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A Probabilistic Approach to User Mobility

Prediction for Wireless Services

David Stynes, Kenneth N. Brown, Cormac J. Sreenan

CTVR, Dept. of Computer Science,

University College Cork, Ireland

Abstract—Mobile and wireless networks have long exploited
mobility predictions, focused on predicting the future location of
given users, to perform more efficient network resource manage-
ment. In this paper, we present a new approach in which we
provide predictions as a probability distribution of the likelihood
of moving to a set of future locations. This approach provides
wireless services a greater amount of knowledge and enables
them to perform more effectively. We present a framework for
the evaluation of this new type of predictor, and develop 2
new predictors, HEM and G-Stat. We evaluate our predictors
accuracy in predicting future cells for mobile users, using two
large geolocation data sets, from MDC [11], [12] and Crawdad
[13]. We show that our predictors can successfully predict with
as low as an average 2.2% inaccuracy in certain scenarios.

Index Terms—Mobility Prediction, Mobile networking, Mobil-
ity and Nomadicity, Location Based Services

I. INTRODUCTION

Mobility predictions have regularly been shown to be a

necessity for providing efficient resource management and ser-

vices in wireless networks: foreknowledge of users’ mobility

allows for more efficient handover management [1], reducing

the amount of signalling and interruption time. Content pre-

fetching [2] relies upon predictions to know which locations

should pre-fetch data, in order to improve performance and

energy efficiency of the mobile system. Opportunistic caching

[3] for handovers in a mobile system that utilises a passive

optical network backhaul relies upon predictions to efficiently

use the restricted memory space available at base stations for

caching to improve handovers. Future mobile technologies are

shifting toward smaller cell sizes, such as Femtocells, to im-

prove spectrum re-use and mobility predictions are necessary

to decrease the amount of unnecessary handovers in these

dense small cell topologies [4]. Many location-based services

[5], such as shared ride recommendations or targeted ads, are

also heavily dependant upon predictions to provide a good

quality of service.

A wide range of approaches for providing mobility pre-

dictions, including Markov-based [1], Compression-based [6],

Mixture model-based [7], Trajectory-based [8] and many oth-

ers have been proposed, all with the singular aim of providing

a predicted future location or locations, either in the short term

or the long term, for a given mobile user. However, this format

of predictions is too restrictive. By providing predictions of

only the most likely future location for a user, we are depriving

services of a great deal of useful information that could

positively influence their behaviour. If instead, services had

full knowledge of the probabilities of moving to each possible

future location, they could make more informed decisions and

provide a more efficient utilisation of resources.

Taking as an example, services like content pre-fetching

[2] and opportunistically caching for handovers [3], in which

base stations, or access points, providing a service have

limited resources available which must be distributed between

users who may handover soon. The resources can be more

effectively allocated between users predicted to handover

when given full knowledge of how likely it is that each

will handover to a location. This is not possible when the

users are indistinguishable due to only the most likely future

location being provided, as in the current format of predictions.

Full knowledge also means that base stations which are not

the most probable future location have the option to allocate

resources for possible handovers if they choose. Other services

that seek to influence the mobility of users will also benefit

from knowing these unlikely destinations. For a ride-sharing

system, such as Uber [9] or Lyft [10], knowing there is a low

probability of drivers travelling to a location can allow it to

offer bonus credit to influence drivers to go by the unlikely

route, if they predict a high demand for rides in that region.

Conversely, if there is a high chance of drivers going to the

location naturally, they would not wish to offer a bonus.

In this paper, we propose a new scheme for the provision of

mobility predictions in a probability distribution format (PDF),

specifying the probability of the user moving to each possible

future location. These PDF-predictions allow a greater degree

of control and reasoning for services that utilise predictions.

While the underlying techniques of many traditional predictors

are also in PDF, their analysis has been limited to measuring

accuracy of the highest valued probability (i.e. most likely

future location). We discuss the key differences in evaluating

PDF-predictions versus traditional predictions and provide a

framework for evaluating all probabilities. We present two

new methods of providing PDF-predictions: The first method,

History-based Expectation-Maximisation (HEM), utilises an

Expectation-Maximisation (EM) algorithm to generate a series

of DTMCs that provide predictions taking account of users’

mobility history. Our second method, G-Stat, augments HEM

to provide better predictions that incorporate GPS trajectory-

based predictions. We compare both against a standard Markov

predictor for traditional predictions adapted to provide PDF-

predictions and evaluate the performance of our methods

on two large geolocation data sets from the Mobile Data
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Fig. 1. A sample view of a portion of a DTMC.

Challenge (MDC) [11], [12] and Crawdad’s Rome Taxis [13].

We show that G-Stat can achieve as low as 2.2% average

inaccuracy on certain data.

II. TWO METHODS OF MOBILITY PREDICTION

We now present two methods of providing PDF-mobility

predictions through a dense deployment of small cells. We

assume that every location in the region of mobility is as-

sociated with one primary cell from the set of cells, S =
{s1, s2, ..., so}. For simplicity when evaluating the algorithms

in Section IV we divide the area into a grid of rectangular cells,

but both of these methods are compatible with any shapes and

topologies of cells. Both methods require training data to be

supplied in order to learn movement patterns before they can

be used. The training data takes the form of sequences of the

connected-cell transitions that occurred at fixed time intervals

for a set of m users, U = {u1, u2, ..., um}.

A. A Simple Discrete Time Markov Chain-Based Predictor

(sDTMC)

The first method, a single Discrete Time Markov Chain

(sDTMC), is a well known type of Markov chain predictor [6]

that has been used as the core of many traditional mobility

prediction techniques in mobile wireless systems, which we

use here as a PDF-predictor for our analysis. Predictions

take the form of a probability distribution, P (si → sj),
for transitioning from cell si to cell sj in the next time

interval, where
∑

sj∈S P (si → sj) = 1, ∀si ∈ S. Figure 1

shows a representation of a sample DTMC. The history of

cells is not relevant for the prediction and only the current

cell, sc, is used to determine the probability of heading to

each possible future cell, sf . For example, from the figure

there is a 20% chance of transitioning to cell s2 from s1,

P (s1 → s2) = 0.20, and a 55% chance of transitioning to

s3 from s1, P (s1 → s3) = 0.55, and neither is dependent on

where the user was prior to entering cell s1. We note that it

is also possible for a transition from a cell to the same cell,

i.e. to remain in the same cell over a time interval. We define

the values of the cell transition probabilities as:

P (sc → sf ) =
N(sc → sf )∑

sj∈S

N(sc → sj)
, ∀sc, sf ∈ S

where N(si− > sj) is the number of transitions from cell si
to cell sj in the entire training data set. This DTMC therefore

provides probability distributions that predict that the chances

of transitioning to cell sf from cell sc is equal to the proportion

of all transitions from cell sc which were transitions to cell

sf , in the training data set. sDTMC is a simple predictor with

the benefits that it has a low initial computational cost and it

can also be easily updated online while it is in use. Any newly

observed transition from cell si requires only that the transition

probabilities from si be updated, the transition probabilities of

all the other cells need not be modified.

B. A History-based Predictor Using the Expectation-

Maximisation Algorithm (HEM)

We note that using a single DTMC, as in the previous

method, to represent the mobility pattern of all users is quite

unrealistic, since different users will follow very diverse and

potentially conflicting movement patterns. In this new History-

based Expectation Maximisation (HEM) approach, we instead

use multiple DTMCs which each represent different classes

of user mobility pattern. When we wish to make a prediction,

we use a user’s recent history to determine which class/DTMC

they are currently following. Note that a user is not restricted

to permanently following a single mobility class, they may

vary their class at any time. For example, in the morning a

user may be following a class which represents ”morning rush

hour traffic” when on their way to work. When returning home

they may be following a different class of behaviour, ”evening

rush hour traffic”.

We define a total of K different DTMCs/classes of user

mobility. We use a latent variable model for co-occurrence

data, which associates an unobserved class variable zk ∈
Z = {z1, z2, ..., zK} with each observed occurrence of a cell

transition in the training data set, representing which class

of mobility a user was in when making that transition. The

probability that a user ua is following mobility class zk at

any given time, is defined as P (zk|ua), ∀zk ∈ Z, ∀ua ∈ U .

Each of the different DTMCs have their own respective

transition probabilities P (si → sj |zk), ∀si, sj ∈ S, ∀zk ∈ Z

representing the probability that a user will transition from

cell si to cell sj given they are in mobility class zk. However,

populating these transition probabilities is not as simple as

for our previous method. The training data set contains only

sequences of cell transitions, providing us with observation

pairs (ua, si → sj), but it does not inform us to which mobility

class those transitions belonged and we do not know the value

of P (zk|ua) for any users. Similarly, to calculate values for

P (zk|ua) from the training data set, we would first need to

know the values of P (si → sj |zk).
Inferring values for P (si → sj |zk) and P (zk|ua) can-

not be done analytically, but can be approximated using

the Expectation-Maximisation (EM) algorithm [14]. The EM

algorithm is typically used to compute Maximum Likeli-

hood Estimates (MLE) in models with incomplete data or

hidden/latent variables, like our current problem. The EM

algorithm alternates two steps: (1) An expectation (E) step

where posterior probabilities are calculated for the latent

variables, based on the current estimates of the parameters,



and (2) a Maximisation (M) step where parameters are updated

to maximise the expected complete data log-likelihood, which

depends on the posterior probabilities computed in the E step.

Similar to the approach taken by [15], this results in the

following Expectation step for our model:

P (zk|ua, si → sj) =
P (si → sj |zk)P (zk|ua)∑

z′∈Z

P (si → sj |z′)P (z′|ua)
(1)

for all zk ∈ Z, ua ∈ U , and si, sj ∈ S. In the Maximisation

step, we then need to maximise the expected complete data

log-likelihood, E[Lc], which is given by:

E[Lc] =
∑

ua∈U

∑

sx,sy∈S

n(ua, sx → sy) ∗

∑

zk∈Z

P (zk|ua, sx → sy)log[P (sx → sz|zk)P (zk|ua)] (2)

where n(ua, sx → sy) is the number of times user ua made

a transition from cell sx to cell sy . Maximising E[Lc], as in

[15], then gives us the two following re-estimation equations

to use in the M-step:

P (si → sj |zk) =∑
ua∈U

n(ua, si → sj)P (zk|ua, si → sj)

∑
sx,sy∈S

∑
ua∈U

n(ua, sx → sy)P (zk|ua, sx → sy)
(3)

P (zk|ua) =

∑
sx,sy∈S

n(ua, sx → sy)P (zk|ua, sx → sy)

n(ua)
(4)

where n(ua) is the total number of cell transitions made

by user ua. To then use the EM algorithm, we initially assign

valid randomised values to P (si → sj |zk) and P (zk|ua) and

then we repeatedly alternate between the E-step [Eq. 1] and

the M-step [Eqs. 3+ 4] until convergence to a local maximum.

Since the model possesses multiple maxima, we repeatedly re-

run the EM algorithm with different initial random values, and

store the result with the maximum value for E[Lc].
This then gives us a set of K DTMCs defined by P (si →

sj |zk). To use the DTMCs to make a prediction for the

probability of a user moving to future cell sf given a history

of cell transitions, H = {s1 → s2, s2 → s3, ..., s(c−1) → sc}
where sc is the current cell of the user, we first give a

weighting W (zk|H) to the different DTMCs, proportional to

how likely it is this user was following that mobility class.

W (zk|H) =

∑
(si→sj)∈H

P (si → sj |zk)

∑
z′∈Z

∑
(si→sj)∈H

P (si → sj |z′)
(5)

Finally, we aggregate the weighted predictions of each

DTMC to predict the probability of transitioning to cell sf :

P (sc → sf |H) =
∑

zk∈Z

W (zk|H)P (sc → sf |zk) (6)

Fig. 2. Two ways of grouping the same 5 people into correlative sets.

This approach scales for any length of history of cells ≥ 1
without the need to recompute the DTMCs. The computational

complexity and need to repeatedly re-run the EM algorithm

to find the global maximum renders HEM less suitable for

online updating than sDTMC, as any changes to the training

data set requires that the entire algorithm be re-run in full.

Once we have generated the DTMCs, the time to compute a

prediction scales linearly with the size of K and the length of

the history H but it is only a matter of milliseconds even

for very large K and H . Our expected use case for this

predictor is to accumulate cell transition data while providing

predictions without updating the DTMCs, and then to generate

new DTMCs off-line during periods of low user activity.

III. EVALUATION OF PREDICTIONS

There is an important distinction that must be made be-

tween how one can evaluate traditional predictions and PDF-

predictions. In the traditional view, when presented with a

single instance of a user being at location lc and the predictor

predicting a future location lp, we can determine if the

prediction was correct or not by evaluating if the user’s actual

future location lf is equal to lp. However, if we give a PDF-

prediction that it is 70% likely the user transitions (lc → lp),
we cannot determine if the prediction was correct or not,

regardless of what value lf takes. To evaluate it correctly,

we must first look at the set of features which the predictor

takes as input parameters. We require a large set of similar

instances which match with respect to the predictor’s input

features, over which we can then average the users’ behaviour

and can evaluate whether or not users in that situation will

move to lp 70% of the time or not. We shall refer to such a

set of instances as a Correlative Set.

For the sDTMC predictor, its input feature is the current

cell. For our HEM predictor, its input features are the current

cell and the past cells of a user. We note that any correlative

set of instances for HEM must also be a correlative set for

sDTMC because they must share the same current cell.

The more that the input features restrict the possible mem-

bers of correlative sets, the more valuable the predictions

one can make. Figure 2 illustrates this concept, showing two

possible ways of dividing up the same set of people into

correlative sets. In Fig. 2(a), the 5 people are grouped into

a single correlative set based upon their common feature,

the current cell sc, and there is a 40% probability of users

progressing to cell sf . In Fig. 2(b), the same 5 people are

subdivided into two separate correlative sets, based upon input



features of both their current cell sc and their previous cells,

sx and sy respectively. The observed values for P (sc → sf )
in (b) are different to the single correlative set of (a). Accu-

rately predicting the observed values of the more restricted

correlative sets in (b) would provide more useful predictions

than (a), since they are averaging over a less diverse variety of

people. However, the more restricted the correlative sets of a

predictor, the more challenging it is to fairly evaluate, as data

sets will contain fewer instances matching the input features.

We assume that services that use PDF-predictions would

treat predictions with close values similarly, and be more

focused on distinguishing between more distantly separated

values. E.g. 2% and 3% are likely to be handled almost

identically since both are very unlikely to occur, while 50%
and 75% are far enough apart to need to be treated very

differently. Therefore, in our analysis we focus on the absolute

difference between our predictions and actual values, rather

than the difference as a proportion of the actual value, since

as long as our predicted value is within a reasonable range of

the actual value, the prediction can be used by services. We

expect the tolerable range to vary based on specific services’

needs, and we include our performance at the range of 10%
in our evaluations as an illustrative example.

IV. EXPERIMENTAL EVALUATION

We first evaluate our new algorithm HEM against sDTMC

on the MDC [11], [12] data set which contains both pedestrian

and vehicular GPS data traces from the Lake Geneva region

of Switzerland, gathered over 18 months. Participants’ GPS

records were gathered in intervals of 10 seconds. To present

an illustrative example, we use a restricted region of approx.

1744m x 1909m, corresponding to the approximate area of

detection for the base station with id 53577. 146 users provided

GPS records in this cell’s region. We divided the region into

20x20 small cells, of approx 87m x 95m each. For HEM,

we use K = 10, as it was found to provide a good balance

between off-line computation time and prediction quality.

The data set was preprocessed to improve the consistency

of the records. User GPS records were divided into journeys:

consecutive sequences of GPS records not more than a thresh-

old of 50 seconds apart. If two GPS records within a journey

were more than 10 seconds apart, additional intermediate

records were interpolated to ensure no more than 10 seconds

occurred between any records of a journey. To simplify the

modelling process, only cell transitions between adjacent cells

were allowed. Consecutive records which transitioned to non-

adjacent cells had extra intermediate cells interpolated to

ensure only transitions to adjacent cells were possible. After

preprocessing, 20% of all journeys were used as training data

and the remaining 80% were used as test data for evaluation.

As described in Section III, to fairly evaluate a prediction a

large number of similar instances is required, so we filter out

all correlative sets containing less than 100 instances in the test

data. Figure 3 shows the average absolute difference (AD) and

and the mean squared error (MSE) between the predicted and

observed probabilities for each distinct correlative set, for the
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Fig. 3. The average difference between predictions and the MDC data set.

two approaches. The X axis shows the length of the history,

|H |, which define the correlative sets used for evaluation: at

each plot we evaluate for all sets of instances with every

possible history of the given length.

sDTMC makes decisions independent of history, but altering

|H | changes the correlative sets we are comparing it against,

and so its performance is not constant. Since HEM takes

account of history, it outperforms sDTMC at all values of

|H |. At |H | = 1 where we perform the worst, HEM is

on average 7.19% away from the observed value, which for

most services is more than sufficiently accurate. Our accuracy

steadily increases as |H | rises, meaning that our predictions

are simultaneously becoming more useful and more accurate.

This can partly be attributed to the increasing proportion of

histories in which the user does not change cell for many

consecutive time intervals which are easier to predict.

HEM (and sDTMC) provided 9251 predictions for the

distinct history patterns which passed the 100 instance filtering

threshold. 82% of all predictions by HEM were accurate to

within 10% of the observed values. Table I shows a breakdown

of the average difference between HEM’s predictions and the

observed value, grouping predictions into ranges based on

their predicted value. HEM’s predictions made in the lowest

ranges (≤ 20%) and the highest ranges (≥ 70%) have a high

accuracy, which may be the easiest predictions for services

to use since they are closest to predicting a fixed outcome.

However in the (20%−70%) range our predictions’ reliability

drops. At |H | = 1, the average difference in the (90%−100%)

range is abnormally high because only 1 correlative set was

predicted in this range. At |H | = 10, HEM did not make any

predictions in the (20% − 60%) range. However, there were

only 2 correlative sets with observed values in that range, both

located in the (20%− 30%) range.

Next, we evaluate the predictors against Crawdad’s [13] data

traces of 320 taxis in Rome, Italy, collected over 1 month. The

traces contain GPS records accurate to within 20m, recorded

every 7 seconds. Due to the large size, we focused on the most

densely populated 500m x 500m region, containing 951952

GPS records. We again divided this region into 20x20 cells of

25m x 25m dimensions, and used 20% of journeys for training.

Figure 4 shows the AD and MSE on the Crawdad Rome



TABLE I
BREAKDOWN OF HEM’S PREDICTIONS’ AVERAGE DIFFERENCE ON THE

MDC DATA SET, GROUPED BY PREDICTION VALUE.

|H| 0-10% 10-20% 20-30% 30-40% 40-50%

1 4.15% 8.27% 17.74% 20.26% 20.19%
2 4.14% 8.18% 17.02% 20.52% 21.04%
3 3.49% 7.78% 19.68% 20.33% 21.61%
4 3.49% 6.88% 19.95% 23.84% 15.92%
5 3.02% 6.44% 19.34% 34.15% 19.01%

10 2.88% 5.83% - - -

|H| 50-60% 60-70% 70-80% 80-90% 90-100%

1 16.42% 12.26% 11.33% 11.71% 91.37%
2 17.64% 10.37% 9.44% 11.18% 9.81%
3 16.62% 10.31% 8.36% 6.80% 10.18%
4 14.56% 8.64% 8.06% 2.67% 10.92%
5 10.96% 10.07% 6.98% 2.99% 9.26%

10 - 15.97% 6.85% 2.73% 8.29%
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Fig. 4. The average difference between predictions and the Crawdad data set.

taxi data set. The performance of sDTMC decreases as we

increase the size of |H |. Because their destinations are dictated

by passengers, the taxis move more unpredictably than the

MDC participants who had more fixed routines. sDTMC

cannot be used to provide reliable predictions for the vehicular

movement exhibited in this data set. HEM also performs worse

than in the MDC data set, but far more stably than sDTMC,

with AD remaining almost constant at 11%, and MSE rising

more slowly. On this denser Crawdad data set, HEM provided

39871 predictions and was accurate to within 10% for 65%
of them. Table II shows the breakdown of HEM’s successful

predictions. The overall trend is the same as the MDC data:

very good accuracy at the lowest and highest ranges, but much

poorer performance in the middle ranges of (20%− 80%).

A. Improving predictions with a more restricted correlative set

For our final experiments, we investigated the use of a more

restricted correlative set to provide more useful predictions,

based upon information at the GPS coordinate level rather

than at the cell level. Using GPS records, the user’s future

cell is predicted as being the cell they would reach if they

maintain the same velocity as between their previous and

current coordinates. We identified a scenario, scenα, in this

type of prediction proved highly accurate: when a user’s future

GPS-predicted, current and previous cells were identical, 92%
of the time the user was observed to remain in the same cell.

TABLE II
BREAKDOWN OF HEM’S PREDICTIONS’ AVERAGE DIFFERENCE ON THE

CRAWDAD DATA SET, GROUPED BY PREDICTION VALUE.

|H| 0-10% 10-20% 20-30% 30-40% 40-50%

1 4.93% 14.71% 20.57% 25.99% 25.68%
2 5.32% 15.08% 20.71% 26.85% 26.98%
3 4.71% 14.32% 21.94% 28.86% 29.79%
4 4.12% 13.83% 21.82% 30.07% 29.92%
5 3.68% 14.02% 24.33% 31.80% 31.82%

10 2.05% 20.10% 35.39% 45.32% 45.01%

|H| 50-60% 60-70% 70-80% 80-90% 90-100%

1 22.16% 22.16% 14.20% 10.09% 6.81%
2 23.72% 24.96% 16.39% 13.17% 11.96%
3 22.67% 22.40% 17.30% 8.96% 7.11%
4 24.24% 22.80% 16.59% 8.13% 7.80%
5 26.00% 19.96% 16.09% 6.61% 6.25%

10 38.32% 28.42% 20.94% 7.23% 3.45%

We then developed a new PDF-predictor, GPS-Stationary

(G-Stat), which functions as a hybrid with either HEM or

sDTMC as follows: for each cell si, we calculate the accuracy

of the GPS-based prediction, acci, for all occurrences of scenα

in the training set. If a cell si has no instances in the training

data, we set acci = 0.92, which was the average accuracy of

all cells which had instances in the training data. Then we

define: P (si− > si|scenα) = acci, ∀si ∈ S.

For sDTMC:

P (si− > sj |scenα) =
(1− acci)P (si− > sj)∑
∀s′∈S,s′ 6=si

P (si− > s′)

For HEM:

P (si− > sj |scenα) =
(1 − acci)P (si− > sj |H = (si− > si))∑
∀s′∈S,s′ 6=si

P (si− > s′|H = (si− > si)

for all sj ∈ S, sj 6= si. All instances not satisfying scenα

are handled with versions of sDTMC/HEM trained on data

with all occurrences of scenalpha filtered out. Figure 5 shows

the AD for both variants of G-Stat on both the MDC and

Crawdad data sets. HEM’s MSE was consistently the best

but is omitted for clarity. G-Stat(sDTMC) shows the largest

improvement over its un-enhanced version, but never surpasses

G-Stat(HEM). G-Stat(HEM) provided 10856 predictions for

MDC and 40860 for Crawdad, with 83% and 70% of pre-

dictions being within a 10% range of the observed values,

respectively. G-Stat(HEM) shows a small but consistent im-

provement over HEM in all data plots, performing best on

MDC at |H | = 10 where it has only 2.2% average inaccuracy.

In addition to increased accuracy, G-Stat provides more useful

predictions by operating on more restricted correlative sets.

V. RELATED WORK

Cheng et al. [6] provide a review of order-k Markov

predictors and text compression-based predictors. The order-k

Markov predictors described are restrictive in that they require

a history of exactly length k to function. Markov chains con-

tinue to be a popular method of location prediction, recently

[1] used their predictions to reduce handovers in future cellular

systems that possess a logical separation between data and
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control planes. The authors of [16] use 2nd-order Markov

chains to predict both the user’s destination and their most

likely path to that destination. Some service focused papers,

like [4] which uses Hidden Markov Models to assign users to

Femtocell Access Points (FAP), appear to implicitly be making

use of PDF-predictions to influence their choices. However

because they are focused on measuring the effect of predictions

on the performance of a specific service, they do not provide a

direct analysis of the accuracy of their PDF-predictions. This

does reinforce that there is a tangible need for PDF-predictors

for use by services. Andrei et al. [17] used an Expectation-

Maximisation [14] (EM) algorithm to generate DTMCs that

classify user activity patterns for their iOS app, Hungry Yoshi.

The approach taken is very similar to what we use to generate

our HEM predictor. However, they used probabilistic temporal

logics to analyse and gain insight into users software usage

patterns, but did not attempt to predict any users’ future actions

in the app. [7] also use the EM algorithm for modeling human

location data. They apply kernel density estimation using a

mixture model approach. They use their models to detect

unexpected geolocation events for recognising identity thefts.

VI. CONCLUSIONS

We have presented a new probability distribution-format

approach to providing mobility predictions, targeting the short-

comings of existing predictions which restrict services’ poten-

tial functionality. PDF-predictions greatly increase services’

control, but at the cost of increased difficulty in evaluating the

accuracy of predictors. We have developed a framework for the

evaluation of PDF-predictors and have developed two PDF-

predictors, HEM and G-Stat, and evaluated their performance

when predicting future cells for mobile users.

We have shown that predictions with HEM are very accurate

at predicting very low and very high probabilities, which con-

stitute the majority of all observed predictions, but are weaker

at predicting values in the middle ranges. By augmenting HEM

with G-Stat, we operated on more restricted correlative sets

and provided a greater degree of accuracy as well as more

useful types of predictions.

In future work, we wish to develop a wider variety of

predictors that make use of a more diverse set of input features,

such as time, gender, age, speed, etc. and to apply them to

specific services, to show the benefits of using PDF-predictions

over traditional predictions to influence decisions.
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