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Abstract—In order to understand the underlying mechanisms
that lead to certain network properties (i.e. scalability, energy
efficiency) we apply a complex systems science approach to
analyze clustering in Wireless Sensor Networks (WSN). We
represent different implementations of clustering in WSNs with
a functional topology graph. Different characteristics of the
functional topology provide insight into the relationships between
system parts that result in certain properties of the whole system.
Moreover, we employ a complexity metric - functional complexity
(CF ) - to explain how local interactions give rise to the global
behavior of the network. Our analysis shows that higher values
of CF indicate higher scalability and lower energy efficiency.
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I. INTRODUCTION

As Wireless Sensor Networks (WSNs) represent large de-
ployments of unattended sensors, which are disposable and
expected to last until their energy drains, energy efficiency
and scalability are critical factors involved in the design
of communication protocols for these devices. The physical
topology is dynamic because nodes exit due to the battery
discharge resulting in a constant need for adding new nodes to
the network. In order to adjust to the constant changes in the
physical topology, clustering was proposed in the literature as
a network reorganization technique.

Clustering partitions a network of nodes into a number of
smaller groups (clusters). In addition to the energy efficiency,
which explicitly affects the network lifetime, clustering algo-
rithms have a great influence on scalability, load balancing,
fault-tolerance, delay reduction, etc. [1]. Understanding the
organizational and communication characteristics of different
clustering algorithms allows us to comprehend which aspects
of a specific implementation lead to certain characteristics,
i.e. scalability and energy efficiency. The manner in which
parts of the network share information and the extent to
which information spreads throughout the network represent
important aspects of a clustering algorithm, as they directly
impact the system longevity and the scalability of the network.
The complex systems science approach we adopt allows us
to investigate the amount of information about the system
subparts by examining the system as a whole and comparing
this to the actual amount of information that exists within the
system subparts. In other words, this allows us to quantify the
amount of uncertainty of interaction that exists within smaller
subparts of the system compared to the uncertainty of the
whole system.

Different approaches to clustering are available in the
literature. The authors of [2]–[14] introduced different ap-
proaches, which involve adaptive clustering, random competi-
tion based clustering, Hierarchical Control Clustering (HCC),
energy efficient hierarchical clustering, distributed clustering,
Low Energy Adaptive Clustering Hierarchy (LEACH), and
Hybrid Energy-Efficient Distributed (HEED) clustering. As
highlighted in [1] and [15], the algorithms differ in properties
like stability of the created clusters, objectives (e.g. scalability,
fault-tolerance, connectivity, load balancing, redundancy elimi-
nation, rapid convergence, network lifetime), clustering criteria
(e.g. identifier, position, cluster head frequency, residual en-
ergy), methodology (e.g. distributed, centralized, hybrid). We
focus on the LEACH algorithm proposed in [13] and the HCC
algorithm proposed in [12], due to the importance of these
algorithms for WSNs (the LEACH algorithm is one of the most
well-known clustering algorithms, and the HCC algorithm is
the most popular multi-tier hierarchical clustering algorithm
[1]).

Complex systems science focuses on the underlying local
interactions between system parts which give rise to the global
network behavior. In [16], we propose a framework which
allows us to represent network functions with graphs called
functional topologies. Therein, we also propose a metric to
calculate the functional complexity of an implementation of a
network function. Here, we employ our functional framework
to model different implementations for clustering in WSNs.
Our goal is to highlight the structural patterns present in the
functional topology that result in certain properties (scalability
and energy efficiency) of the implementation. This allows us
to understand the underlying mechanisms that are a product of
complex interactions between functional entities.

The main contributions of this paper are:
• We apply a complex systems science approach to ana-

lyze clustering in WSNs;
• Our study shows how the density of local connections

in the functional topology affects the scalability of a
clustering implementation;

• Our results highlight the structural patterns in the func-
tional topology that lead to higher energy efficiency of
the WSN;

• Our functional complexity allows us to analyze the
trade-off between energy efficiency and scalability of a
clustering implementation.

II. CLUSTERING ALGORITHMS

Considering the limited energy resources and the size of
WSNs, the best approach is to partition the network into in-
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Fig. 1. The topology created according to the LEACH algorithm. Ordinary
nodes transfer sensing information to the cluster-heads, which forward this
information to the base station (The Figure is redrawn from [3])

terconnected subgroups (clusters), whose local behavior gives
rise to the global objective of the network (e.g. minimizing
the energy consumption). Generally, clustering includes two
phases:
• Set-Up Phase - this phase implies choosing cluster-

heads. Cluster-heads are nodes that are responsible for
the coordination of the clustering process.

• Maintenance Phase - this phase implies reorganization
of the clusters in order to add new nodes to the cluster,
deal with nodes that leave the cluster, or simply change
the roles of nodes (cluster-head or ordinary node) in the
cluster in order to achieve higher energy efficiency [17].

As the maintenance phase implies the reorganization of
clusters in order to achieve higher energy efficiency and to
adjust to changes in the topology, we focus on this phase. As
mentioned previously, we consider two clustering algorithms
(the LEACH and the HCC algorithms) proposed in [13] and
[12].

The LEACH algorithm is based on rounds. Each round
includes both phases (set-up and maintenance phase). Each
node in the network runs the algorithm, and decides randomly
which role to play (cluster-head or ordinary node). When a
node decides to be a cluster-head it broadcasts this information,
whereas each node that decided to be an ordinary node listens
to the broadcast messages and joins the closest cluster-head.
After all ordinary nodes join one of the cluster-heads, the
set-up phase finishes and the maintenance phase starts. In
the maintenance phase nodes that belong to the same cluster
transfer sensing information to the cluster-head (Figure 1), and
as the LEACH algorithm involves rotating the role of cluster-
heads between nodes in a cluster, the nodes that belong to the
same cluster communicate to each other in order to choose the
next cluster-head candidate.

The HCC algorithm is a multi-tier hierarchical clustering
algorithm which has proven to be highly scalable. The set-up
phase involves the Breadth-First Search (BFS) tree discovery
and cluster formation. The tree discovery is a distributed
formation of a BFS tree rooted at the initiator node. The cluster
formation is shown in Figure 2. The clustering formation

Fig. 2. Cluster formation according to the HCC algorithm. Each node (v, u)
discovers its subtree size and forwards this information upstream to its parent.
If the subtree size is big enough, the subtree becomes a cluster (A, B, C, D).
(The Figure is redrawn from [12])

process is distributed and it is executed on each node. Based
on the tree discovery each node knows its parent node and its
child nodes. Each node i discovers the size of its downstream
subtree |Vi| and reports this to its parent node. The information
about the subtree sizes allows us to create the clusters based
on the defined cluster size k (number of nodes per cluster -
this number is predefined). Each node compares its subtree
size |Vi| to the defined cluster size k and if k ≤ |Vi| < 2k
the node initiates the cluster formation on its subtree. As the
BFS tree denotes the routes to the base station, the sensing
information of all sensors is transmitted using these routes.
The maintenance phase involves just the maintaining up to date
information on each node about its parent and child nodes.

III. FUNCTIONAL FRAMEWORK

In order to analyze the underlying connectivity patterns of
a clustering algorithm, we employ the functional framework
introduced in [16]. The framework allows us to represent the
implementation of a clustering algorithm with a graph called
functional topology. We create functional topologies based
on the functional connectivity between system parts, where
each node represents a functional entity or any information
source related to the implementation of the particular clustering
algorithm, and each link indicates interactions between nodes.
To quantify the variety of connection patterns between system
entities and the roles that these entities have in the topology
we employ a metric called functional complexity [16]. The
multi-scale functional complexity is calculated with equation
(1).

CF =
1

R− 1

R−1∑
r=1

N∑
j=1+r

|〈Ir(Λj)〉 − j

N
Ir(ΛN )| (1)

The meaning of the terms appearing in equation (1) is shown
in Table I. As WSNs rely on the communication established
between one hop neighbors, in our analysis the maximum scale
size will be equal to R = 2. Hence, we perform a single-scale
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TABLE I.

Symbol Meaning
N total number of nodes in the functional topology
j subgraph size - number of nodes in the subgraph
r scale size
R maximum scale size, which is defined as the

longest shortest path in the whole functional
topology

H(xn) entropy of node n which indicates the uncertainty
of interactions of node n in the operation of a
network function

Λj
k kth subgraph with j nodes

Ir(ΛN ) the total amount of information of the subgraph
with N nodes for scale r

〈Ir(Λj)〉 the average amount of information over all sub-
graphs with the size j

analysis with a simplified version of equation (1), which is
represented with equation (2).

CF =

N∑
j=2

|〈I(Λj)〉 − j

N
I(ΛN )| (2)

Ir(Λj
k) is the total amount of information of the kth sub-

graph with j nodes. It is calculated with equation (3).

Ir(Λj
k) =

∑
n∈Λj

k

H(xn) (3)

The functional complexity compares the uncertainty of
interactions for a smaller subset (〈Ir(Λj)〉) to the uncertainty
which is expected from the calculation performed on the
whole system (Ir(ΛN )). H(xn) reaches its maximum if the
probability of interaction with node n is p(xn = 1) = 1/2.
As the distribution of links among nodes for a sparse graph
is almost uniform, a sparse graph results in high values of
H(xn). High values of H(xn) result in high values of Ir(Λj

k).
Therefore, the functional complexity is high for a sparse graph,
with uniformly distributed links among nodes for subgraphs
with the size j < N . The functional complexity is zero for a
fully connected and for a disconnected graph. For more details
about the functional framework and the complexity metric
expressed by equation (1) the reader is referred to [16].

The graph shown in Figure 3 is an undirected graph created
according to the Von Neumann neighborhood, and it depicts an
example of a physical topology of a Wireless Sensor Network
(WSN). A wireless node A can transmit information to another
wireless node B only if node B is within the transmission
radius RA of node A. In the case of WSNs, we consider the
communication between two nodes established only if both
nodes can transmit information to each other. In other words,
we consider that two nodes can exchange information only if
the distance between them is d(A,B) ≤Min{RA, RB}.

In [16], we presented an approach to map different fre-
quency allocation algorithms into functional topologies. We
apply the same approach to examine the functional topologies
of the LEACH and HCC algorithms.

Our goal is to investigate the influence of the interactions
among nodes after the clusters are established, on the ob-
jectives of clustering algorithms (specifically scalability and

Fig. 3. An example of a physical topology of a WSN according to the Von
Neumann neighborhood.

Fig. 4. The functional topology of the LEACH algorithm for a network of
twenty nodes which are divided into four clusters. The white nodes represent
ordinary nodes, the black nodes represent cluster-heads, and the gray node
represents the base station.

energy efficiency). We start with the LEACH algorithm. As
discussed before, during the maintenance phase of the LEACH
algorithm ordinary nodes that belong to the same cluster send
their sensing information to the cluster-head, and they talk
to each other in order to decide who is the next candidate
for the cluster-head role. According to the approach in [16],
we imagine a virtual decision maker entity that is moving
from one node to another. At each ordinary node the decision
maker entity communicates with the cluster-head and all other
ordinary nodes that belongs to the same cluster. At each
cluster-head the decision maker entity communicates with each
ordinary node that belongs to the same cluster and with the
base station. This results in a functional topology with dense
local connections (Figure 4).

To examine the functional topology of the HCC algorithm
we use the same approach presented in the previous example.
Again we focus on the maintenance phase of the algorithm.
After the set-up phase the nodes establish connections to
their neighboring nodes according to the BFS algorithm. Each
node discovers its subtree, and exchanges information with its
neighbors in the BFS tree. Again, we imagine a virtual decision
maker entity that is moving from one node to another. At each
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Fig. 5. The functional topology of the HCC algorithm for a network of
twenty nodes, which represents the BFS tree created based on the physical
topology shown in Figure 3. The white nodes represent ordinary nodes, the
black nodes represent cluster-heads, and the gray node represents the base
station.

node the decision maker entity collects information from nodes
that belong to its subtree and forwards this information to its
parent. In other words, each node maintains its position in the
BFS tree and therefore the functional topology of the HCC
algorithm is equivalent to the BFS tree of the physical topology
(Figure 5).

IV. ANALYSIS

In order to transfer the information collected at a sensor node
to a base station, WSNs establish paths in an ad-hoc manner.
Two nodes can exchange information if and only if they are
within the transmission radius of each other. However, after the
set-up phase of the clustering algorithm finishes, nodes do not
communicate to all other nodes that are within their coverage
area. At this stage, the information exchange depends on the
rules of the clustering algorithm.

The topology of WSNs is subject to constant changes due
to the disposable nature of wireless sensors and the constant
need to expand and densify the sensing area. Therefore, besides
the energy efficiency, clustering algorithms for WSNs have to
exhibit scalability. Scalability is the capability of the network
to adapt to new nodes joining the network, existing nodes
leaving the network, and other nodes migrating from one
cluster to another [12].

The maintenance phase of the LEACH algorithm invokes the
set-up phase, where nodes that belong to the same cluster talk
to each other to decide which node is the next candidate for the
cluster-head role, and each node transfers sensing information
to the current cluster-head. Adding a new node to any cluster
means establishing a connection to all nodes within the cluster
because each node has to be aware of all other nodes that
belong to the same cluster, in order to maintain the process of
cluster-head elections.

The maintenance phase of the HCC algorithm is simpler
than that of the LEACH algorithm. Each node forwards the

Fig. 6. Functional complexity of the LEACH algorithm; the functional
topology has twenty nodes and the nodes are divided into 4 clusters; the
maximum scale size R is 2; the functional complexity is the area between the
green and the blue curves.

information of its children and transfers its own sensing
information to its parent node. Therefore, adding a new node
to the cluster simply means that the new node gets connected
to one of the existing nodes which is going to be its parent
node. The new node does not need to inform all nodes in the
cluster about its arrival, which simplifies the process of adding
nodes to the network.

The authors of [2]–[5] and [18] discuss different objectives
of clustering algorithms. Among other things, the authors
focus on scalability issues and network longevity (energy
efficiency) of these algorithms. Hierarchical approaches proved
themselves to be more scalable than their non-hierarchical
counterpart. The authors of [4] showed that a trade-off ex-
ists between network scalability and energy consumption in
clustering schemes. Our goal is to investigate the relationship
between these objectives and the functional complexity, which
would allow us to analyze them together. In [2]–[5] and [18],
the authors emphasize that the LEACH algorithm is designed
to extend the network longevity, whereas the HCC algorithm
targets scalability as the main objective. In other words, the
LEACH algorithm is less scalable and the HCC algorithm is
less energy efficient.

As the authors of [1]–[5] agree that the communication
between the cluster-head and the base station consumes most
energy, we propose to calculate the energy efficiency of a
clustering implementation as the ratio between the average
number of intra-cluster connections and the number of links
between the base station and each cluster-head in the functional
topology. If the ratio increases the energy efficiency increases,
due to the bigger number of intra-cluster connections as
compared to the number of connections between the base
station and the cluster-heads. As the scalability of the networks
represents the adaptability to changes, we calculate it as the
average number of messages sent when a new node joins the
network. If the average number of messages increases the
scalability of the network decreases.
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Fig. 7. Functional complexity of the HCC algorithm; the functional topology
has twenty nodes; the maximum scale size R is 2; the functional complexity
is the area between the green and the blue curves.

Figure 6 depicts the relationship between the uncertainty of
interactions for all subset sizes and the uncertainty which is
expected from the calculation performed on the whole system
for the LEACH algorithm, i.e. the functional complexity of
LEACH. As shown in Figure 4 the functional topology of the
LEACH algorithm has dense local connections (intra-cluster
connections), whereas the inter-cluster connections are sparse.
The dense intra-cluster connections result in low scalability of
the algorithm, due to the need of interacting with all nodes
that belong to the cluster in order to add a new node. In
other words, in order to add a node to a cluster, all nodes
that belong to the cluster have to update their information.
Our analysis shows that for a network of twenty nodes which
are divided into four clusters the average number of messages
sent when a node joins the network is 3.75. The dense local
connections result in smaller values of the average uncertainty
of interactions for subsets with size three than we expected
from the calculation performed on the whole topology. Figure
6 shows that the uncertainty for subgraphs with the size greater
than or equal to four is much higher than expected from the
uncertainty of the whole system. This is because of the sparse
inter-cluster connections, due to which we can find a lot of
subgraphs with these sizes which have uniform distributions
of links among nodes. For example, in Figure 4, if we choose
any two ordinary nodes that belong to different clusters, we
can create a sparse subgraph with size five. The functional
complexity of the LEACH algorithm is 19.24, which is, as we
will see below, relatively low compared to an algorithm that
is highly scalable.

Figure 7 depicts the functional complexity of the HCC
algorithm. As shown in Figure 5 the functional topology of the
HCC algorithm has sparse intra and inter cluster connections.
As the links in the functional topology represent functional
dependencies between nodes, a sparse connectivity pattern
indicates weak dependencies which result in high scalability.
This follows from the fact that in order to add a node to the
network, the new node needs to establish a connection (send

TABLE II. FUNCTIONAL COMPLEXITY, SCALABILITY AND ENERGY
EFFICIENCY OF THE LEACH ALGORITHM FOR DIFFERENT NUMBER OF

CLUSTERS; THE FUNCTIONAL TOPOLOGY HAS TWENTY NODES.

#of clusters 3 4 5 6 16 19
C_F 14.35 19.24 22.69 25.55 32.4 31.85
Energy efficiency 1.91 1.08 0.72 0.51 0.07 0.05
Avg. #msg. if node joins 5.33 3.75 2.8 2.16 1 1

a message) to one of the nodes in the topology and to declare
this node as its parent. Therefore, the information about a
new node joining the network does not have to be transmitted
throughout the cluster. The functional complexity of the HCC
algorithm is 38.31, which is high compared to the functional
complexity of the LEACH algorithm. The energy efficiency
of the HCC algorithm is 0.61, which is low compared to the
LEACH algorithm (energy efficiency is 1.08) for the same
number of nodes which are divided into four clusters.

Table II shows how the functional complexity, the energy
efficiency and the scalability of the LEACH algorithm change
for different number of clusters. As shown the functional
complexity increases until the number of clusters reaches
sixteen, and then it starts decreasing. This is due to the fact
that if the number of nodes is fixed, increasing the number
of clusters decreases the number of nodes per cluster, which
makes the graph more and more sparse until it reaches a point
where the graph is not clustered any more and each node talks
directly to the base station, i.e. a star graph. If the number
of nodes per cluster decreases, the number of intra-cluster
connections decreases, and hence, the implementation becomes
more scalable. On the other hand, the implementation becomes
less energy efficient, due to the increasing number of nodes
that communicate directly to the base station.

Changing the number of clusters for the HCC algorithm does
not affect the functional complexity of the implementation,
because the functional topology does not change. As each
node transfers information to its parent node, increasing the
number of clusters decreases the number of nodes per cluster,
but the information paths do not change (and therefore the
functional topology does not change). As the information paths
do not change and the information travels according to the
established BFS routes, the main purpose of clustering is to
logically group nodes in order to provide scalability (due to the
hierarchical control architecture) and enable aggregation/fusion
of the sensing information at the chosen cluster-heads.

Our analysis confirms the observation made by the authors
of [4], which highlights the trade-off between scalability and
energy efficiency. With our complex systems science approach
we showed that these aspects of different clustering algorithms
can be analyzed together by analyzing the functional com-
plexity of the specific implementation. According to Table II,
increasing values of CF lead to the increase of scalability and
the decrease of energy efficiency.

V. CONCLUSION

The growing interest in WSNs due to the various applica-
tions in IoT results in a great variety of clustering algorithms
that support these applications. Very often, one compares these
algorithms based on certain properties (e.g. fault-tolerance,
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delivery delay, energy efficiency, scalability). Comparing these
algorithms based on a broad range of properties is very
difficult. Additionally, a lack of understanding exists when
we try to comprehend the mechanisms that lead to these
properties. The aim of this paper is to apply a complex
systems science approach to analyze these mechanisms. We
use the functional framework that we proposed in [16] to
model different implementations of clustering in WSNs. The
framework allows us to represent the implementations of
network functions with graphs, which are called functional
topologies.

The next step after mapping the implementations of clus-
tering into functional topologies is to calculate the functional
complexity (CF ) of these topologies. The functional complex-
ity captures the variety of structural patterns in the topology
and quantifies the deviation in uncertainty of interactions for
a smaller subset of the system from the uncertainty which is
expected from the calculation performed on the whole system.
In other words, CF quantifies how much information we can
not capture simply by studying the whole system, due to the
complex relationships that exist between smaller subsets of the
system.

In this paper we focus on two clustering algorithms, i.e. the
LEACH and the HCC algorithms. Our goal is to investigate
the mechanisms that provide high scalability in the case of the
HCC algorithm and high energy efficiency for the LEACH
algorithm. We also study the trade-off between these two
network properties. After briefly introducing the algorithms,
we map their implementations into functional topologies, and
calculate the corresponding functional complexities.

We show that high functional complexity indicates greater
scalability of the implementation. We also show that increas-
ing values of the functional complexity with the number of
clusters, indicates lower energy efficiency. We then highlight
that a sparse functional topology results in higher complexity.
Therefore, our functional topology explicitly explains both the
higher scalability (sparse graph) and lower energy efficiency
of the HCC algorithm as compared to the LEACH algorithm.

ACKNOWLEDGMENT

This material is based upon works supported by the Science
Foundation Ireland under the Grant No. 13/RC/2077.

REFERENCES

[1] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for
wireless sensor networks,” Computer Communications, vol. 30, no. 14-
15, pp. 2826–2841, 2007.

[2] M. M. Afsar and M. H. Tayarani-N, “Clustering in sensor networks:
A literature survey,” Journal of Network and Computer Applications,
vol. 46, pp. 198–226, 2014.

[3] M. Aslam, N. Javaid, A. Rahim, U. Nazir, A. Bibi, and Z. A. Khan,
“Survey of extended LEACH-based clustering routing protocols for
wireless sensor networks,” Proceedings of the 14th IEEE International
Conference on High Performance Computing and Communications,
HPCC-2012 - 9th IEEE International Conference on Embedded Soft-
ware and Systems, ICESS-2012, pp. 1232–1238, 2012.

[4] C. Jiang, D. Yuan, and Y. Zhao, “Towards Clustering Algorithms in
Wireless Sensor Networks-A Survey,” 2009 IEEE Wireless Communi-
cations and Networking Conference (WCNC2009), pp. 1–6, 2009.

[5] X. Liu, “A survey on clustering routing protocols in wireless sensor
networks,” Sensors, vol. 12, no. 8, pp. 11 113–11 153, 2012.

[6] R. Nagpal and D. Coore, “An algorithm for group formation in
an amorphous computer,” in Proc. 10th International Conference on
Parallel and Distributed Computing Systems (PDCSâĂŹ98). Citeseer,
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