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Abstract—We consider a multi-carrier and densely deployed
small cell network, where small cells are powered by renewable
energy source and operate in a full-duplex mode. We formulate
an energy and traffic aware resource allocation optimization
problem, where a joint design of the beamformers, power and
sub-carrier allocation, and users scheduling is proposed. The
problem minimizes the sum data buffer lengths of each user in
the network by using the harvested energy. A practical uplink
user rate-dependent decoding energy consumption is included
in the total energy consumption at the small cell base stations.
Hence, harvested energy is shared with both downlink and
uplink users. Owing to the non-convexity of the problem, a
faster convergence sub-optimal algorithm based on successive
parametric convex approximation framework is proposed. The
algorithm is implemented in a distributed fashion, by using the
alternating direction method of multipliers, which offers not only
the limited information exchange between the base stations, but
also fast convergence. Numerical results advocate the redesigning
of the resource allocation strategy when the energy at the base
station is shared among the downlink and uplink transmissions.

Index Terms—5G, small cells, full-duplex communications,
energy harvesting communications, successive parametric convex
approximation, radio resource management, decoding energy.

I. INTRODUCTION

For the year 2020 and beyond, the fifth generation (5G)

mobile communications technology has promised to provide a

1000-fold increase in data rate and enhanced user experience.

Among the technologies that have the potential to achieve the

5G promises are the dense deployment of small cells [1] and

full-duplex (FD) communications. Small cells are energy- and

cost-efficient base stations (BSs) that bring the users closer

to them, and thus, increase the network throughput and user

experience. On the other hand, the FD technique is rekindled

to utilize the spectrum efficiently. The FD communications

essentially allows the simultaneous transmission and reception

of signals on the same time-frequency resource, and thus,

improves the spectral efficiency of the network. The benefit

of using the two technologies simultaneously is evident, but

with a few challenges.

In a densely and arbitrarily deployed network scenario, the

incumbent operators might face difficulties in powering the

small cell base stations (SBSs) through the grid power source.

Hence, alternately, they can install energy harvested device

to each SBS for harvesting the energy from nature [2], [3].

This approach is not only environment-friendly by curbing the

CO2 emission, but also economical. Renewable energy can be

freely harvested from nature using solar and wind sources.

The amount and arrival of harvested energy are random by

nature, thus sometimes leading to service interruption. Hence,

to reap the benefits of the freely available energy, the harvested

energy must be used intelligently. With this objective, the

communication system is designed with consideration of an

intermittent source of energy [4]–[8].

Owing to the hardware incapability to handle self-

interference (SI), the FD technique, though conceptualized

a long time ago, has not been used. Recently, efforts have

been made to cancel SI in both analog and digital domains

jointly, e.g., [9], [10], such that FD communications become a

reality. However, these works advocate the applicability of FD

communications for short range, where the transmit power is

low. Hence, the SBSs are the suitable candidates to operate in

the FD mode [11], [12]. Furthermore, since small cells have a

range of operation of approximately 100 meters, the energy

spent in decoding the received data is non-negligible [13].

Hence, the SBS has to share the available energy not only

with the transmitter but also with the receiver operations.

To reap the benefits of simultaneously using the energy

harvesting (EH) SBS and FD communications, engineers face

a few challenges: i) mitigation of interference surge due to FD

communications and ii) efficient sharing of harvested energy

among the transceiver operations, such as transmitting energy

and rate-dependent decoding energy. At the network level,

the interference intensity is high when compared with single

cell scenario, due to both intra- and inter-cell interference.

A few works [12], [14] studied the increase of inter-cell

interference when the BS in each cell is deployed with an

FD transceiver. Furthermore, the energy availability at the

SBS is random and needs to be shared among the transmitter

and receiver operations optimally. Hence, recent works [5],

[6], [15], [16] accounted for the received data rate-dependent

decoding energy (DE) in their problems for a more realistic

formulation. DE is required to process the received data that

are protected by some outer code, such as turbo or low-density

parity check codes.

In this paper, we consider the realistic communication sce-

nario, where densely deployed EH SBSs, operating in the FD

mode, serve half-duplex (HD) downlink (DL) and uplink (UL)

user equipments (UEs). The practical rate-dependent decoding

power usage is included in the total power consumption at

the SBSs [15], and hence, the achieveable rates obtained

by UL UEs are not only dependent on the UEs power, but

also on that of the SBS. As a consequence, the solutions

obtained in all previous works are not anymore applicable.

Furthermore, to avoid the excessive resource allocations, also

aligned with operators interest, we assume another realistic
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assumption of non-uniform wireless traffic, i.e., each UE has

different amount of data in its buffer to be transmitted. Thus,

with the goal of efficiently managing the network resources in

an excessive surge of interference due to FD communications

and under the random energy availability, we formulate the

problem of jointly designing the transmit beamformer, power

and sub-carrier allocation, and UEs scheduling. Moreover,

distributively solving the optimization problem is of utmost

important, especially for a dense network, which requires huge

information exchange among the BSs. The centralized and

dual decomposition based distributed algorithms to solve the

problem are discussed in [16]. Since the dual decomposition

approach suffers from slow convergence, we propose to use

a fast convergent alternating direction method of multipliers

(ADMM) [17] approach. In this approach, we decompose the

problem into SBS sub-problems by introducing the set of

global variables that link the same variables of the coupled

SBSs, i.e., the consensus equality constraints.

The rest of the paper is organized as follows. Section II

introduces the system model and formulates the optimization

problem. Section III develops an algorithm based on the

ADMM framework to distributively solve the optimization

problem. Section IV presents numerical results and discus-

sions. Finally, conclusion of the paper is given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A multi-carrier multi-cell network consisting of B EH FD

SBSs serving HD UEs is considered in [16]. Each SBS is

installed with a rechargeable battery and an EH device, which

are used to store and collect the harvested energy, respectively.

The SBSs are equipped with MT+MR antennas, of which MT

antennas are used to transmit data on the DL channel and MR

antennas are used to receive data on the UL channel. Each base

station b belongs to a set denoted by B = {1, . . . , B}. The sets

of all DL and UL UEs are denoted by D = {1, . . . ,KD} and

U = {1, . . . ,KU}, respectively. We assume that data for the

DL UE i are transmitted only from one SBS, and are denoted

by bi ∈ B. Similarly, the data of UL UE j are processed

by only one SBS, and are denoted by bj ∈ B. The sets of

all DL and UL UEs associated with SBS b are denoted by

Db ∈ D and Ub ∈ U , respectively. The SBSs send and receive

data simultaneously to KD UEs on the DL channels and from

KU UEs on the UL channels, respectively. We further assume

that the macro base station (MBS) is serving the UEs on

the UL channels. A total of N equal bandwidth sub-channels

belonging to the set N = {1. . . . , N} are available in the

system.

The received signal over sub-channel n at DL UE i is given

by

yDi,n= hH
bi,i,n

ui,ns
D

i,n +

KD∑

k 6=i

hH
bk,i,n

uk,ns
D

k,n

︸ ︷︷ ︸

MUI + CCI due to all DL UEs

+

KU∑

j=1

gj,i,n
√
pj,ns

U

j,n

︸ ︷︷ ︸

CCI due to all UL UEs

+nDi,n, (1)

where ui,n and pj,n are the beamforming vector and power

coefficient corresponding to the DL and UL UEs i and j,
respectively, on the nth sub-channel. hbi,i,n ∈ CMT×1 is the

channel vector from SBS bi to DL UE i and gj,i,n is the

complex channel coefficient from UL UE j to DL UE i on the

sub-channel n. sDi,n and sUj,n are data symbols corresponding

to the DL and UL UEs, respectively, each with unit average

energy, i.e., E{|sDi,n|2} = 1. E{·} denotes the expectation

operator. The term nDi,n ∼ CN (0, σ2
n) is the additive white

Gaussian noise (AWGN). In (1), the first and second terms

on the right-hand side represent the intended signal and the

sum of intra-cell multiuser interference (MUI) and inter-cell

co-channel interference (CCI) due to all DL transmissions,

respectively. The third term represents the CCI due to all UL

transmissions. The received signal-to-interference plus noise

ratio (SINR) of DL UE i over sub-channel n can be written

as

γDi,n =
hH
bi,i,n

Ui,nhbi,i,n

σ2
n +

∑KD

k 6=i h
H
bk,i,n

Uk,nh
H
bk,i,n

+
∑KU

j=1 pj,n|gj,i,n|2
,

(2)

where Ui,n = ui,nu
H
i,n is a positive semi-definite (PSD)

matrix.

Next, for the UL transmission, the received signal vector of

UE j over sub-channel n at BS bj is given by

yUj,n= hbj ,j,n
√
pj,ns

U

j,n +

KU∑

l 6=j

hbj ,l,n
√
pl,ns

U

l,n

+

KD∑

i=1

Hbj ,bi,nui,ns
D

i,n

︸ ︷︷ ︸

SI + CCI from all DL UEs

+nUj,n, (3)

where hbj ,j,n ∈ C
MR×1 is the channel vector from UL UE

j to SBS bj and nUj,n ∼ CN (0, σ2
nIMR

) is the AWGN noise

vector. In (3), the first right-hand side term is the intended

signal. The second right-hand side term represents the intra-

cell multiple access interference and inter-cell CCI due to all

UL transmissions. The third term represents the total CCI due

to inter-cell DL transmissions including SI, where Hbj ,bi,n is

the channel matrix from SBS bj to SBS bi. In order to recover

each UL UE data, we treat the SI and CCI as background noise

and apply the minimum mean square error (MMSE) successive

interference cancellation receiver. Then, the received SINR of

UL UE j over sub-channel n is given by

γUj,n= pj,nh
H
bj ,j,n

(

σ2
nIMR

+

KU∑

l>j

pl,nhbj ,l,nh
H
bj ,l,n

+

KD∑

i=1

Hbj,bi,nUi,nH
H
bj ,bi,n

)−1

hbj ,j,n. (4)

We denote the number of backlogged bits waiting in the

data buffer of DL UE i at the given scheduling instant by QD

i .

At that instant, the reduction in backlogged bits achieved by

the ith UE is expressed as

qDi = QD

i −
N∑

n=1

log2(1 + γDi,n), (5)



where the second right-hand side term is the transmission

rate achieved by DL UE i. Similarly, on the UL channel, the

reduction in backlogged bits achieved by the UL UE j is given

by

qUj = QU

j −
N∑

n=1

log2(1 + γUj,n), (6)

where QU

j denotes the number of backlogged bits correspond-

ing to UL UE j and the second right-hand side term represents

the number of transmitted bits by UL UE j.

B. Energy Arrival and Usage Model

We consider a generic renewable energy source, at each

SBS, such that the analysis presented in the sequel is valid

for any energy arrival process. Let Bmax denote the maximum

size of the rechargeable battery, which is used to store the

sum of the energy harvested, i.e., Pb,H and the leftover

energy Pb,B over the current and from the previous scheduling

periods, respectively. Furthermore, at the beginning of the

next scheduling period, the exact amount of energy available

in the battery is known at the SBS. Hence, for a given

scheduling period, the energy available at the SBS b is given

as TPb = min{Bmax, TPb,H + TPb,B}, where T is the length

of a scheduling period in seconds and the min(·, ·) operator

ensures the constraint on the maximum battery size.

In short-distance communications, the energies consumed in

the circuit and decoding become comparable or even dominate

the actual transmit power [13]. Hence, it is important to

include them into the total power consumption, especially

when the energy comes from a renewable source. The total

power consumption at an SBS is expressed as:

Ptot,b =

N∑

n=1

∑

i∈Db

tr(Ui,n) + P cir
b +

N∑

n=1

∑

j∈Ub

P dec
j,n(Rj,n), (7)

where P cir
b = MTPrf + Pst is the total circuit power con-

sumption, in which Prf and Pst correspond to the active

radio frequency blocks, and to the cooling and power supply,

respectively. P dec
j,n is the power consumption for decoding UL

UE j in sub-carrier n, where Rj,n = log2(1 + γUj,n) is the

achievable rate of the UE. Note that the decoding power

consumption is a function of the data rate of the UE: for

example, for an UL UE j, P dec
j,n(Rj,n) = αjRj,n where αj

models the decoder efficiency, being decoder specific [13],

[15].

C. Optimization Problem Formulation

In this work, we are interested in reducing the total number

of backlogged bits in the network by minimizing the ℓ2-norm

of the deviation metrics given in (5) and (6) [16]. The main

reason for using the ℓ2-norm in the objective function is that it

gives priority to the UE with a large queued data in the buffer.

Now, by denoting U = [U1, . . . ,UB], where Ub =
[UDb(1),1, . . . ,UDb(|Db|),N ]1 and p = [p1, . . . ,pB], where

pb = [pUb(1),1, . . . , pUb(|Ub|),N ], the optimization problem

1A(i) and |A| denote the ith element and cardinality of set A, respectively.

to be solved at the beginning of each scheduling period is

formulated as

min
U,p

‖qD‖2 + ‖qU‖2 (8a)

s.t.

N∑

n=1

∑

i∈Db

tr(Ui,n) ≤ Pb,max ∀b, (8b)

Ptot,b ≤ Pb ∀b, (8c)

N∑

n=1

pj,n ≤ Pu,max ∀j ∈ U , (8d)

rank(Ui,n) = 1 ∀i ∈ D, ∀n, (8e)

Ui,n � 0 ∀i ∈ D, ∀n, (8f)

pj,n ≥ 0 ∀j ∈ U , ∀n, (8g)

where qD and qU have the elements qDi and qUj , respectively.

Pb,max is the maximum total transmit power constraint on the

DL channel, and Pu,max is the individual UE transmit power

constraint on the UL channel. It is worth noting that (8)2

implicitly solves the problem of sub-carrier allocation and UE

scheduling as well. Hence, the optimization problem jointly

designs the beamformers, power and sub-carrier allocation and

UE scheduling. An UE is scheduled whenever it is allocated

a non-zero power on a sub-carrier; otherwise, it is not.

In (8), the objective function (8a) ensures avoidance of the

redundant resource allocation, which is limited by the data

queue length of the UEs. Further, constraint (8b) ensures that

the maximum transmit power allowed by SBS b for the DL

transmission is limited by Pb,max. Constraint (8c) ensures the

available energy at the SBS is drawn by both the transmitter

and receiver operations, and the energy causality constraint. In

general, it is difficult to solve the above optimization problem

due to the rank-one constraint. Hence, we relax the rank-one

constraint and express the relaxed problem as

minimize
U,p

{‖qD‖2 + ‖qU‖2 | (8b) − (8d), (8f), (8g)}. (9)

Owing to the non-concave objective function and constraint

(8c) in (9), we propose to solve it by using the successive

parametric convex approximation (SPCA) method [18]. In this

method, (9) is successively approximated to a convex problem

as presented in Proposition 1, to obtain progressively improved

solution.

Proposition 1: By introducing the auxiliary variables βb, tb,

xb, and zb for all b ∈ {1, . . . , B}, the convex approximate of

(9), at the rth SPCA iteration, is expressed as

min
Ξ

‖q̃D‖2 + ‖q̃U‖2 (10a)

s.t. hH
bi,i,n

Ui,nhbi,i,n ≥ F (zDi,n, βi,n, ξ
[r])∀i ∈ D, ∀n, (10b)

H(xj,n,pU\{j},U, x
[r]
j,n,p

[r]
U\{j},U

[r]) ≤ zUj,n

∀j ∈ U , ∀n, (10c)
N∑

n=1

∑

i∈Db

tr(Ui,n) ≤ Pb,max ∀b, (10d)

2Note that (8) represents equations (8a)-(8g). A similar notation is employed
throughout the paper.



P cir
b +

N∑

n=1

∑

j∈Ub

αjt
U

j,n +

N∑

n=1

∑

i∈Db

tr(Ui,n) ≤ Pb∀b, (10e)

et
D

i,n ≤ zDi,n + 1 ∀i ∈ D, ∀n, (10f)

σ2
n +

KD∑

k 6=i

hH
bk,i,n

Uk,nhbk,i,n +

KU∑

j=1

pj,n|gj,i,n|2 ≤ βi,n

∀i ∈ D, ∀n, (10g)

pj,n ≥ x2j,n ∀j ∈ U , ∀n, (10h)

et
U

j,n ≤ zUj,n + 1 ∀j ∈ U , ∀n, (10i)

(8d), (8f), (8g), (10j)

where F (zDi,n, βi,n, ξ
[r]) = β2

i,n/(2ξ
[r]) + ξ[r](zD1,n)

2/2

and H(xj,n,pU\{j},U, x
[r]
j,n,p

[r]
U\{j},U

[r]) is a convex

approximate of function x2j,nh
H
bj ,j,n

X−1
j,nhbj ,j,n

at the rth iterate, where Xj,n , σ2
nIMR

+
∑KU

l>j pl,nhbj ,l,nh
H
bj ,l,n

+
∑KD

i=1 H
H
bj,bi,n

Wi,nHbj ,bi,n.

Ξ = {Ξ1, . . . ,ΞB} and Ξb collects the variables

corresponding to the BS b, i.e., {Ub,pb,βb, tb,xb, zb},

where βb = [βDb(1),1, . . . , βDb(|Db|),N ], tb =
[tDDb(1),1

, . . . , tDDb(|Db|),N
, tUUb(1),1

. . . , tUUb(|Ub|),N
],

xb = [xUb(1),1, . . . , xUb(|Ub|),N ], and zb =
[zDDb(1),1

, . . . , zDDb(|Db|),N
, zUUb(1),1

. . . , zUUb(|Ub|),N
]. The

superscript [r] denotes the value of the scripted variable at

the rth iteration.

Proof: The proof is based on the description given in [16,

Sec. III]

Using Proposition 1, (9) can be solved in a centralized

fashion [16] at the cost of heavy information exchange.

SBS-1

SBS-3 SBS-2

UE-1

UE-2UE-3

 
(1)
1;2;1

 
(1)
2;1;1

~ 1;2;1

~ 2;1;1

 
(2)
2;1;1

 
(2)
1;2;1

 
(2)
2;3;1

 
(2)
3;2;1 

(3)
3;2;1

 
(3)
2;3;1 

(3)
3;1;1

 
(3)
1;3;1

 
(1)
1;3;1

 
(1)
3;1;1

~ 2;3;1

~ 3;2;1

~ 1;3;1

~ 3;1;1

Fig. 1. Three small cells network each with one DL UE. B = {1, 2, 3},
D̄1 = {2, 3}, D̄2 = {1, 3}, D̄3{1, 2}.

III. DISTRIBUTED SOLUTION

Owing to the FD communications, twice the amount of

information exchange is required as compared to the HD

counterpart for solving the problem in a centralized manner.

Furthermore, for a dense network, information exchange re-

quires extra resources that decrease the spectral efficiency of

the network. Hence, turning to a distributed approach, where

each SBS independently designs the beamformers and power

allocations locally with minimal information exchange with

the rest of the SBSs, is a necessity.

In order to implement a distributed approach, we take

advantage of the separability of the objective function with

respect to (w.r.t.) each BS, and hence (10) can be written

equivalently as

min
Ξ

{∑

b∈B

‖q̃D,b‖2 +
∑

b∈B

‖q̃U,b‖2 | (10b) − (10j)
}

, (11)

where q̃D,b and q̃U,b denote the queue deviations of the DL

and UL UEs associated with b, respectively. Observe that the

constraints in (11) are not separable; in particular, constraints

(10c) and (10g) are coupled through the inter-cell CCI terms.

To this end, we rewrite (11) as

min
Ξ

∑

b∈B

‖q̃D,b‖2 +
∑

b∈B

‖q̃U,b‖2 (12a)

s.t. σ2
n +

∑

k∈Db\{i}

hH
bk,i,n

Uk,nhbk,i,n +
∑

b̄∈B̄b

ψ
(b)

b̄,i,n

+
∑

j∈Ub

pj,n|gj,i,n|2 +
∑

b̄∈B̄b

φ
(b)

b̄,i,n
≤ βi,n ∀i ∈ D, ∀n, (12b)

ψ
(b)
b,i,n ≥

∑

k∈Db

hH
b,i,nUk,nhb,i,n ∀b, ∀i ∈ D̄b, ∀n, (12c)

φ
(b)
b,i,n ≥

∑

l∈Ub

pl,n|gl,i,n|2 ∀b, ∀i ∈ D̄b, ∀n, (12d)

Ψ
(b)
b,j,n �

∑

l∈Ub

pl,nhbj ,l,nh
H
bj ,l,n

∀b, ∀j ∈ Ūb, ∀n, (12e)

Φ
(b)
b,j,n �

∑

i∈Db

Hb,bj ,nUi,nH
H
b,bj ,n

∀b, ∀j ∈ Ūb, ∀n, (12f)

ψ
(b)
b,i,n = ψ̃b,i,n ∀b, ∀i ∈ D̄b, ∀n, (12g)

ψ
(b)

b̄,i,n
= ψ̃b̄,i,n ∀b, ∀b̄ ∈ B̄b, ∀i ∈ Db, ∀n, (12h)

φ
(b)
b,i,n = φ̃b,i,n ∀b, ∀i ∈ D̄b, ∀n, (12i)

φ
(b)

b̄,i,n
= φ̃b̄,i,n ∀b, ∀b̄ ∈ B̄b, ∀i ∈ Db, ∀n, (12j)

Ψ
(b)
b,j,n = Ψ̃b,j,n ∀b, ∀j ∈ Ūb, ∀n, (12k)

Ψ
(b)

b̄,j,n
= Ψ̃b̄,j,n ∀b, ∀b̄ ∈ B̄b, ∀j ∈ Ub, ∀n, (12l)

Φ
(b)
b,j,n = Φ̃b,j,n ∀b, ∀j ∈ Ūb, ∀n,(12m)

Φ
(b)

b̄,j,n
= Φ̃b̄,j,n ∀b, ∀b̄ ∈ B̄b, ∀j ∈ Ub, ∀n, (12n)

(10b) − (10f), (10h) − (10j), (12o)

where B̄b, D̄b and Ūb denote the sets B \ {b}, D \ {Db} and

U \ {Ub}, respectively. ψb,i,n and φb,i,n are newly introduced

auxiliary variables, respectively, representing the inter-cell CCI

caused by the DL and UL transmissions of BS b to the

neighboring cells DL UE i ∈ D̄b. Similarly, Ψb,j,n and

Φb,j,n are newly introduced auxiliary variables, respectively,

representing the inter-cell CCI covariance matrices caused by

the UL and DL transmissions of the BS b to the neighboring

cells UL UE j ∈ Ūb. The superscript (·) denotes the local copy

of the variable. To simplify the decoupling, equality constraints

(12g)-(12m) are introduced, where φ̃b,i,n, ψ̃b,i,n, Φ̃b,i,n, and

Ψ̃b,i,n∀b, ∀i ∈ D̄b, ∀n are the global variables. Each global

variable links the two local variables of the coupled BSs. For

instance, consider a three SBS network scenario, as depicted

in Fig. 1, for b = 1 , φ̃1,2,1 represents the same variables

φ
(1)
1,2,1 and φ

(2)
1,2,1 corresponding to the BS b = 1 and b = 2,

respectively, and so on for all other coupling variables. The

equivalence between (11) and (12) is due to the fact that

constraints (12b)-(12f) hold with equality at optimality.



Observe that (12) is in a suitable form to apply distributed

optimization. The dual decomposition [17] framework offers

distributed implementation; however, is suffers from slow

convergence. Here, we prefer to use a fast convergence im-

plementation using the ADMM [17] framework. For that, we

first write the partial augmented Lagrangian dual of (12) w.r.t.

the equality constraints as

L(Ξ,X , X̃ , X̂ ) =
∑

b∈B

‖q̃D,b‖2 +
∑

b∈B

‖q̃U,b‖2

+
∑

b∈Bb

N∑

n=1

[ ∑

i∈D̄b

θb,i,n(ψ
(b)
b,i,n − ψ̃b,i,n) +

ρ1
2
(ψ

(b)
b,i,n − ψ̃b,i,n)

2

+
∑

b̄∈B̄b

∑

i∈Db

θb̄,i,n(ψ
(b)

b̄,i,n
− ψ̃b̄,i,n) +

ρ1
2
(ψ

(b)

b̄,i,n
− ψ̃b̄,i,n)

2

+
∑

i∈D̄b

ωb,i,n(φ
(b)
b,i,n − φ̃b,i,n) +

ρ2
2
(φ

(b)
b,i,n − φ̃b,i,n)

2

+
∑

b̄∈B̄b

∑

i∈Db

ωb̄,i,n(φ
(b)

b̄,i,n
− φ̃b̄,i,n) +

ρ2
2
(φ

(b)

b̄,i,n
− φ̃b̄,i,n)

2

+
∑

j∈Ūb

tr(Θb,j,n(Ψ
(b)
b,j,n − Ψ̃b,j,n)) +

ρ3
2
||Ψ(b)

b,j,n − Ψ̃b,j,n)||22+

∑

b̄∈B̄b

∑

j∈Ub

tr(Θb̄,j,n(Ψ
(b)

b̄,j,n
− Ψ̃b̄,j,n)) +

ρ3
2
||Ψ(b)

b̄,j,n
− Ψ̃b̄,j,n)||22

+
∑

j∈Ūb

tr(Ωb,j,n(Φ
(b)
b,j,n − Φ̃b,j,n)) +

ρ4
2
||Φ(b)

b,j,n − Φ̃b,j,n)||22+

∑

b̄∈B̄b

∑

j∈Ub

tr(Ωb̄,j,n(Φ
(b)

b̄,j,n
− Φ̃b̄,j,n)) +

ρ4
2
||Φ(b)

b̄,j,n
− Φ̃b̄,j,n)||22

]

(13)

where ρ1, ρ2, ρ3, and ρ4 are the positive penalty

parameters that controls the rate of convergence. All the

local variables are collected into X = {X1, . . . ,XB},

where Xb collects {φ(b), ψ(b),Ψ(b),Φ(b)} and φ(b)

collects {φ(b)
b,D̄b(1),1

, . . . , φ
(b)

b,D̄b(|D̄b|),N
, φ

(b)

B̄b(1),Db(1),1
, . . . ,

φ
(b)

B̄b(|B̄b|),Db(|Db|),N
} and similarly ψ(b),Ψ(b), and

Φ(b) are represented. Similarly, all the global

variables are collected into X̃ = {X̃1, . . . , X̃B},

where X̃b collects {φ̃b, ψ̃b, Ψ̃b, Φ̃b} and φ̃b collects

{φ̃b,D̄b(1),1, . . . , φ̃b,D̄b(|D̄b|),N , φ̃B̄b(1),Db(1),1, . . . ,

φ̃B̄b(|B̄b|),Db(|Db|),N} and similarly ψ̃, Ψ̃, and Φ̃ are

represented. Similarly, the Lagrangian multipliers are collected

in X̂ = {X̂1 . . . , X̂B}, where X̂b collects {θb, ωb,Θb,Ωb}
with its elements represented similarly as of the local and

global variables.

Now, the independent bth sub-problem for the vth iteration

is expressed as

min fb(Ξb,Xb, X̃ [v]
b , X̂ [v]

b ) (14a)

s.t. σ2
n +

∑

k∈Db\{i}

hH
bk,i,n

Uk,nhbk,i,n +
∑

b̄∈B̄b

ψ
(b)

b̄,i,n
(14b)

+
∑

j∈Ub

pj,n|gj,i,n|2 +
∑

b̄∈B̄b

φ
(b)

b̄,i,n
≤ βi,n ∀i ∈ Db, ∀n,(14c)

ψ
(b)
b,i,n ≥

∑

k∈Db

hH
b,i,nUk,nhb,i,n ∀i ∈ D̄b,(14d)

φ
(b)
b,i,n ≥

∑

l∈Ub

pl,n|gl,i,n|2 ∀i ∈ D̄b, (14e)

Ψ
(b)
b,j,n �

∑

l∈Ub

pl,nhbj ,l,nh
H
bj ,l,n

∀j ∈ Ūb, (14f)

Φ
(b)
b,j,n �

∑

k∈Db

Hb,bj,nUk,nH
H
b,bj ,n

∀j ∈ Ūb, (14g)

(12o), (14h)

where fb(Ξb,Xb, X̃ [v]
b , X̂ [v]

b ) = ‖q̃D,b‖2 + ‖q̃U,b‖2

+

N∑

n=1

[ ∑

i∈D̄b

θ
[v]
b,i,n(ψ

(b)
b,i,n − ψ̃

[v]
b,i,n) +

ρ1
2
(ψ

(b)
b,i,n − ψ̃

[v]
b,i,n)

2

+
∑

b̄∈B̄b

∑

i∈Db

θ
[v]

b̄,i,n
(ψ

(b)

b̄,i,n
− ψ̃v

b̄,i,n
) +

ρ1
2
(ψ

(b)

b̄,i,n
− ψ̃

[v]

b̄,i,n
)2

+
∑

i∈D̄b

ω
[v]
b,i,n(φ

(b)
b,i,n − φ̃

[v]
b,i,n) +

ρ2
2
(φ

(b)
b,i,n − φ̃

[v]
b,i,n)

2

+
∑

b̄∈B̄b

∑

i∈Db

ω
[v]

b̄,i,n
(φ

(b)

b̄,i,n
− φ̃

[v]

b̄,i,n
) +

ρ2
2
(φ

(b)

b̄,i,n
− φ̃

[v]

b̄,i,n
)2

+
∑

j∈Ūb

tr(Θ
[v]
b,j,n(Ψ

(b)
b,j,n − Ψ̃

[v]
b,j,n)) +

ρ3
2
||Ψ(b)

b,j,n − Ψ̃
[v]
b,j,n)||22+

∑

b̄∈B̄b

∑

j∈Ub

tr(Θ
[v]

b̄,j,n
(Ψ

(b)

b̄,j,n
− Ψ̃

[v]

b̄,j,n
)) +

ρ3
2
||Ψ(b)

b̄,j,n
− Ψ̃

[v]

b̄,j,n
)||22

+
∑

j∈Ūb

tr(Ω
[v]
b,j,n(Φ

(b)
b,j,n − Φ̃

[v]
b,j,n)) +

ρ4
2
||Φ(b)

b,j,n − Φ̃
[v]
b,j,n)||22+

∑

b̄∈B̄b

∑

j∈Ub

tr(Ω
[v]

b̄,j,n
(Φ

(b)

b̄,j,n
− Φ̃

[v]

b̄,j,n
)) +

ρ4

2
||Φ(b)

b̄,j,n
− Φ̃

[v]

b̄,j,n
)||22

]

,

and X̂ [v]
b and X̃ [v]

b denote the collection of fixed Lagrangian

multipliers and interference variables updated from the previ-

ous iterations. The optimization variables of the problem are

Ξb. After solving (14) for Ξb, ψ(b), φ(b), Ψ(b), and Φ(b) ∀b
in the vth iteration, in the next step, the interference terms are

exchanged between BSs b and bi as

ψ̃
[v+1]
b,i,n = 0.5(ψ

(b)
b,i,n + ψ

(bi)
b,i,n) ∀b, ∀i ∈ D̄b, ∀n,(15)

φ̃
[v+1]
b,i,n = 0.5(φ

(b)
b,i,n + φ

(bi)
b,i,n) ∀b, ∀i ∈ D̄b, ∀n,(16)

Ψ̃
[v+1]
b,j,n = 0.5(Ψ

(b)
b,j,n +Ψ

(bj)
b,j,n) ∀b, ∀j ∈ Ūb, ∀n,(17)

Φ̃
[v+1]
b,j,n = 0.5(Φ

(b)
b,j,n +Φ

(bj)
b,j,n) ∀b, ∀j ∈ Ūb, ∀n.(18)

The final step of the ADMM approach is the Lagrangian

multipliers update, which is given as

θ
[v+1]
b,i,n = [θ

[v]
b,i,n + ρ

[v]
1 (ψ

(b)
b,i,n − ψ̃

[v+1]
b,i,n )] ∀b, ∀i, ∀n, (19)

ω
[v+1]
b,i,n = [ω

[v]
b,i,n + ρ

[v]
2 (φ

(b)
b,i,n − φ̃

[v+1]
b,i,n )] ∀b, ∀i, ∀n, (20)

Θ
[v+1]
b,j,n = [Θ

[v]
b,j,n + ρ

[v]
3 (Φ

(b)
b,j,n − Φ̃

[v+1]
b,j,n )T ] ∀b, ∀j, ∀n, (21)

Ω
[v+1]
b,j,n = [Ω

[v]
b,j,n + ρ

[v]
4 (Ψ

(b)
b,j,n − Ψ̃

[v+1]
b,j,n )T ] ∀b, ∀j, ∀n. (22)

Now, in the rth SPCA iteration index, after the convergence

of the ADMM procedure, the optimization variables in the set

Ξ are updated until the convergence of the SPCA procedure.

The pseudo code of the ADMM based distributed algorithm

is summarized in Algorithm 1.



Algorithm 1 ADMM based distributed iterative algorithm

Input: h, g, σn, P cir
b , Pb,max, Pb, Pu,max, α, Imax,1, Imax,2.

Output: U, p.

1: Initialize r := 0; v := 0, Ξ[0], X̃ [0], and X̂ [0] = 0;
2: repeat

3: repeat

4: Solve (14) for Ξ
[r]
b ,X

[v]
b , X̃ [v]

b ∀b ∈ B using X̂ [v]
b

5: Exchange X [v]
b among BSs

6: Update X̃ [v+1]
b using (15) – (18)

7: Update X̂ [v+1]
b using (19) – (22)

8: Set v := v + 1
9: until Convergence of ADMM algo. or v ≥ Imax,2

10: Update Ξ[r+1] = Ξ⋆;

11: r := r + 1; v := 0
12: until Queue convergence or r ≥ Imax,1

13: Perform randomization to extract a rank-one solution

TABLE I
SIMULATION PARAMETERS

Parameters Value

No. of antennas MT = 2, MR = 2
No. of sub-carriers N = 2

Cell radius MBS: 500 m, SBS: 50 m
Maximum transmit power SBS: 24 dBm, UE: 23 dBm

Circuit power 30 dBm
Bandwidth 10 MHz
Intensity SBS: λs = 10, UE: λu = 2λs,

Thermal noise density and SI −174 dBm/Hz, σ2

SI = −110 dB
DE parameter α = 0.1
Noise figure SBS: 13 dB, UE: 9 dB

Path loss (in dB) SBS-to-SBS LOS: 98.4 + 20.9 log10(d)
where d is in km NLOS: 169.36 + 40 log10(d)

Path loss (in dB) UE-to-SBS LOS: 103.8 + 20.9 log10(d)
where d is in km NLOS: 145.4 + 37.5 log10(d)

Path loss (in dB) UE-to-UE LOS: 98.5 + 20 log10(d)
where d is in km NLOS: 175.78 + 40 log10(d)

IV. NUMERICAL RESULTS AND DISCUSSIONS

The numerical simulation results obtained by using the

distributed Algorithm 1 are presented in this section. A typical
outdoor deployment scenario with a circular macro-cell area

in the plane R2 is considered. One MBS located at the

origin and ten randomly deployed SBSs, i.e., B = 10, whose
locations follow an independent Poisson point process (PPP)

Φs ∈ R2 with intensity λs, are considered. We assume a

total of two DL and two UL UEs within each SBS and they
are randomly located according to the PPP Φu ∈ R2 with

intensity λu. Hence, the total number of UEs in the network is

KD = KU = 20. The maximum transmission powers of SBSs
and UEs are fixed and given by Pb,max and Pmax, respectively.

The Rician fading model is considered to model the SI channel
between the co-located transmitter-receiver antenna pair of

an SBS with distribution CN (
√

σ2
SIK/(1 +K)HSI, (σ

2
SI/(1+

K))IMR
⊗ IMT

), where HSI is a deterministic matrix and K
is the Rician factor with value 1, and σ2

SI is the SI variance.

The rest of the channels in the system are assumed to be

Rayleigh faded and the effect of the path and shadowing loss
is already included in them. All other simulation parameters

used are listed in Table I. We especially consider three system

scenarios for comparison, which are referred to as: i) Setup-
A: SBSs are powered by the grid source; ii) Setup-B: SBSs

are powered by a renewable energy source; and iii) Setup-
C: SBSs are powered by a renewable energy source and

consume energy for decoding UL UEs data. The number of
bits waiting in the data buffer of each DL and UL UE are

stored in vectors QD = [6 7 4 5 3 2 2 2 2 3 1 1 2 2 2 3 2 2 3 7] and

QU = [3 7 3 5 7 3 2 3 1 3 3 3 3 1 2 2 2 2 3 2 1 1], respectively.
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Fig. 2. Convergence of the proposed ADMM-based RAOFDS algorithm with
respect to the SPCA iteration index.

We first compare the convergence of the proposed ADMM

based distributed Algorithm 1 with the centralized and dual

decomposition based distributed algorithms [16] in Fig. 2. The
figure plots the total number of bits that remain in the network

after each SPCA iteration step under the system Setup-C. It

can be observed that the centralized algorithm converges faster
than both ADMM and dual decomposition based distributed

algorithms. However, among the distributed algorithms, the
ADMM approach converges faster by taking approximately

200 iterations lesser than the dual decomposition approach,

which takes 300 iterations. Note that all three algorithms
converge to the same value of the queue deviation.

In Fig 2, the performance of the FD and HD SBSs is

also compared. As expected, the FD SBSs achieve lower total
queue deviation than the conventional HD SBSs. In next two

examples, we only consider the performances of the FD SBSs

for the presentation clarity.

Fig. 3 shows the sum rate performance achieved by the

network with different values of the normalized energy arrival
rates, i.e., Pb,H/(P

cir
b +5Pb,max) at the SBSs under the Setup-

B and Setup-C. For comparison, the sum rate of Setup-A

is plotted; however, it is independent of the energy arrivals.
In the low EH rate regime, for Setup-B, the sum rate is

higher for UL as the SBS has lower energy availability for

the DL UEs; hence, it produces low interference to the UL
UEs. On the other hand, the DL transmissions achieve higher

sum rate in the high EH rate regime. Consequently, the UL

transmissions receive higher interference from the high power
DL transmissions. This behavior is reversed for Setup-C,

where the DL sum rates dominate in all EH rate regimes over

the UL sum rates. The reason for this is that, in Setup-C,
the SBS shares the harvested energy among the DL and UL

UEs. Therefore, lower energy availability at the SBS limits the

UL UEs from using lower transmit power that consequently
introduces less interference into the DL transmissions.
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Fig. 4. DL and UL sum rate versus the DE parameters used by each SBS.

Fig. 4 show the sum rate achieved by the network under

Setup-C with different values of the DE parameter. For com-

parison purposes, the figure also plots the sum rates achieved
under the Setup-A and -B, which are independent of the DE

parameter. Observe that the sum rate achieved by the UL UEs

decreases with the increase in the portion of DE consumed at
the SBS. This is because the UL UEs rates are now determined

by the availability of the DE at the SBS. For instance, if

the value of the DE parameter is small, the SBS allocates
a small portion of the energy for the UL UEs decoding.

This essentially means that the UL UEs cannot be decoded if
transmitted at higher rate and UL UEs need to transmit with

lower power. Consequently, a lower interference is experienced

by the DL UEs, and thus, the sum rate improves as compared
to Setup-B. High DE parameter values further restrict the UL

UEs from transmitting at lower power, and hence, DL UEs

experience low interference.

V. CONCLUSION

The performance of densely deployed FD small cells is

studied at the network level. The SBSs are dependent on the

renewable energy source for its transceiver operations. The UL
UEs rate-dependent decoding energy is included in the total

energy consumption model at the SBSs. Hence, the energy
harvested at the SBS must be optimally shared among the

DL and UL UEs. A joint beamformer and power allocation
design, which minimizes the UEs data buffer lengths, is

proposed. Furthermore, the proposed optimization problem

implicitly solves the problem of sub-carrier allocation and UEs
scheduling. A sub-optimal and iterative SPCA-based approach

is used to circumvent the non-convex nature of the problem. A

fast-convergent algorithm based on the ADMM framework is
proposed to solve the optimization problem distributively. Sim-

ulations are used to compare the performances of the proposed

design under the practical energy consumption and casualty
constraints with the case when the DE is not considered.

Results show the performance gap and advocate the need for

redesigning the beamformers and power allocations.
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