_interval_ 0.4 ;# interval to adjust the CW

Mac/802_11e set timeout_entries_ 0.8 ;# remove nodes if not heard

from in this time

Mac/802_11e set WMA_alpha_ 0.8 ;# alpha used in the weighted

average

Mac/802_11e set scaling_factor_ 2.0 ;# how much the CW should be

increased by

109

Phy/WirelessPhy set CPThresh_ 10.0

Phy/WirelessPhy set CSThresh_ 2.5118864e-13 ;# -96 dBm

Phy/WirelessPhy set RXThresh_ 1.0e-12 ;# -90 dBm

Phy/WirelessPhy set bandwidth_ 6.0e6

Phy/WirelessPhy set Pt_ 0.0003754

Phy/WirelessPhy set freq_ 5.9e+9

Phy/WirelessPhy set L_ 1.0

#Propagation/Shadowing set pathlossExp_ 2.7

#Propagation/Shadowing set std_db_ 4.0

#Propagation/Shadowing set seed_ 0

#Propagation/Shadowing set dist0_ 1.0

Unity gain, omni-directional antennas

Set up the antennas to be centered in the node and 1.5 meters above

it

Antenna/OmniAntenna set X_ 0

Antenna/OmniAntenna set Y_ 0

Antenna/OmniAntenna set Z_ 2.0

Antenna/OmniAntenna set Gt_ 4.5

Antenna/OmniAntenna set Gr_ 4.5

#===

set BROADCAST_ADDR -1 ;# broadcast address

set MESSAGE_PORT 42 ;# periodic message port

set WARNING_PORT 33 ;# warning message

set EMER_PORT 21 ;# port to listen for emergency messages

#===

Functions

#===

Display program usage

proc usage { argv0 } {

puts "Usage: $argv0"

puts "\tmandatory arguments:"

puts "\t\t\[-x MAXX\] \[-y MAXY\]"

puts "\t\t\[-cp conn pattern\] \[-sc scenario\] \[-nn nodes\]"

puts "\toptional arguments:"

 puts "\t\t\[-seed seed\] \[-stop sec\] \[-tr tracefile\]\n"

 puts "\t\t\[-pkt_size size\] \[-nam_tr nam trace\]\n"

puts "\t\t\[-modified 1 or 0\] \[-sliding threashold\]\n"

}

set the options from the command line arguments

proc getopt {argc argv} {

global opt

lappend optlist cp nn seed sc stop tr x y pkt_size pkt_size_emer

nam_tr modified sliding

110

for {set i 0} {$i < $argc} {incr i} {

set arg [lindex $argv $i]

if {[string range $arg 0 0] != "-"} continue

if {[string range $arg 0 0] != "-"} continue

set name [string range $arg 1 end]

set opt($name) [lindex $argv [expr $i+1]]

}

}

Class Agent/MessagePassing/PeriodicBroadcast -superclass

Agent/MessagePassing

Agent/MessagePassing/PeriodicBroadcast instproc recv {source sport

size data} {

 # This empty function is needed so receive works.

}

Agent/MessagePassing/PeriodicBroadcast instproc send_message {} {

 $self instvar node_

 global ns_ MESSAGE_PORT BROADCAST_ADDR opt

 #puts "[$node_ node-addr] sending message"

 # send the broadcast message

 #$self sendto $opt(pkt_size) 0 $BROADCAST_ADDR $MESSAGE_PORT

 set udp [new Agent/UDP]

 $udp set class_ 1

 set sink [new Agent/LossMonitor]

 $self sendto $opt(pkt_size) 128 $udp $sink

}

perform clean up at the end of the program

proc finish {} {

 global ns_ tracefd namtracefd opt

 $ns_ flush-trace

 close $tracefd

 if {$opt(nam_tr) != ""} {

 close $namtracefd

 }

 $ns_ halt

 exit 0

}

set the options from the command line arguments

proc getopt {argc argv} {

 global opt

 lappend optlist cp nn seed sc stop tr x y bc_size nam_tr cw

 for {set i 0} {$i < $argc} {incr i} {

 set arg [lindex $argv $i]

 if {[string range $arg 0 0] != "-"} continue

111

 set name [string range $arg 1 end]

 set opt($name) [lindex $argv [expr $i+1]]

 }

}

log the movement of a node every 0.1 seconds

proc log-movement {} {

 global logtimer ns_ ns

 set ns $ns_

 source /home/mohab/Downloads/ns-allinone-2.35/ns-

2.35/tcl/mobility/timer.tcl

 Class LogTimer -superclass Timer

 LogTimer instproc timeout {} {

 global opt node_;

 for {set i 0} {$i < $opt(nn)} {incr i} {

 $node_($i) log-movement

 }

 $self sched 0.1

 }

 set logtimer [new LogTimer]

 $logtimer sched 0.4

}

#===

Main Program

#===

#get command line arguments

getopt $argc $argv

 if { $opt(nn) == 0 || $opt(sc) == "" || $opt(cp) == ""} {

 usage $argv0

 exit 1

 }

Mac/802_11 set CWMin_ $opt(cw)

puts "x: $opt(x), y: $opt(y)"

puts "CW: $opt(cw)"

Mac/802_11e set number_nodes_ $opt(nn) ;# use modified broadcast

algorithm

Mac/802_11e set modified_ $opt(modified) ;# use modifed algorithm

Mac/802_11e set sliding_threshold_ $opt(sliding) ;# threshold to

slide CW

if {$opt(seed) > 0} {

 puts "\n Seeding Random number generator with $opt(seed)\n"

 ns-random $opt(seed)

}

create a new simulator

set ns_ [new Simulator]

$ns_ color 1 Blue

$ns_ color 2 Red

112

set up the traces

set tracefd [open $opt(tr) w]

$ns_ trace-all $tracefd

set the topology

set topo [new Topography]

$topo load_flatgrid $opt(x) $opt(y)

Create god, the god object must

be created for a wireless network

set god_ [create-god $opt(nn)]

set the channel object

set chan_ [new Channel/WirelessChannel]

Set up the nam trace if desired.

if {$opt(nam_tr) != ""} {

 set namtracefd [open $opt(nam_tr) w]

 $ns_ namtrace-all-wireless $namtracefd $opt(x) $opt(y)

}

configure the nodes of the simulation

$ns_ node-config -adhocRouting $opt(rp) \

 -llType $opt(ll) \

 -macType $opt(mac) \

 -ifqType $opt(ifq) \

 -ifqLen $opt(ifqlen) \

 -antType $opt(ant) \

 -propInstance [new $opt(prop)] \

 -phyType $opt(netif) \

 -topoInstance $topo \

 -channel $chan_ \

 -agentTrace $opt(at) \

 -routerTrace $opt(rt) \

 -macTrace $opt(mact) \

 -movementTrace $opt(movt)

set y 0

set x 0

Source the mobility scenario file.

#source $opt(sc)

Create the mobile nodes for the simulation.

for {set i 0} {$i < $opt(nn)} {incr i} {

 set node_($i) [$ns_ node]

 $node_($i) random-motion 0 ;#disable random motion between nodes

}

Source the mobility scenario file.

113

source $opt(sc)

Source the file that contains the broadcast traffic.

#source $opt(cp)

Define node initial position in nam

for {set i 0} {$i < $opt(nn)} {incr i} {

 $ns_ initial_node_pos $node_($i) 80 ;#80 difines the node size in

nam.

}

Attach a new Agent/MessagePassing/PeriodicBroadcast to each node on

port $MESSAGE_PORT

for {set i 0} {$i < $opt(nn)} {incr i} {

 set udp [new Agent/UDP]

 $udp set class_ 1

 set sink [new Agent/LossMonitor]

 set bc_agent($i) [new Agent/MessagePassing/PeriodicBroadcast]

 #$node_($i) attach $bc_agent($i) $MESSAGE_PORT

 $node_($i) attach $bc_agent($i) $udp

 $node_($i) attach $bc_agent($i) $sink

}

log movement

if { $opt(lm) == "ON" } {

 puts "Logging movement..."

 log-movement

}

Source the file that contains the UPD packets (or broadcast

traffic).

source $opt(cp)

$ns_ at $opt(stop) "finish"

Add to the trace simulation parameters.

puts $tracefd "M 0.0 nn $opt(nn) x $opt(x) y $opt(y) rp $opt(rp)"

#puts $tracefd "M 0.0 cp $opt(cp) seed $opt(seed)"

puts $tracefd "M 0.0 prop $opt(prop) ant $opt(ant)"

puts "Starting Simulation..."

$ns_ run

114

APPENDIX 2 – Mobility

2.1 create-map.pl

#!/usr/bin/perl -w

create-map.pl: creates a circular road map for the freeway model.

The map is then read by the mobility generator found at

http://nile.usc.edu/important/software.htm, to create the mobility

for nodes in an ns2 simulation.

Nathan Balon

University of Michigan - Dearborn

Modified by Mohab Aly

Ecole Polytechnique de Montreal - Montreal

use strict;

use warnings;

use constant PI => 3.1415926535;

use constant LANE_DIST => 5; # distance between lane

parameter used to generate a circular road

my $nodes = 50; # the number of points on the circle

my $inner_edge_dist = 300; # the distance to the inner lane

my $traffic_direction = 2; # direction of traffic (either 1 or 2)

my $lanes = 8; # number of lanes

my $lane_dist = 0; # distance between the inner lane

my @center = (500,500); # the center point of the circular road

my $min_velocity = 20.0; # minimum velocity of the nodes

my $max_velocity = 30.0; # maximum velocity of the nodes

my $theta_const = 2 * PI / $nodes; # angle between nodes

my $theta = 0; # theta value for the current node

Check that an even number of lanes exist if traffic

flows in both directions on the road.

if($lanes % 2 != 0 && $traffic_direction == 2){

 die "ERROR: if traffic flows in both direction, you must " .

 "have an even number of lanes\n";

}

display the information about the freeway

#print "FREEWAY\n";

#print "FREEWAY_NUM 1\n";

#print "LANE_NUM $lanes\n";

115

for(my $i = 0; $i < $lanes; $i++,$lane_dist += LANE_DIST){

 $theta = 0;

 my $direction = 1;

 # set the phase of the traffic for traffic to

 # flow in the opposite direction for half the lanes

 if($i/$lanes >= 0.5 && $traffic_direction == 2){

 $direction = -1;

 }

 # create a new lane in the map

 #print "LANE_BEGIN 0 $i $i $direction $nodes\n";

 # determine the position for two nodes connected by an edge

 # and display the results

 for(my $j = 0; $j < $nodes; $j++){

 my $next_x = 0;

 my $next_y = 0;

 my $initial_x = $center[0] + cos($theta) * ($inner_edge_dist +

$lane_dist);

 my $initial_y = $center[1] + sin($theta) * ($inner_edge_dist +

$lane_dist);

 if($direction == 1){

 $next_x = $center[0] + cos($theta + $theta_const) *

($inner_edge_dist + $lane_dist);

 $next_y = $center[1] + sin($theta + $theta_const) *

($inner_edge_dist + $lane_dist);

 $theta += $theta_const;

 }else{

 # traffic going in the opposite direction

 $next_x = $center[0] + cos($theta - $theta_const) *

($inner_edge_dist + $lane_dist);

 $next_y = $center[1] + sin($theta - $theta_const) *

($inner_edge_dist + $lane_dist);

 $theta -= $theta_const;

 }

 # printf("PHASE %d \(%4.5f\, %4.5f\) \(%4.5f\, %4.5f\) %3.3f

%3.3f\n",

 # $j, $initial_x, $initial_y, $next_x, $next_y,

$min_velocity, $max_velocity);

Definition of the nodes within the circular road

using the "printf" to state the position of the nodes and the radius

of the circle

 #$node_(1) set X_ 1331.178204310675

 #$node_(1) set Y_ 1897.0444947001733

 #$node_(1) set Z_ 0.0

 #$node_(1) radius 230.81019207872924

116

 printf("\$node_(%d) set X_ %4.5f\n", $j, $next_x) ;

 printf("\$node_(%d) set Y_ %4.5f\n", $j, $next_y);

 printf("\$node_(%d) set Z_ 0.0\n", $j);

 printf("\$node_(%d) radius 230.81019207872924\n", $j) ;

 }

}

117

2.1.1 Another way of creating the map (ready to be used by specifying the

parameters of the map topology)

#@Ghada

#this file is to generate initial random location and transmission

Range for the mobile nodes

set val(nn) [lindex $argv 0] ;#number of nodes

set val(x) [lindex $argv 1]

set val(y) [lindex $argv 2]

set val(outfile) [lindex $argv 3] ;#output file name

if { $argc != 4 } {

 puts "The initial_topology.tcl script requires four parameters

to be inputed."

 puts "1.number of node >0"

 puts "2. X coordinate"

 puts "3. Y coordinate"

 puts "4. output file name"

 puts "Please try again."

} else {

 set topo [open $val(outfile) w] ;#open the file for writing

 set rng_ [new RNG]

 $rng_ seed 0

 for {set i 0} {$i<$val(nn)} {incr i} {

 puts $topo "\$node_($i) set X_ [$rng_ uniform 0.0 $val(x)]"

 puts $topo "\$node_($i) set Y_ [$rng_ uniform 0.0 $val(y)]"

 puts $topo "\$node_($i) set Z_ 0.0" ;#third dimension is not

used

 puts $topo "\$node_($i) radius [$rng_ uniform 200.0 250.0]"

 ;#transmission range default is 250m in ns2, you may use this

if only you want heterogeneous transmission ranges.

 }

 close $topo

}

118

2.2 map.txt

$node_(0) set X_ 797.63441

$node_(0) set Y_ 537.59997

$node_(0) set Z_ 0.0

$node_(0) radius 230.81019207872924

$node_(1) set X_ 790.57495

$node_(1) set Y_ 574.60697

$node_(1) set Z_ 0.0

$node_(1) radius 230.81019207872924

$node_(2) set X_ 778.93295

$node_(2) set Y_ 610.43737

$node_(2) set Z_ 0.0

$node_(2) radius 230.81019207872924

$node_(3) set X_ 762.89200

$node_(3) set Y_ 644.52610

$node_(3) set Z_ 0.0

$node_(3) radius 230.81019207872924

$node_(4) set X_ 742.70510

$node_(4) set Y_ 676.33558

$node_(4) set Z_ 0.0

$node_(4) radius 230.81019207872924

$node_(5) set X_ 718.69059

$node_(5) set Y_ 705.36413

$node_(5) set Z_ 0.0

$node_(5) radius 230.81019207872924

$node_(6) set X_ 691.22720

$node_(6) set Y_ 731.15397

$node_(6) set Z_ 0.0

$node_(6) radius 230.81019207872924

$node_(7) set X_ 660.74804

$node_(7) set Y_ 753.29838

$node_(7) set Z_ 0.0

$node_(7) radius 230.81019207872924

$node_(8) set X_ 627.73379

$node_(8) set Y_ 771.44812

$node_(8) set Z_ 0.0

$node_(8) radius 230.81019207872924

$node_(9) set X_ 592.70510

$node_(9) set Y_ 785.31695

$node_(9) set Z_ 0.0

$node_(9) radius 230.81019207872924

$node_(10) set X_ 556.21439

$node_(10) set Y_ 794.68618

$node_(10) set Z_ 0.0

$node_(10) radius 230.81019207872924

$node_(11) set X_ 518.83716

$node_(11) set Y_ 799.40802

$node_(11) set Z_ 0.0

$node_(11) radius 230.81019207872924

$node_(12) set X_ 481.16284

119

$node_(12) set Y_ 799.40802

$node_(12) set Z_ 0.0

$node_(12) radius 230.81019207872924

$node_(13) set X_ 443.78561

$node_(13) set Y_ 794.68618

$node_(13) set Z_ 0.0

$node_(13) radius 230.81019207872924

$node_(14) set X_ 407.29490

$node_(14) set Y_ 785.31695

$node_(14) set Z_ 0.0

$node_(14) radius 230.81019207872924

$node_(15) set X_ 372.26621

$node_(15) set Y_ 771.44812

$node_(15) set Z_ 0.0

$node_(15) radius 230.81019207872924

$node_(16) set X_ 339.25196

$node_(16) set Y_ 753.29838

$node_(16) set Z_ 0.0

$node_(16) radius 230.81019207872924

$node_(17) set X_ 308.77280

$node_(17) set Y_ 731.15397

$node_(17) set Z_ 0.0

$node_(17) radius 230.81019207872924

$node_(18) set X_ 281.30941

$node_(18) set Y_ 705.36413

$node_(18) set Z_ 0.0

$node_(18) radius 230.81019207872924

$node_(19) set X_ 257.29490

$node_(19) set Y_ 676.33558

$node_(19) set Z_ 0.0

$node_(19) radius 230.81019207872924

$node_(20) set X_ 237.10800

$node_(20) set Y_ 644.52610

$node_(20) set Z_ 0.0

$node_(20) radius 230.81019207872924

$node_(21) set X_ 221.06705

$node_(21) set Y_ 610.43737

$node_(21) set Z_ 0.0

$node_(21) radius 230.81019207872924

$node_(22) set X_ 209.42505

$node_(22) set Y_ 574.60697

$node_(22) set Z_ 0.0

$node_(22) radius 230.81019207872924

$node_(23) set X_ 202.36559

$node_(23) set Y_ 537.59997

$node_(23) set Z_ 0.0

$node_(23) radius 230.81019207872924

$node_(24) set X_ 200.00000

$node_(24) set Y_ 500.00000

$node_(24) set Z_ 0.0

$node_(24) radius 230.81019207872924

$node_(25) set X_ 202.36559

120

$node_(25) set Y_ 462.40003

$node_(25) set Z_ 0.0

$node_(25) radius 230.81019207872924

$node_(26) set X_ 209.42505

$node_(26) set Y_ 425.39303

$node_(26) set Z_ 0.0

$node_(26) radius 230.81019207872924

$node_(27) set X_ 221.06705

$node_(27) set Y_ 389.56263

$node_(27) set Z_ 0.0

$node_(27) radius 230.81019207872924

$node_(28) set X_ 237.10800

$node_(28) set Y_ 355.47390

$node_(28) set Z_ 0.0

$node_(28) radius 230.81019207872924

$node_(29) set X_ 257.29490

$node_(29) set Y_ 323.66442

$node_(29) set Z_ 0.0

$node_(29) radius 230.81019207872924

$node_(30) set X_ 281.30941

$node_(30) set Y_ 294.63587

$node_(30) set Z_ 0.0

$node_(30) radius 230.81019207872924

$node_(31) set X_ 308.77280

$node_(31) set Y_ 268.84603

$node_(31) set Z_ 0.0

$node_(31) radius 230.81019207872924

$node_(32) set X_ 339.25196

$node_(32) set Y_ 246.70162

$node_(32) set Z_ 0.0

$node_(32) radius 230.81019207872924

$node_(33) set X_ 372.26621

$node_(33) set Y_ 228.55188

$node_(33) set Z_ 0.0

$node_(33) radius 230.81019207872924

$node_(34) set X_ 407.29490

$node_(34) set Y_ 214.68305

$node_(34) set Z_ 0.0

$node_(34) radius 230.81019207872924

$node_(35) set X_ 443.78561

$node_(35) set Y_ 205.31382

$node_(35) set Z_ 0.0

$node_(35) radius 230.81019207872924

$node_(36) set X_ 481.16284

$node_(36) set Y_ 200.59198

$node_(36) set Z_ 0.0

$node_(36) radius 230.81019207872924

$node_(37) set X_ 518.83716

$node_(37) set Y_ 200.59198

$node_(37) set Z_ 0.0

$node_(37) radius 230.81019207872924

$node_(38) set X_ 556.21439

121

$node_(38) set Y_ 205.31382

$node_(38) set Z_ 0.0

$node_(38) radius 230.81019207872924

$node_(39) set X_ 592.70510

$node_(39) set Y_ 214.68305

$node_(39) set Z_ 0.0

$node_(39) radius 230.81019207872924

$node_(40) set X_ 627.73379

$node_(40) set Y_ 228.55188

$node_(40) set Z_ 0.0

$node_(40) radius 230.81019207872924

$node_(41) set X_ 660.74804

$node_(41) set Y_ 246.70162

$node_(41) set Z_ 0.0

$node_(41) radius 230.81019207872924

$node_(42) set X_ 691.22720

$node_(42) set Y_ 268.84603

$node_(42) set Z_ 0.0

$node_(42) radius 230.81019207872924

$node_(43) set X_ 718.69059

$node_(43) set Y_ 294.63587

$node_(43) set Z_ 0.0

$node_(43) radius 230.81019207872924

$node_(44) set X_ 742.70510

$node_(44) set Y_ 323.66442

$node_(44) set Z_ 0.0

$node_(44) radius 230.81019207872924

$node_(45) set X_ 762.89200

$node_(45) set Y_ 355.47390

$node_(45) set Z_ 0.0

$node_(45) radius 230.81019207872924

$node_(46) set X_ 778.93295

$node_(46) set Y_ 389.56263

$node_(46) set Z_ 0.0

$node_(46) radius 230.81019207872924

$node_(47) set X_ 790.57495

$node_(47) set Y_ 425.39303

$node_(47) set Z_ 0.0

$node_(47) radius 230.81019207872924

$node_(48) set X_ 797.63441

$node_(48) set Y_ 462.40003

$node_(48) set Z_ 0.0

$node_(48) radius 230.81019207872924

$node_(49) set X_ 800.00000

$node_(49) set Y_ 500.00000

$node_(49) set Z_ 0.0

$node_(49) radius 230.81019207872924

$node_(0) set X_ 802.59498

$node_(0) set Y_ 538.22664

$node_(0) set Z_ 0.0

. . . .

122

APPENDIX 3 – Network Traffic

3.1 traffic-w-jitter.pl

#! /usr/bin/perl

traffic-w-jitter.pl generates broadcast traffic for an

ns2 simulation. The script randomly selects a broadcast

time for each node in the simulation. For each time

interval during which a node boardcasts, the transmit

time is varied by +/- the amount of jitter. The

variables start and end are the start time and end time

of the simulation. traffic_rate is the number of

times that a nodes transmits during one second.

Nathan Balon

University of Michigan - Dearborn

use strict;

use warnings;

sub setValuesFromArgs($);

sub getCommentBlock();

the default values used to generate traffic

our $jitter = 0.1; # the amount of jitter

our $nodes = 50; # number of node

our $traffic_rate = 20; # number of times a node transmits per second

our $seed = 1; # seed for the random number generator

our $start = 1; # start time of the simulation

our $end = 61; # end time of the simulation

our $file_name = 'traffic400.tcl'; # file to save traffic to

my $sim_length = 0; # length of the simulation

my @trans_time = (); # the transmit time

read the command line arguments

for(my $argnum = 0; $argnum <= $#ARGV; $argnum++){

 # display help

 if($ARGV[$argnum] eq "-h" || $ARGV[$argnum] eq "--help"){

 printHelp();

 exit;

 # set the values used to generate traffic from the cammand line args

 }elsif($argnum + 1 <= $#ARGV){

123

 setValuesFromArgs($argnum);

 $argnum++;

 }

}

determine the length of the simulation

if($end > $start){

 $sim_length = $end - $start;

}else{

 die "The end time of the simulation must be " .

 "greater than the start time of the simulation\n";

}

srand $seed;

#open the file and write the comment block to the file

open(FILE, ">$file_name");

print FILE getCommentBlock;

the transmission rate to send messages

my $trans_rate = sprintf("%.2f", 1/$traffic_rate);

Select the initial time a node will

transmit at based on the transmission rate.

for(my $i = 0; $i < $nodes; $i++){

 $trans_time[$i] = rand($trans_rate);

}

the number of time each node sends a broadcast

my $num_intervals = $sim_length * $traffic_rate;

the time interval to transmit during

my $transmit_interval = 0;

Schedule the broadcast transmissions for the simulation.

for(my $trans_int = 0; $trans_int < $num_intervals; $trans_int++){

 # for each node in the simulation schedule a broadcast

 for(my $node = 0; $node < $nodes; $node++){

 my $trans_time = 0; # the time the broadcast is sent

 if($trans_int == 0){

 # if first transmission use the

 # randomly selected transmit time

 $trans_time = $start + $trans_time[$node];

 }else{

 # get the random amount of jitter for the broadcast

 my $jit = rand($jitter * $trans_rate);

 # if random number is > 0.5 add the jitter or else

 # subtract the jitter

 if(rand(1) > 0.5){

 $trans_time = $start + $trans_time[$node]

 + $jit + $transmit_interval;

124

 }else{

 $trans_time = $start + $trans_time[$node]

 - $jit + $transmit_interval;

 }

 }

 print FILE "\$ns at $trans_time \"\$bc_agent($node)

send_message\"\n";

 }

 $transmit_interval += $trans_rate;

}

close(FILE);

functions

display help containing the command line arguments to the user

sub printHelp {

 my $space = " " x (length($0) + 6) ;

 print "usage $0 [--nodes \"number of nodes\"]\n" .

 "$space [--jitter \"amount of jitter\"]\n" .

 "$space [--traffic-rate \"rate of traffic per second\"]\n" .

 "$space [--seed \"seed for random number generator\"]\n".

 "$space [--start \"start time\"]\n" .

 "$space [--end \"end time\"]\n".

 "$space [--file-name \"name of the file to write to\"]\n";

}

Return a comment block for the tcl traffic file

sub getCommentBlock() {

 # return the comment block to add to the tcl program.

 return

"#===\n" .

 "#\n" .

 "# Broadcast Traffic genrated by generate_traffic tool.\n" .

 "# Each node within the network randomly selects the time a

time to\n" .

 "# generate broadcast message during each broadcast

interval.\n" .

 "#\n" .

 "# Created by Nathan Balon, University of Michigan -

Dearborn\n" .

 "#\n" .

 "# Values modified by Mohab Aly, Ecole Polytechnique de\n" .

 "# Montreal - Montreal\n" .

 "#\n" .

 "# Values modified to fit 4 different simulations 50,100,200

and 400\n" .

 "# with higher transmission rate\n" .

125

 "# start time : $start, end time : $end\n" .

 "# transmission (broadcast) rate: $traffic_rate\n" .

 "#\n" .

"#==\n\n";

}

Set the parameters used by the program from the

command line arguments.

sub setValuesFromArgs($) {

 my $argnum = shift;

 my $arg = $ARGV[$argnum + 1];

 if($ARGV[$argnum] eq "--jitter"){

 $jitter = $arg;

 }elsif($ARGV[$argnum] eq "--nodes"){

 $nodes = $arg;

 }elsif($ARGV[$argnum] eq "--traffic-rate"){

 $traffic_rate = $arg;

 }elsif($ARGV[$argnum] eq "--seed"){

 $seed = $arg;

 }elsif($ARGV[$argnum] eq "--start"){

 $start = $arg;

 }elsif($ARGV[$argnum] eq "--end"){

 $end = $arg;

 }elsif($ARGV[$argnum] eq "--file-name"){

 $file_name = $arg;

 }else{

 die "invalid command line argument";

 }

}

126

APPENDIX 4 – Performance Metrics

4.1 throughput.awk

This script is intended to calculate the throughput of the

proposed gateway.

BEGIN {

 node =1;

 time1 = 0.0;

 time2 = 0.0;

 num_packet=0;

 bytes_counter=0;

}

{

 time2 = $2;

 if (time2 - time1 > 0.05) {

 thru = bytes_counter / (time2-time1);

 thru /= 1000000;

 printf("%f %f\n", time2, thru) > "throughput";

 time1 = $2;

 }

 if ($1=="r") {

 bytes_counter += $6;

 num_packet++;

 }

}

END {

print("Done");

}

127

4.2 latency.awk

This script is intended to calculate the latency of the

proposed gateway.

BEGIN {

 time1 = 0.0;

 time2 = 0.0;

}

{

 time2 = $2;

 if ($1=="r") {

 printf("%f %f\n", time2, time1) > "latency";

 time1 += $2;

 }

}

END {

 print("Done");

}

