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Abstract—Industrial Wireless Sensor Networks (IWSNs) are
expected to offer promising monitoring solutions to meet the
demands of monitoring applications for fault diagnosis in large-
scale petrochemical plants, however, involves heterogeneity and
Big Data problems due to large amounts of sensor data with
high volume and velocity. Cloud Computing is an outstanding
approach which provides a flexible platform to support the
addressing of such heterogeneous and data-intensive problems
with massive computing, storage, and data-based services. In
this paper, we propose a Cloud-based Data-intensive Framework
(CDF) for on-line equipment fault diagnosis system that facilitates
the integration and processing of mass sensor data generated
from Industrial Sensing Ecosystem (ISE). ISE enables data
collection of interest with topic-specific industrial monitoring
systems. Moreover, this approach contributes the establishment of
on-line fault diagnosis monitoring system with sensor streaming
computing and storage paradigms based on Hadoop as a key to
the complex problems. Finally, we present a practical illustration
referred to this framework serving equipment fault diagnosis
systems with the ISE.

Index Terms—IWSNs, Fault Diagnosis, Big Data, Cloud Com-
puting, Hadoop, Industrial Sensing Ecosystem.

I. INTRODUCTION

Along with the rapid development of Industrial Wireless
Sensor Networks (IWSNs) [1], [2], a large number of sensors
enables to detect the physical environment of industrial pro-
duction dedicated to monitoring of production, transportation,
and surveillance. IWSNs plays a major role of data collection
and management with advanced devices in industries. Im-
plementing and deploying IWSN-based industrial monitoring
and control systems have shown great potential on promoting
efficiency and safety in large-scale petrochemical plants [3].
On this basis, industrial sensing ecosystem (ISE) aims to pro-
vide comprehensive and the collaborative sensing environment
with the help of distributed topic-specific monitoring systems
in the factories. Recently, large-scale petrochemical plants
incorporate dense wireless devices for production monitoring,
pollution analyzing, leakage detection [4], asset tracking, and
safety monitoring (e.g., toxic gas monitoring [5]). For large-
scale state monitoring and fault diagnosis to deduce latent
damage of equipment and exposure to noxious leakage, it
is necessary that the processing platform is highly integrated
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Fig. 1: ISE consists of topic-specific monitoring systems in
devices and environmental monitoring. Moreover, Internet of
Things (IoT) middleware facilitates heterogeneity issues, after-
wards, cloud-based processing center supports the addressing
of data-intensive problems, e.g., massive sensor data storage,
computing, knowledge discovery.

and capable of addressing issues with massive storage and
computing generated by a vast sea of sensor data. However,
figuring out heterogeneity and Big Data problems on one
general platform for fault diagnosis is a challenging issue
demanding innovative solutions. Fig. 1 illustrates key elements
and processes for on-line equipment fault diagnosis system
with the ISE. Thus, the two major research challenges are
presented as follows:

• Heterogeneity and isolation commonly exist in domain-
specific and customized sensing systems due to diverse
wireless devices with matched softwares to execute on-
site monitoring and decision-making tasks. Inconvenient
integrated interoperability and transverse data sharing
have restrictions on building up all-round and cooperative
industrial monitoring applications on general platforms.

• Large amount of sensors, which have been connected to
the sensor networks (SNs), have started another informa-



TABLE I: Cloud-integrated WSNs for Equipment Fault Diagnosis with IoT

Scheme/Architecture Focus Feature/Contribution

Huang et al. (2015) [9] WSNs as new signal collection and transmission techniques for
state monitoring and fault dignosis of mechanical equipment.

The development process and classifications of
fault diagnosis of mechanical equipment based on
WSNs are presented.

Tiwari et al. (2007) [10] To monitor machinery condition-based maintenance in small
machinery spaces based on WSNs.

Wireless status monitoring sensor network with a
hardware platform, networking architecture, and
medium access communication protocol.

Yang et al. (2015) [11] Fault diagnosis for error detection and location in big sensor data
sets generated by large-scale sensor networks.

A data-error detection approach exploits the
computation potential of cloud platform and the
network feature of WSNs.

Alam et al. (2010) [12]
SOA presents a set of architectural principles that encapsulate the
functions into generic services which are transmitted over a
communication network.

SOA bridges the gap between sensor nodes and
enterprise applications.

Distefano et al. (2012) [13] A cloud is viewed as computing infrastructure to facilitate the
management of IoT resources.

The IoT management functions are regarded as
peer services provided by a typical cloud service
model.

Chenaru et al. (2015) [14] To integrate IWSNs with cloud infrastructures, and to enable
remote access over secure and scalable real-time communications.

An architecture that implemented RESTful
services at a coordinator node level of WSNs.

Ahmed et al. (2011) [15]
An integrated framework to fully utilize the valuable data. A
gateway to collect sensory data from WSN, and to provide
publish-subscribe services.

Considers the related approaches to user
management, access control, storage and retrieval
of distributed data.

tion explosion. Traditional computing approaches are not
able to handle the increasing demands on processing big
sensor data with specific response times for data-intensive
applications. Moreover, distributed sensing systems suffer
from problems caused by semi-structured or even unstruc-
tured data format and heterogeneous semantics.

Due to such problems, there is a strong need to provide
higher abstraction, integrated management, and scalable data
processing services to facilitate the development and deploy-
ment of fault diagnosis monitoring applications based on
IWSNs in large-scale petrochemical plants. Therefore, how to
solve the problems caused by heterogeneity of these distributed
and data-intensive monitoring systems (e.g., on-line equipment
and environmental monitoring) are worth to be studied.

Cloud Computing has emerged as a solution to extend
the capabilities of a system in massive storage, computing,
and software services in a scalable manner at low cost.
This advantage of Cloud Computing helps to overcome data-
intensive problems. Thus, it is necessary to build up a cloud-
based framework that consists of high-level abstraction of
diverse sensor streaming and flexible data processing services.
For the important components, data processing services with
some promising programming models, e.g., Hadoop MapRe-
duce [6], [7] and NoSQL databases [8] have been discussed
to handle the data-intensive problems. This will help the
service engineers and fault diagnosis managers to focus on
the implementation of core transactions without considering
the heterogeneity and data-intensive problems.

This paper presents a Cloud-based Data-intensive Frame-
work, named as CDF, that supports large-scale equipment fault
diagnosis systems in a cloud environment. The objective of this
framework is to enable the integration of distributed monitor-
ing systems, and the development and implement equipment
fault diagnosis and analysis system through serving massive

storage and computing paradigms in large-scale petrochemical
plants.

The remainder of this paper is organized as follows. Sec-
tion II briefly summarizes related work on fault diagnosis
based on IWSNs, and overviews the related work to IoT,
service-oriented architecture (SOA), and cloud architecture.
We discuss major components and implementation of the
proposed framework in Section III. An architecture of CDF for
equipment fault diagnosis systems in large-scale petrochemical
plants is illustrated as an example in Section IV. Finally,
conclusions are drawn in Section V.

II. RELATED WORK

Wireless sensor networks (WSNs) are prevalent in state
monitoring and fault diagnosis of mechanical equipment
as a new signal collection and transmission technology.
Huang et al. [9] presented recent techniques, and the de-
velopment process and classifications of fault diagnosis for
mechanical equipment based on WSNs. An IWSN to monitor
machinery condition-based maintenance in small machinery
spaces has been developed and reported in [10]. Moreover,
in purpose of conducting error detection and location in big
sensor data sets, Yang et al. [11] proposed a data error
detection approach that exploits the computation of cloud
platform and the network feature of WSNs.

In recent years, convergence of the cloud and SNs has been
increasingly studied to exploit their intrinsic interoperability.
Table I summarizes the related work on equipment fault diag-
nosis based on cloud-based WSNs with IoT. For instance, the
sensor virtualization through semantic abstraction for sensor
capabilities is enhanced in [12]. In addition, SOA that bridges
the gap between sensor nodes and enterprise applications
including factory monitoring, control and tracking systems is
a promising technique. SOA presents a set of architectural
principles that encapsulate the functions into generic services



which are transmitted over a communication network. A
cloud is viewed as the computing infrastructure to facilitate
the management of IoT resources. Recently, Distefano et
al. [13] proposed an approach to accommodate the growing
scale and diversity of IoT integrated with Cloud Computing.
The IoT management functions are regarded as peer services
provided by infrastructure management with typical cloud
service model. Moreover, in purpose of enabling remote access
over secure and scalable real-time communication channels,
Chenaru et al. [14] proposed an architecture that implemented
representational state transfer (REST) services at a coordinator
node level of WSNs in the cloud. Meanwhile, in order to fully
utilize the valuable data, Ahmed et al. [15] discussed an inte-
grated framework. This framework applied a gateway to collect
sensory data from WSN, and to provide publish-subscribe
services. Actually, it considered the related approaches to
user management, access control, storage, and retrieval of
distributed data.

Although, the aforementioned works provide a very useful
overview of cloud-based WSNs for equipment fault diag-
nosis, most of the work focused on the resource manage-
ment, and the design and implementation of domain-specific
monitoring systems based on WSNs rather than the data-
intensive oriented service delivery for state monitoring and
fault diagnosis. Therefore, there is still lacking desired service
deliver paradigms towards the integration and implementation
of data-intensive monitoring systems for state monitoring and
fault diagnosis, providing scalable storage and computation
paradigms for amounts of sensor data with ISE. In fact, the
generic nature of the Cloud Computing and techniques of Big
Data makes it attractive and suitable to realize integrated gen-
eral platform. Therefore, it employs the powers of processing
large amounts of sensor data, and enables flexible interactions
based on cloud.

III. PROPOSED CDF FRAMEWORK: DESIGN AND
IMPLEMENTATION

In this section, we propose the CDF framework in the cloud.
Fig. 2 outlines high-level major components with typical cloud
service model in this framework. Afterwards, we introduce the
particular role and functionality of each component.

Basic service models in Cloud Computing: Cloud Comput-
ing has started to emerge on exploiting the service delivery
models of cloud to accommodate the growing scale and
diversity of data services. It has extensively used three basic
types of service models to categorize the cloud services:
Software as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS). SaaS is software delivery
model that provides user services on a hosting environment
and allows customers access the plentiful resources through
Internet. PaaS is a development platform that supports users
to develop and deploy services and applications directly on the
PaaS cloud without previous investment. IaaS provides pay-
per-use pattern that delivers access to cloud storage, process-
ing, networks and other fundamental computing resources.

Fig. 2: The proposed framework of CDF and major compo-
nents are presented with typical cloud service model: IaaS,
PaaS, and SaaS levels.

In this proposed framework, at SaaS level, both REST
and Simple Object Access Protocol (SOAP) services can
be implemented for non-critical data acquisition applications
providing increased and scalable services, e.g., acquisition
of sensor data streaming, interactions and management of
user-cloud. REST is a modern software architecture, designed
for scalable web services implementation, and SOAP with
standard XML protocol makes it flexible and cross-platform
for applications. Meanwhile, the efficient visualization meth-
ods of configuration and management not only facilitate the
applications development, but also enhance the security in
the cloud. At IaaS level, the capabilities of infrastructures
can be extended with increased storage, processing power
with a scale-out configuration using general-purpose servers.
Moreover, through applying visualization, resources (e.g., hard
disk, CPU, and memory) of server clusters can be achieved like
an integral part without considering the workload and optimal
characteristics of a server.

At PaaS level, C-Storage, C-Computing, and C-Manager
take responsibility for supporting major storage and computing
paradigms, and service management in the cloud. Roles,
functionalities, and implements of these three components are
discussed respectively as follows:

1) C-Storage:
Distributed File System (DFS) performs as a distributed

file system that provides fault-tolerant and high-throughput
access to application data in CDF, e.g., semi-structured and
unstructured data and files. In addition, in purpose of serving
multi-tenants, it implements a version manager and a multi-
tenant manager provided by C-Manager module. This module
acts as the infrastructure to the implementation of distributed
storage.

NoSQL and Relational DataBases (NoReDB) serves as
a hybrid data management module comprising unstructured
databases and RDBMS. Unstructured data from industrial



sensing systems (e.g., production and transmission equip-
ment monitoring, toxic gas monitoring, and video surveil-
lance), business transactions, and external open data sources
could be stored in column-oriented database such as Apache
HBase [16]. RDBMS provides solutions of storage, and Atom-
icity, Consistency, Isolation, Durability (ACID) operations to
process structured data from users, production feedbacks and
other meta information. Moreover, in-memory database stores
all data in main memory, thereby eliminating the need for
disk access, resulting in high-speed data acquisition between
pub-sub data services and applications. This module provides
flexible APIs and object-entity mapping on the top of multiple
databases, interfaces data access approaches, and simplifies
migration of application databases.

Enterprise Data Warehouse (EDW) provides data strat-
egy collections for creating analytical analysis, reports, and
decision-making to promote the quality of transactions, mon-
itoring, and control. This module stores subject-oriented and
disparate data sources, e.g., condition monitoring of equip-
ment, RFID systems for assets tracking, and toxic gas leakage
monitoring. EDW restructures hybrid data so that it delivers
excellent query performance with topic-oriented common data
models for all data of interest regardless of the data’s source.

Distributed SQL Engine (DSE) provides flexible SQL-based
query functions towards large volumes of sensor data, and
simplifies hybrid data management in NoReDB module. More-
over, DSE facilitates the complex query processing and sup-
ports ACID operations of mass sensor data that supplements
the columned-based database. For this purpose, Impala [17]
and PostgreSQL [18] can be implemented to support SQL-
based operations for data-intensive monitoring applications, as
well as plentiful APIs.

2) C-Computing:
Data Computing (DC) carries out computing processing

tasks submitted by developers upon a cluster of machines,
comprising of off-line Batch Processing and On-line Process-
ing. Batch Processing module handles transactional processing
of large volumes of sensor data that tolerates specific response
times, e.g., Create, Retrieve, Update, and Delete (CRUD) oper-
ations among historic mass data. On-line Processing module
provides streaming programming framework to satisfy real-
time calculation and assessment. There is necessary to satisfy
the specific response times when designing and implementing
topic-specific programming APIs for fault diagnosis managers,
as well as considering allocation of resources. Based on
Hadoop, the proposed programming framework is available
to apply MapReduce, Storm [19], Spark [20], and Spark
streaming computing platforms. Considering features of high
concurrency while a large number of sensor devices measur-
ing physical environments, Message Queue acts as caching
pipelines to balance the flow traffic and provide the non-
blocking transmission in the context. Collecting Broker pulls
sensor data streaming from IoT middleware in which Agent
relays sensor reading in real time and upload historical sensor
data from available data sources. Therefore, DC acts as a
computing paradigm of handling massive sensor data, which

work as computing infrastructures supporting data mining and
on-line applications.

Knowledge Deduction (KD) helps developers build a pro-
gramming environment for quickly creating scalable perfor-
mant data mining applications (e.g., machine learning and data
analysis), which targets at helping developers create topic-
specific data mining approaches and providing some off-the-
shelf algorithm implements (e.g., Apache Mahout [21]). Man-
agers enable regularly analyze massive historic sensor data to
discover potential relationships among physical productions
and quality of products with expert knowledge.

Decision-Making (DM) is a strategy module that realizes
the technical business support for the establishment in large-
scale equipment fault diagnosis, monitoring applications, and
administrator management. DM provides functional strategies
extracted from specific businesses such as public security
domain, databases, algorithms, physical monitoring, which
are based on existing compositions according to logistics
functional management, expert support system and emergency
reporting systems.

3) C-Manager:
C-Manager works as a resource scheduler and monitoring

center that realizes the management of components to the
overall federation in clouds.

Task Scheduler (TS) performs for planning the execution of
non-transactional tasks. It determines the execution order of
tasks according to the importance and priority of application
requests, e.g., analysis of safety monitoring is more crucial
that should be given as prior priorities to be executed. Another
responsibility of this module regards to the approval control
and resource allocation, depending on the deadlines of running
applications, availability of idle resources and demands for
required performance.

Load Balancer (LB) keeps balanced processing services
of load and orders for new requests applying appropriate
routing and caching approaches. It charges the allocation of
new requests for storing and computing tasks, which provides
stable and scalable interactions in CDF.

Resource Monitoring (RM) takes responsibility for perform-
ing the resource budgets and keeping track of resource utiliza-
tion periodically. RM monitors requests and the performance
of executions in terms of the execution time, occupation and
release of resources, and performance evaluation of transac-
tions. This information can be utilized to update the TS for
dynamic resource allocation or execution migration to another
machine with rich resources. All the above information related
to transactional operations and applications will be recorded
in logging systems for further analysis and planning.

Multi-tenant Manager (MM) provides a consolidated view
of resources that are accessible by each tenant. Different
domain-specific applications are assigned specific physical and
computing resources according to their priorities and demands
for capabilities of data processing. In CDF environment, the
resources include not only cloud resources such as computing
capability and software instances in PaaS platform, but also
the publish-subscribe services of sensor data streaming. For



instance, the data sharing between horizontal sensing systems
helps build up all-around intelligent applications, e.g., coop-
erations between the toxic gas monitoring system and alarm
systems may construct real-time early warning strategies in
large-scale petrochemical plants.

Security focuses on providing protecting approaches in au-
thentication, authorization and availability. Authentication and
authorization are information protections targeting at verifying
and validating permissions of accessing cloud resources and
sensor data streaming services for each application request,
which is always maintained by system administrator and
service providers. OAuth is an open protocol to allow secure
API authorization in a simple and standard method from web,
mobile and desktop applications that can be considered as
protectors in CDF. Meanwhile, there is a need to build up
IP blacklist, firewall and restricted synchronized connections
in case of some malicious attacks.

IV. AN EXAMPLE OF CDF SYSTEMS: EQUIPMENT FAULT
DIAGNOSIS IN IWSNS

We provide equipment fault diagnosis system with IWSNs
as a typical user-case scenario that validates the implemen-
tation of our proposed CDF prototype in the large-scale
petrochemical plants. On-line fault diagnosis and analysis of
toxic gas monitoring and production equipment that are critical
issues in the large-scale oil and gas industries, contributes
to network early warning, facility maintenance, and safety
evacuation for first-line workers, reducing the latent danger
and enhancing the productivity and safety.

The validating scenario contains necessary elements to
implement our CDF system. Particular sensor devices for toxic
gas monitoring are presented as follows:

• Wireless sensing devices collaboratively measure air in-
formation to administrators, e.g., CO, SO2, CH4, wind
speed, humidity, temperature, e.g., toxic gas sensor node
and wearable equipment. Moreover, The smart helmet
[22] with one STM32 processing chip and plentiful
sensors enables mobile monitoring, and reports the ge-
ographical locations and first-line workers’ vital signs.
Moveover, ARM devices contribute to information visual-
ization and early-warning approaches through using TFT-
LCD touch screen, vibration motor and RF communica-
tion module. These promising approaches enable form
a network in self-organized manner and continuously
upload data streaming leading to amounts of sensor data.

• Wireless sensors allows managers to monitor physical
conditions of production and transmission equipment
with hazards in remote, hard-to-reach, and prohibited
regions. This facilitates the data collection for status
monitoring and fault diagnosis of mechanical equipment.

This comprehensive sensing environment not only con-
structs safety monitoring in working regions, but also con-
tributes to all-round equipment fault diagnosis system in large-
scale petrochemical plants. Based on large numbers of sensor
data from topic-specific monitoring systems, equipment fault
diagnosis and analysis need stable and scalable storage and

Fig. 3: Equipment fault diagnosis system for toxic gas monitor-
ing in the petrochemical plants as an example of CDF system.

computing platforms to be carried out. To solve this, Fig. 3
illustrates the proposed architecture to facilitate the integration
of distributed monitoring systems and provide cloud-based
storage, computing, and data mining platforms to support the
equipment fault diagnosis system in large-scale petrochemical
plants.

IoT middleware facilitates the heterogeneity problem with
topic-specific monitoring applications in IWSNs. Therefore,
we choose GSN [23] as gateway middleware to interface
and enable sensor data streaming uploaded to communication
modules in CDF. GSN is an Internet-scale infrastructure for
rapid deployment and integration of heterogeneous IWSNs,
which targets at flexible configuration, general abstraction and
distributed query support, on this basis, CISI middleware [24]
is selected to support crowdsensing-based applications based



on GSN. To facilitate the interaction between GSN and CDF,
we add Agent module for relaying sensor data streaming to
Collector Broker module. Afterwards, after across pub-sub
messaging system, sensor data streaming flows into computing
paradigm (i.e., batch processing and streaming computing),
which supports real-time industrial monitoring and fault di-
agnosing and analyzing. Based on computing paradigms for
data-intensive applications, fault diagnosis managers enable to
conduct data mining of no-obvious correlations in industrial
environment with the domain knowledge of workers, i.e.,
experience, knowledge and wisdom.

For instance, it has great potential to infer toxic gas leakage
through deducing the mutual effects with the change tendency
of targeted gas concentration and pressure of valve along
pipelines for oil and gas in large-scale petrochemical plants.
On this basis, a safe and intelligent ecosystem can benefit
from real-time equipment fault diagnosis system in large-scale
petrochemical plants. Although we discussed the equipment
fault diagnosis application for toxic gas monitoring as an
example, the core of our proposed CDF architecture is not
limited by this application. This architecture can be easily
extended to plentiful topic-specific applications by applying
domain knowledge according to the monitoring requirements
in large-scale petrochemical plants.

V. CONCLUSION

This paper proposed a cloud-based framework to support
the data-intensive application development. This framework is
developed to satisfy the increasing requirements on massive
sensor data storage and processing for equipment fault diag-
nosis. Such sensor-based IoT data is generated from large-
scale industrial sensing ecosystems. In addition, this frame-
work enables the integration of heterogeneous infrastructures
and provides services for storage, computation, and sensing.
It makes application developers be able to focus on their
special logic. Apart from existing related research work, this
paper presents how to design and implement the streaming
computing and storage paradigm on sensor data, in industrial
sensing ecosystems, based on Hadoop in the cloud. Finally, we
provided a typical use case scenario of large-scale industrial
ecosystems, equipment fault diagnosis, as a practical example
to validate the implementation of the proposed CDF prototype.
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