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Abstract—Obtaining detailed pollution maps for urban envi-
ronments is an effort that is gathering much interest by allowing
to better regulate traffic and protect citizens from hazardous
conditions. However, the scarcity of pollution sensors prevents
obtaining the desired degree of detail, requiring alternative
solutions to be deployed. In this paper we explore the concept of
mobile pollution sensing by studying the feasibility of equipping
buses with ozone measurement hardware to estimate ozone
patterns for the city of Compiègne. Overall, we achieve accurate
estimations, with error values typically ranging from 2% to
10%. Compared to solutions based on deploying static sensors
on the different bus stops available, we find that the proposed
mobile sensing approach is able to provide a degree of accuracy
comparable to deploying tens of static sensors, substantially
reducing costs and management.

Index Terms—mobile sensing; pollution; ozone; geostatistics.

I. INTRODUCTION

Urban air pollution is considered as a growing problem from

both citizen and governmental perspectives. Such concerns are

supported by different toxicological studies [1], [2] showing

that air pollutants such as sulphur dioxide, nitrogen com-

pounds, carbon monoxide and ozone have a serious impact on

health when their concentration surpasses certain thresholds.

Depending on the particular atmospheric and orographic

conditions, an excessive accumulation of the pollutants can

occur in specific parts of our cities. For that reason, having

a detailed map of pollutants can help at notifying people

living in a specific area about inadequate air conditions, and

repeating patterns can be detected by authorities to allow

taking action to mitigate such problems.

Currently, pollution mapping relies on very precise sensors

placed at strategic locations. However, since such sensors have

a very high cost, their number is usually quite limited. Such

limitation prevents obtaining detailed pollution maps, being

the most accurate maps at a spatial scale of 1km per 1km [3].

From the perspective of small and mid-sized cities, though,

even such granularity is too coarse to allow determining the

city-wide distribution of pollutants, and certainly does not help

at detecting pollution hot-spots within the city.

In this paper we proposed using low-cost sensors to obtain

a detailed map of urban pollutants. In particular, we will focus

on ozone as a pollutant, and the city of Compiègne, France,

will be the target area for our analysis. Ozone is created

near the Earth’s surface by the action of daylight UV rays

on different pollutants, predominantly those emitted during

the combustion of fossil fuels. Breathing ozone can trigger

chest pain, coughing, throat irritation, and reduce lung function

by inflaming the linings of the lungs, among many other

problems. Thus, we consider it a relevant pollutant for our

analysis.

Since the city of Compiègne has a single ozone measure-

ment station, no detailed ozone maps are available. Thus, for

our study, we relied on spatial ozone patterns available for

other cities, which were modeled and adapted to the known

traffic congestion points in Compiègne to create a realistic

ozone map for the city. Using the created ozone map as

reference, we then compared the effectiveness of both static

and mobile sensing to estimate the ozone levels in a pre-

defined Region of Interest (RoI) when varying the number

of samples and taking sensor errors into account.

Experimental results show that, even when relying on a

single mobile measurement station, and despite of sensor

inaccuracy, we are able to estimate the ozone values within

the RoI with a good degree of accuracy, being comparable to

deploying tens of sensors throughout the city.

The remainder of this paper is organized as follows: in the

next section we review some related works in the field. In

Section III we describe the problem and detail the methodol-

ogy followed to solve it. In Section IV we analyze the ozone

estimation accuracy when relying on either static or mobile

stations. Finally, in Section V, we present the main conclusions

of the paper, along with future work.

II. RELATED WORKS

Estimating air pollution levels in urban areas is a subject that

has attracted much research interest in the last decades [4], [5].

In general, the different authors rely on traditional ground sen-

sor stations to obtain measurements, although acknowledging

that their reduced number limits estimation accuracy [6], [7].

Concerning the pollution estimation process, Beelen et al.

[3] study different techniques to extrapolate from monitoring

stations to unsampled locations. Specifically, they compared978-1-4799-5344-8/15/$31.00 © 2015 IEEE



the validity of ordinary kriging, universal kriging and regres-

sion mapping in developing EU-wide maps of air pollution

on a 1×1 km resolution. They focused on different pollutants

such as nitrogen dioxide (NO2, fine particles <10 µm (PM10),

ozone (O3), sulphur dioxide (SO2), and carbon monoxide

(CO). Singh et al. [8] focus on the same problem, and they

develop a spatial interpolation system (cokriging) to estimate

the 8h mean daily maximum ozone concentrations and daily

mean PM10 concentrations over a domain, starting from

measured concentration values.

All the aforementioned solutions can be considered standard

in the sense that they rely mostly on the typical stationary

measurement stations. Participative sensing solutions have

emerged as an alternative to traditional sensing solutions

by acknowledging that the extensive cost of acquiring and

operating official, high-accuracy stations severely limits the

number of installations, and thus results in a limited spatial

resolution of the published pollution maps. Yajie et al. [9]

proposed a solution in this direction by developing low-cost

and ubiquitous sensor networks to collect real-time, large

scale and comprehensive environmental data from road traffic

emissions for air pollution monitoring in urban environments.

They rely on a distributed infrastructure based on wireless

sensor networks and grid computing technology, and they

target different pollutants (SO2, NO, NO2, O3, NH3, and

Benzene). More recently, Hasenfratz et al. [10] addressed this

problem by acquiring spatially fine-grained air pollution data

with a community-driven sensing infrastructure obtained by

connecting a small-sized, low-cost ozone sensor to an Android

smartphone.

In this work we study the feasibility of having very few

mobile sensors to replace a great number of static sensors

when attempting to have an accurate pollution map for a

certain RoI. We rely on vehicles, specifically buses following

regular routes equipped with ozone sensors, to achieve this

goal.

III. PROBLEM STATEMENT AND METHODOLOGY

In this section we detail the procedure followed to create

realistic ozone maps for a specific region based on known

pollution hotspots. Then we present the ozone map generated,

along with the RoI for analysis. Lastly, we present some details

about the geostatistical procedure followed to estimate ozone

values based on different sampling strategies.

A. Ozone map creation

As stated in the introduction, the limited number of mea-

surement stations prevents obtaining detailed pollution maps

for any target urban area. Nevertheless, the few detailed

ozone maps available show that spatial ozone distribution is

clearly related to the weather, being ozone levels and gradients

much higher during summer compared to cold months. The

variability of these spatial patterns is specially relevant since

the number of samples required, as well as the accuracy

of estimation processes, is directly related to the gradients

detected.

Table I
RESULTS OF THE CURVE FITTING PROCESS.

Parameter June November

a 15.412 6.684
σ 351.46 640.46
d 24.00 18.61

rms 0.2166 0.0623
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Figure 1. Curve fitting using normal distribution for the ozone variations
typical of June and November.

In this paper we have taken as reference the results presented

by Moral-García et al. [11], who provide detailed urban ozone

distribution patterns for the city of Badajoz, a mid-sized city in

the southwest region of Spain. Based on the spatial ozone maps

for the months of June and November, we took several samples

based on which we analyzed the ozone gradients achieved.

Combining data from the different samples we are able to

obtain the expected gradients for the months of November and

June. Then, by following a curve fitting procedure, we were

able to obtain good fits using a Gaussian distribution of type:

f(x) = a · e−
1

2
(
x−x0

σ
)2 + d (1)

The results of the fitting process are presented in table I.

Figure 1 represents both the sampled values and the Gaus-

sian curves after fitting. We can clearly observe that, besides

a different range of values, the distributions corresponding

to the months of June and November have a quite different

kurtosis. In particular, the high gradients associated with the

distribution for June makes ozone estimations to become quite

harder compared to the values for November. For this reason,

in the study that follows, we will generate an ozone map based

on the pattern associated to June.

In order to create the ozone map for the city of Compiègne

we first obtained a two-dimensional equation based on Eq. 1

as follows:

f(x, y) = a · e−
1

2
[(

x−x0

σ
)2+(

y−y0

σ
)2] + d (2)

The second step was to mark in the map of Compiègne the

traffic hotstops based on knowledge about traffic circulation

in the city. These are represented in Figure 2. We can clearly
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Figure 2. Ozone hotspots defined for the city of Compiègne.

differentiate 3 different regions: (i) 6 hotspots in the north part

of the city near the train station with a high traffic load, (ii)

4 hotspots in the mid-part of the city, with moderate traffic

load, and (iii) 3 hotspots in the south part of the city, with a

high traffic load. By making the coordinates of each of these

points match the (x0, y0) parameters in Eq. 2, we were able

to generate the ozone map shown in Figure 3.

The city is surrounded by forest areas in the east and south

areas, and other smaller urban areas followed by rural areas

in the western and north parts of the city; in this paper we are

not concerned about accurately generating or estimating ozone

maps in these areas, focusing solely on the city of Compiègne.

B. Definition of sampling procedures and target geographical

area

We study different approaches in order to obtain ozone

measurements for the city of Compiègne; specifically we

define a target area (RoI) with a parallelogram shape (see

Figure 4) that includes the most representative part of the city.

Our first approach to map the ozone in this city is to equip

the different bus stops available with ozone sensors. However,

as shown in Figure 4 (top), there are more than 100 bus stops,

meaning that sensor deployment and maintenance costs could

become excessive. So, the first alternative that we study is to

create random subsets of different sizes based on the set of all

bus stops, to study the impact of subsampling on estimation

error.

The second alternative we study is to check which of the five

bus lines available has the best match with the RoI defined, and

only use that line for ozone measurements. In this case the best

match was bus Line #5, depicted in Figure 4 (bottom). Since

this bus line includes only 24 stops, the number of sensors to

deploy is conveniently reduced.

Finally, as a third alternative, we study the possibility of

equipping buses covering Line #5 with ozone sensors, and

Figure 3. Generated ozone map for the city of Compiègne.

assess the effectiveness of this cheaper solution against the

previous ones. This solution is quite more ambitious than the

former ones, since we intend to use a single sensor to obtain a

similar degree of accuracy as obtained with many distributed

sensor units.

For the tests undertaken in Section IV we will analyze the

results achieved using the three alternatives referred above. We

assume that a representative sample is taken at each bus stop

equipped with ozone sensors. In the case of mobile sampling,

we have obtained the GPS trace of a real bus following Line

#5 to grasp the actual behavior in terms of position, speed,

timing, etc. Based on these input data, the sampling process is

activated whenever the bus speed is low (less than 20 km/h) to

avoid high air flow levels that could affect the measurements,

and when the distance to the previous sampling position is of at

least 100 meters (at lower distances no significant differences

are detected, and the excess of inputs becomes a burden to

the kriging process). Based on the GPS trace obtained we find

that, despite applying these restrictive criteria, the number of

samples obtained during the bus route is of 42, almost twice

compared to the number of bus stops in Line #5.

C. Geostatistical procedure for ozone estimation

In our study, after obtaining ozone samples, the next step is

to estimate the ozone values corresponding to the whole RoI

defined. For this endeavor we rely on geostatistical techniques

to perform the desired estimation. Specifically, the technique

known as kriging is the most adequate solution in this context,

being widely used in this field [6], [11], [8].

When performing kriging, the first step is to generate a

semivariogram by combining information from the different

samples. The semivariogram is used to describe covariance,

which is basically the mean ozone variation as the distance

from a sample increases. Based on the shape and characteris-

tics of the semivariogram, we can then perform curve fitting

to determine which are the most adequate input parameters
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Figure 4. RoI definition and measurement points when using all bus stops
(top) or Line 5 bus/stops (bottom).

for the kriging process.

In Figure 5 we show the semivariograms for the case of

sampling all bus stops, or only the stops along Line #5. We

can see that the semivariograms have different shapes and

characteristics, being exponential fitting more adequate for the

allstops case, and Gaussian fitting more adequate when only

samples along Line #5 are available.

The output of the fitting process consists of three parameters

known as range, partial sill and nugget. They are used as

input to the kriging process, meaning that a correct estimation

of these three parameters is crucial to obtain a meaningful

estimation through kriging.

The kriging process requires as input the ozone samples,

along with covariance model and parameters, as stated before.

In addition, the target (estimated) positions must also be

0 1000 2000 3000 4000

0
5

1
0

1
5

2
0

2
5

3
0

Distance (m)

S
e
m

iv
a
ri

a
n
c
e

Variogram
Exp. fitting

0 1000 2000 3000 4000

0
5

1
0

1
5

2
0

2
5

3
0

Distance (m)

S
e
m

iv
a
ri

a
n
c
e

Variogram
Gaussian fitting

Figure 5. Semivariogram and fitting output when combining the samples of
all bus stops (top) and samples along Line #5 (bottom).

defined. In our case we applied a grid to the map of Compiègne

with a 10×10 meters resolution, and selected as target those

positions falling within the RoI defined earlier (see Figure 4).

IV. ANALYSIS OF RESULTS

In this section we present and discuss the results of the

kriging process when focusing on both traditional (static) and

mobile approaches. We assume that both static and mobile

nodes are connected to a datacenter where data is collected

periodically and processed as detailed above, thereby provid-

ing real-time updates of the ozone map for the target city. For

the static approach we analyze the case where we can equip

all bus stations (or a subset) with ozone sensors, as well as

the case where only bus stops along Line #5 are equipped. For

the mobile approach we analyze the case where a single bus

moving along Line #5 is equipped with ozone sensors along

with a GPS module. Both static and mobile devices are also

equipped with a 4G communications unit.

In our tests we take sensing error into account. Specifically,

we consider that cheap devices such as the MiCS-OZ-47
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Figure 7. Relative measurement error for the estimated ozone values when
varying the number of bus stops equipped with ozone sensors, for different
levels of measurement error.

sensor [12] or similar ones are used to sense the ozone concen-

tration. Since this type of sensors can introduce measurement

errors up to 10%, in our tests we also model measurement

errors (up to 20%) to assess the impact of sensor inaccuracy

on the overall estimation process. We model a measurement

error of ±α% as uniformly distributed random values, so

that measurement si will take a random value in the interval:

[(1− α) · si, (1 + α) · si].

A. Static vs. mobile approach under ideal conditions

We start our analysis by studying the accuracy of the

estimation process under ideal conditions, i.e., when all mea-

surements are accurate. The goal is to determine the upper

bound on estimation accuracy.

Figure 6 shows the estimation output for the whole map,

including the sampling points (circles) and the parallelogram

delimiting the RoI.

Compared to the original ozone map previously presented

in Figure 3, we can see that the ozone map estimated using

all bus stops available is able to achieve great resemblance

with the original one, basically due to the very high number

of samples used, and their distribution throughout the map.

For the other two cases (Line #5 stops and mobile measure-

ments), the accuracy is smaller if focusing on the whole map.

Nevertheless, when focusing on the RoI alone, we find that the

differences are rather limited. In particular, when using all bus

stops the estimation error (measured as the average value of the

relative absolute error) is of only 1.87%, while, when using

Line #5 stops alone, the error is increased to 5.33%. Using

a mobile measurement station allows obtaining quite good

results, being the error of only 2.27%, a value comparable

to the all bus stops situation. So, these preliminary values are

promising concerning the mobile sensing alternative proposed

in this paper.
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Figure 8. Relative measurement error for the estimated ozone values when
varying the sensor measurement error for line 5 stops and moving bus 5.

B. Performance under sampling error assumptions

Our analysis now focuses on the impact of sampling errors

on the estimation accuracy, being the latter measured using the

relative absolute error between the original ozone values and

the estimated ones. All the results presented are the average

over 20 different simulation runs.

In Figure 7 we show the estimation accuracy results when

varying both the sensor accuracy (between 0% and 20%) and

the number of bus stops equipped with ozone sensors (random

subset between 5% and 100% of all stations). As expected,

estimation accuracy improves as we increase the number of

equipped bus stops, and as sensing error decreases. It is worth

highlighting that, for measurement errors up to 5%, the impact

on estimation is minimal. Also, we find that the difference

between having all bus stops equipped, or only 60% of them,

is not high.

If we now focus on bus Line #5 alone, the results presented

in Figure 8 show that sensor measurement errors have a greater

impact on estimation error compared to the previous case (all

bus stops). This is expectable due to the spatial distribution

of samples: while for the “all bus stops” case measurement

stations are spread throughout the map, the measurements

made in Line #5 (either static or mobile) are mostly along

a line and fail to cover the RoI fully, thereby complicating

the kriging process and making its output less accurate.

Nevertheless, the estimation error remains at acceptable levels,

especially for the mobile measurements using bus #5, where

a sensing error of 10% results in an estimation error of only

6.7%.

V. CONCLUSIONS AND FUTURE WORK

To mitigate the limitations of current pollution sensors,

novel techniques relying on a high number of cheap sensors

are envisioned. While crowdsourcing solutions could be a

possibility in the future, current mobile devices are not yet

equipped with pollution detectors, complicating this approach.



Figure 6. Estimated ozone map for all bus stops (left), Line #5 bus stops (middle) and mobile measurements made on bus #5 (right). The reference ozone
map is provided in Figure 3.

In this paper we proposed using cheap ozone sensors to

obtain a detailed ozone map for the city of Compiègne, which

is currently equipped with a single high-quality ozone sensor.

By creating a realistic ozone map based on the known traffic

hotspots in the city, we were able to study the effectiveness

of both static and mobile sampling strategies in accurately re-

producing the spatial ozone variations taking place throughout

the city.
Experiments based on the models created showed how the

information from these cheaper sensors can be efficiently

integrated through geostatistical techniques to allow estimating

ozone values for a Region of Interest (RoI) with low esti-

mation errors. Specifically, we showed that a strategy based

on equipping buses in one of the bus lines (#5) with ozone

sensors is able to achieve results similar, or even better than,

equipping 40% of all the bus stations in the city. The mobile

sensing solution also outperformed by two percent points an

alternative deployment strategy where all the 24 stops available

along bus Line #5 were endowed with ozone sensors.
As future work we plan to obtain real measurements by

equipping buses covering Line #5 in Compiègne with mobile

ozone sensors, and obtain detailed ozone maps for this city

for the first time.
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