
Performance Evaluation of a Multi-User Virtual
Reality Platform

Venkatakrishnan Parthasarathy∗, Anderson Augusto Simiscuka†, Noel O’Connor‡ and Gabriel-Miro Muntean§
School of Electronic Engineering, Dublin City University, Dublin

E-mails: ∗venkatakrishnan.parthasarathy2@mail.dcu.ie, †anderson.simiscuka2@mail.dcu.ie, ‡noel.oconnor@dcu.ie,
§gabriel.muntean@dcu.ie

Abstract—Virtual Reality (VR) popularity is increasing as it is
becoming more affordable for end users. Available VR hardware
includes low-end inexpensive devices like Google Cardboard
and high-end ones like HTC Vive or Oculus Rift, which are
more expensive headsets. Using VR as a platform for content
delivery allows better user engagement than other traditional
methods, as VR headsets remove external distractions. Multi-
user VR applications provide shared experiences where users can
communicate and interact in the same virtual space. This shared
environment, however, introduces challenges regarding network
performance, quality of service (QoS) and sessions privacy. This
paper presents a multi-user VR application and aims to evaluate
network behaviour in a number of scenarios, including real VR
headsets (i.e. Oculus Rift), as well as simulated ones. This QoS
analysis is important for the understanding of how many VR
users can be simultaneously connected with high image quality.

Index Terms—Virtual Reality, Multi-User, Network Perfor-
mance, Quality of Service.

I. INTRODUCTION

Virtual Reality (VR) environments are the combination of
3D spaces with a virtual representation of a user [1]. VR users
interact with polygonal 3D objects, created with 3D computer
graphics software like Blender [2]. VR applications primary
goal is to create a very immersive experience.

Many VR applications are focused on single-user experi-
ences, such as educational and medical applications, physio-
therapy software, prototyping programs for the car industry,
museum tours, etc. [3], [4], [5]. Multi-user VR applications
are designed for more than one user to be present in the
virtual space at the same time. There are various parameters
to be considered when developing such an application, as
multi-user applications introduce challenges related to network
performance, synchronisation among users and security to the
system [6], [7], [8], [9].

Regarding connectivity in multi-user VR applications, tra-
ditional game server architecture can be employed. This ar-
chitecture normally consists of a session server, which would
have a list of all the users in a database. A game server
is responsible for creating instances of the VR game and
providing access to the users in the session server [10].

Based on these concepts, this paper introduces a VR ap-
plication where multiple remote users interact in a virtual
space, using the Oculus Rift. Fig.1 illustrates the application,
which allows users to use the tablet component in the virtual
room to select multimedia content to be played in the white
screen. In addition, users can draw and communicate in a

Fig. 1. VR environment with video player
shared whiteboard available in the virtual environment, and
also share files within the application. The application also
allows simulated users to be added into the virtual space,
allowing several scenarios with different numbers of users
to be analysed. This quality of service (QoS) analysis is
important for the understanding of how many VR users can
be simultaneously connected with high image quality.

This paper is organised as follows. In section II, related
works are presented and section III details the design and
implementation of the testbed. Section IV presents testing and
results. Section V finalises the paper indicating the conclusions
and future work directions.

II. RELATED WORKS

A. VR Development

Current VR devices are head-mounted [11] and display the
virtual environment to the users. Some headsets contain audio
outputs, which might have a surround sound audio delivery
system, like the Oculus Rift [12]. Oculus Rift and HTC
Vive [13] are two of the major VR hardware manufacturers.
Windows Mixed Reality is another major player in the industry
with multiple manufacturers producing VR hardware under the
same software platform. There are also platform specific VR
hardware devices like PSVR which is specifically designed
for Sony’s PlayStation platform [14]. Smartphones can also
be used as VR devices when inserted into VR headsets (e.g.
Google Cardboard) [15].

In order to support software development for VR, many
software manufacturers are working on the development of
Software Development Kits (SDKs), as presented in Table I.

OpenVR [16] is a hardware independent VR runtime and
API developed by Valve Corporation while SteamVR is an
OpenVR-based SDK that supports multiple platforms [17].

Fig. 2. Solution architecture

TABLE I
SUPPORT OF SOFTWARE DEVELOPMENT KITS BY DIFFERENT VR

PLATFORMS

Software
Development Kits

Oculus
Rift

HTC
Vive

Windows
Mixed
Reality

Google
Card-
board

OpenVR Yes Yes No No
SteamVR Yes Yes Yes No
MRTK No No Yes No
VRTK Yes Yes Yes Yes
Google VR SDK No No No Yes

MRTK or Mixed Reality Toolkit [18] was developed by
Microsoft for developing VR applications for its Windows
Mixed Reality Headsets. VRTK (Virtual Reality ToolKit) [19]
is a tool that allows development of VR applications in an
integrated environment with support to OpenVR, SteamVR,
Unity and others. Google has its own SDKs [20] for Android
and iOS Cardboard applications and the Daydream platform.

Multiple Game Development Environments (GDE) are cur-
rently available for developers. Deciding on which GDE
should be using when building an application depends on the
supported headsets, documentation, licensing, tools, compat-
ibility with other components such as the computer graphics
formats, etc. The GDE considered for the application presented
in this paper is Unity [21], which fully supports the Oculus
Rift. Unity also allows the game instance to run in a headless
mode, where the graphic assets are not loaded in the server.
This reduces the memory footprint on the server and allows a
greater number of instances to run on the same computer.

B. Multi-User VR Application Design

Privacy is an important aspect to be considered in a multi-
user application. Privacy can refer to private sessions, as well
as the access to private information. Private virtual rooms can

be created by the use of sessions and authorisation. In terms of
privacy regarding personal information, such as user location,
encryption is required and must not be accessible to the other
users. All the non-sensitive information like player movement
data and drawings/text in the shared whiteboard are sent to the
clients in the system. User privacy is employed in the game
session management and authentication of users is handled
in game server instances. Users are authenticated with OAuth
2.0, an authentication protocol that retrieves login details from
platforms such as Facebook and Twitter, registering users with
their shared public details [22].

User interfaces in the application employ Electron, which
uses standard web elements and can also be compiled across
multiple platforms. The user interface contains the list of users
and options to select the users who can access the game
sessions [23].

The performance evaluation of network QoS parameters
such as throughput and round-trip time (RTT) is needed to
determine the robustness and usability of the application. Other
non-network parameters such as the number of frames per
second can be evaluated to check if the minimum requirements
of the application are met [24], [25].

The work presented in this paper evolves the state-of-the-
art presented in this section by introducing multiple simulated
users to a Unity-made VR application. This paper also presents
an analysis of the effects of the increased number of users
on network performance, considering throughput, tick rate
and RTT as the metrics for the evaluation of the multi-user
approach. The works presented in this section focused either
on privacy or network performance, while this paper evaluate
the novel VR user-simulation algorithm in an application that
considers both privacy and multiple scenarios with different
number of users and network parameters.

III. DESIGN AND IMPLEMENTATION

The solution architecture is illustrated in Fig. 2. Design
and implementation details are presented in this section. The
implementation of the application allows for the testing of
the proposed architecture and performance analysis of the
solution.

The overall solution of this project consists of three com-
ponents: application server, client launcher and the VR Ap-
plication itself. The architecture presented in Fig. 2 indicates
the interaction between the components in the solution. Each
user’s computer must have the VR application and the client
launcher installed in their machines, which is also connected to
the VR headset. The client launcher starts the VR application
in server or client modes and creates game sessions in the
cloud. It interacts with the application server to authenticate,
authorise, create game sessions, manage users and measure
network parameters for the appropriate server settings opti-
mised for different network conditions.

The application server is a separate REST service intended
to run in the cloud. It stores and serves multimedia data to
the virtual screens accessible from the video stream resource
endpoint.

A. Application Server

The application server is designed to be a cloud-based
standalone server that facilitates authentication, access man-
agement, video streaming and game session management using
RESTful endpoints. The application server was developed in
Python and REST APIs. The states of the resources are stored
in-memory to provide faster response.

The following endpoints are available:
1. All_users: A GET request on this endpoint returns all the

users available on the system. It is used by launcher application
to get the list of available users to select when creating a new
game session in the GUI.

2. User: This endpoint is used to create, update and delete
a user on the system.

3. Authentication: This endpoint takes a POST request with
username and password as payload and authenticates users.

4. GameSession: This endpoint is used to create a game
session with an IP address, owner and allowed users, storing
this data in its payload. It is also used to retrieve server details
for joining clients, with a GET request.

5. Video Stream: This endpoint allows the creation of
new video stream links by uploading a new presentation or
video file using a POST request. Presentation files such as .ppt
and .pptx are converted into a slideshow video, and a video
streaming link is generated. A GET request on this resource
with the game session ID on the URL returns an object that
contains the link to the video stream that will be displayed in
the virtual environment.

B. Client Launcher

The client launcher is a GUI application written in Python.
There are various screens in this component, developed for
different use cases.

TABLE II
NETWORK STATUS – TICK RATE TABLE

Network
Status

Time Taken for
First Connection

Tick Rate

1 >30 seconds 15 Hz
2 10 - 30 seconds 30 Hz
3 4 - 10 seconds 60 Hz
4 1 - 4 seconds 80 Hz
5 <1 seconds 120 Hz

All use cases of the launcher start with authenticating or
creating a user. The screen consists of a form that requires a
username and a password. After successful login, users can
choose to create a new game session or to join an existing
one.

After a new game session is created, a new game session
ID is assigned to it, and the launcher performs a network
analysis on with the VR application server. Based on the
network speed and time taken for connection, a network status
code is assigned. A tick rate is chosen based on the network
status code, as seen in Table II. For instance, if the client
took between 1 to 4 seconds to establish a connection with
the server, the network status 4 will be assigned to the client.
Each network status is related to the tick rate used in the
game session. In the given example, the network status 4 (for
an initial connection of 1-4s) represents a tick rate of 80Hz,
which is suitable for this network, given the initial delay for
the client to reach the server.

The tick rate is the number of times the states in the game
synchronise between server and clients. The VR application is
then launched with the newly applied tick rate. On a hosted
server instance, the tick rate is the same as the number of
frames per second (FPS). Therefore, the FPS will be higher for
clients that can establish a connection with the server quickly.

Once the launcher displays all the details regarding the
newly created game session, the game session ID can be shared
with other users. The VR application is then initialised with
the new parameters such as server IP address, game session
ID, application server URL and tick rate.

Users can join the VR application by selecting the “Join as
a Client” option in the launch menu, which requires a game
session ID to be joined.

C. VR Application

After joining a session, users can interact in the VR appli-
cation by sharing video content using the tablet component,
available in the virtual room.

Users can hover their VR controllers on top of the Tablet
Game Object to open a file browser where files are available
for streaming. Presentation files (i.e. .ppt, .pptx) or video
files (i.e, .mp4, .avi) can be played in the application. The
chosen file is then uploaded to the application server with
a multipart/form-data POST request. If the selected file is
a presentation, the application server automatically creates a
slideshow video from it, and responds back with the video
URL. Once this process is completed, the PlayerNetworkLink
class instructs the server to stream the video to all clients.

Algorithm 1 Simulated VR Users Mobility
NumberOfVRClients := e.g. 10
NumberOfMovement Loops := e.g. 10
NumberOfMovementSteps := e.g. 2
StepDuration := e.g. 150
Movement Directions := w,a,s,d keys
while (NumberOfVRClients client windows not spawned) do

Spawn VR clientwindow and connect to test server
end
while (NumberOfMovementLoops > 0) do

while (Not all client windows covered) do
Activate client window
Generate random movement direction
Move in the direction for stepDuration

end
end

IV. RESULTS AND DISCUSSION

For testing purposes, multiple users scenarios were created
with simulated users following various mobility patterns. This
required the development of an automated VR user simulation
mobility algorithm, presented in Algorithm 1. The simulation
algorithm was developed using the AutoHotKey (AHK) tool,
which simulates keyboard keys being pressed, moving the
simulated users. The algorithm also needs the number of
simulated clients, number of movement loops (the number of
times a movement needs to be done in each client window),
movement steps (the number of times the player object should
move in each iteration) and movement duration (indicating for
how long the movement key must be pressed), as configurable
parameters. Fig. 3 presents the ability of the application
to support multiple clients. A real user is viewing content
from a VR headset in a computer (the content seen in the
headset is mirrored on the bottom monitor of Fig. 3) and the
other computer generates simulated clients, such as the one
presented on the top screen.

Important QoS metrics were considered for testing.
Throughput was analysed in three scenarios with 2, 5 and 10
VR users, with video content. In each scenario, one of these
users is the server user, and the remaining ones are clients.

An extra scenario with 6 VR users was analysed in terms
of tick rate (15Hz, 60Hz and 120Hz), and its impact on
throughput and RTT.

The Windows 10 computer used in the tests has an Intel 8th
generation i7 8200u processor with 16GB LPDDR3 of RAM.
Wireshark was used for network analysis.

A. Throughput Analysis

For the throughput analysis, multimedia content is displayed
in the virtual monitor in the application for all users. Mobil-
ity is also introduced for the simulated users, according to
Algorithm 1, for a realistic throughput analysis.

The first scenario consists of two users (i.e. one server and
a client). Fig. 4 contains a plot with the throughput of this
scenario. The first peak (~28kbps) happens at the 15s mark

Fig. 3. Real and simulated users

Fig. 4. Throughput for 2 users with video stream

Fig. 5. Throughput for 5 users with video stream

Fig. 6. Throughput for 10 users with video stream

in the graph, when the client connects. From 16s to 20s,
(~12kbps) there was no user mobility. During the seconds
20s and 26s (~24kbps) the video stream and the mobility
algorithm start, and a peak during seconds 29s-32s indicates

Fig. 7. Throughput for 15Hz Tick Rate

Fig. 8. RTT for 15Hz Tick Rate

Fig. 9. Throughput for 60Hz Tick Rate

video buffering.
The second scenario contains five users (i.e. one server and

four clients). Fig. 5 illustrates the throughput of this scenario.
The first peak (~120kbps) observed at the 13s mark indicates
the clients being connected. From 16s to 20s (~110kbps),
video buffering initiated. During the seconds 20s and 39s
(~57kbps) the video stream and the mobility algorithm are
running without any lags or decrease in quality.

The third scenario increases the number of users to ten (i.e.
one server and nine clients). This scenario requires substan-
tial processing power, as all users (i.e. virtual environments
and mobility algorithm) are executed in the same computer,
through simulation. Fig. 6 illustrates the throughput of this
scenario. The first peak (~350kbps) observed at the 25s mark
indicates the clients first connection. The mobility algorithm
started at 45s and from 28s to 32s video content started
playing. Three of the clients were able to play the video,
while the others were buffering content. At the 77s mark, the
platform became unstable with slowdowns until the 100s mark,
and additional slowdowns at the 140s mark.

These experiments demonstrate that in scenarios with 10 or
more simulated users, there is a decrease in quality, with long
video buffering and slowdowns in the VR application. For

Fig. 10. RTT for 60Hz Tick Rate

Fig. 11. Throughput for 120Hz Tick Rate

Fig. 12. RTT for 120Hz Tick Rate

this type of scenarios, a computer with higher specifications
is required.

B. Tick Rate Analysis

The tick rate metric refers to the number of times the server
synchronises the states with clients. For the analysis of the
effect of different tick rates in throughput and RTT, which
indicate network performance, three rates were selected: 15Hz,
60Hz and 120Hz. The scenarios contain six users: one server
and five clients.

The first scenario consists of users with a tick rate of
15 times per second. The average throughput is ~4kbps,
as illustrated in Fig. 7, with the minimum and maximum
throughput ranging from ~1.5kbps to 9kbps. A peak of 9kbps
is reached when the clients first connect to the server. From
seconds 7s to 37s, the simulation algorithm is active. The RTT
for this scenario (Fig. 8) varies from 5ms to 45ms for most
of the execution time.

The second scenario increases the tick rate to 60 times per
second. The average throughput is ~3kbps, as illustrated in Fig.
9, with the minimum and maximum throughput ranging from
~0.5kbps to 9kbps. This scenario also has a peak of 9kbps
when the clients first connect to the server. From seconds 8s
to 40s, the simulation algorithm is active. The RTT for this

scenario (Fig. 10) is more stable at 45ms with occasional 5ms
bursts.

The third scenario increases the tick rate to 120 times per
second, which is network-intensive. The average throughput
is ~2.5kbps, as illustrated in Fig. 11, with the minimum and
maximum throughput ranging from ~1kbps to 8kbps. This
scenario has a peak of 8kbps is reached when the clients first
connect to the server. From seconds 5s to 36s, the simulation
algorithm is active. The RTT for this scenario (Fig. 12) is
mostly at 45ms with occasional 5ms bursts.

These three scenarios demonstrate that the increase of the
tick rate impact throughput and RTT. It is clear that the plots
from Figs. 7 and 8 (15Hz) are more stable than the plots in
Figs. 9-12 (60Hz and 120Hz), which represent a decrease in
throughput stability and network performance.

V. CONCLUSIONS AND FUTURE WORK

This paper presented the design, implementation and anal-
ysis of a multi-user VR application in a variety of scenarios.
The application allows users to share multimedia content such
as videos and presentations and interact with each other.

The application allows real and simulated VR users to be
included in the scenarios, so the performance can be evaluated.
An algorithm for VR user mobility was also introduced.

Tests indicated that in the computer used for the experi-
ments, when the number of users is equal or greater than 10
simultaneous users, the performance is affected with longer
buffering times and overall slowdowns. High tick rates, which
are related to the smoothness of video, also affect throughput
and RTT.

Overall, a multi-user application with real and simulated
users is useful for performance testing, and it was possible to
observe the scenarios that performed the best in a computer
with the given specifications.

Future work includes the addition of other types of rich
media content to be shared among users, and user prioritisation
with different quality levels.

ACKNOWLEDGEMENT

This work was supported by the European Union’s Hori-
zon 2020 Research and Innovation programme under Grant
Agreement no. 870610 for the TRACTION project. The
support of the Science Foundation Ireland (SFI) Research
Centres Programme Grant Numbers 12/RC/2289_P2 (Insight)
and 16/SP/3804 (ENABLE) is gratefully acknowledged.

REFERENCES

[1] A. A. Simiscuka, T. M. Markande, and G.-M. Muntean, “Real-Virtual
World Device Synchronisation in a Cloud-enabled Social Virtual Reality
IoT Network,” IEEE Access, vol. 7, pp. 106 588–106 599, 2019.

[2] “Blender.org - Home of the Blender project - Free and Open 3D
Creation Software,” 2020. [Online]. Available: https://www.blender.org/

[3] T. I. Chowdhury, “Towards Reverse Disability Simulation in a Virtual
Environment,” in 25th IEEE Conference on Virtual Reality and 3D
User Interfaces, VR 2018 - Proceedings. Institute of Electrical and
Electronics Engineers Inc., aug 2018, pp. 803–804.

[4] J. W. Park, F. S. Nahm, J. H. Kim, Y. T. Jeon, J. H. Ryu, and S. H.
Han, “The Effect of Mirroring Display of Virtual Reality Tour of the
Operating Theatre on Preoperative Anxiety: A Randomized Controlled
Trial,” IEEE Journal of Biomedical and Health Informatics, vol. 23,
no. 6, pp. 2655–2660, nov 2019.

[5] C. H. Muntean, D. Bogusevschi, and G.-M. Muntean, Innovative
Technology-based Solutions for Primary, Secondary and Tertiary STEM
Education. Paragon Publishing, 2019.

[6] S. Abbas, A. A. Simiscuka, and G. M. Muntean, “A Platform Agnostic
Solution for Inter-Communication between Virtual Reality Devices,” in
IEEE 5th World Forum on Internet of Things, WF-IoT 2019 - Conference
Proceedings. Institute of Electrical and Electronics Engineers Inc., apr
2019, pp. 189–194.

[7] H. Lee, G. Ha, S. Lee, and S. Kim, “A mixed reality tele-presence
platform to exchange emotion and sensory information based on MPEG-
V standard,” in Proceedings - IEEE Virtual Reality. IEEE Computer
Society, apr 2017, pp. 349–350.

[8] S. Gunkel, M. Prins, H. Stokking, and O. Niamut, “WebVR meets
WebRTC: Towards 360-degree social VR experiences,” in Proceedings -
IEEE Virtual Reality. IEEE Computer Society, apr 2017, pp. 457–458.

[9] F. Silva, D. Bogusevschi, and G. Muntean, “Innovative algorithms for
prioritised ar/vr content delivery,” in IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), 2018, pp.
1–5.

[10] D. Polancec and I. Mekterovic, “Developing MOBA games using the
Unity game engine,” in 2017 40th International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics,
MIPRO 2017 - Proceedings. Institute of Electrical and Electronics
Engineers Inc., jul 2017, pp. 1510–1515.

[11] N. Singh and S. Singh, “Virtual reality: A brief survey,” in 2017
International Conference on Information Communication and Embedded
Systems, ICICES 2017. Institute of Electrical and Electronics Engineers
Inc., oct 2017.

[12] “Oculus Rift: VR Headset for VR Ready PCs | Oculus.” [Online].
Available: https://www.oculus.com/rift/#oui-csl-rift-games=robo-recall

[13] “VIVE | Discover Virtual Reality Beyond Imagination.” [Online].
Available: https://www.vive.com/eu/

[14] “PlayStation VR | The VR gaming system for PS4 |
PlayStation.” [Online]. Available: https://www.playstation.com/en-
ie/explore/playstation-vr/

[15] J. Tham, A. H. Duin, L. Gee, N. Ernst, B. Abdelqader, and M. McGrath,
“Understanding Virtual Reality: Presence, Embodiment, and Profes-
sional Practice,” IEEE Transactions on Professional Communication,
vol. 61, no. 2, pp. 178–195, jun 2018.

[16] “Unity - Manual: OpenVR.” [Online]. Available:
https://docs.unity3d.com/Manual/VRDevices-OpenVR.html

[17] “SteamVR.” [Online]. Available: https://www.steamvr.com/
[18] “What is the Mixed Reality Toolkit | Mixed

Reality Toolkit Documentation.” [Online]. Available:
https://microsoft.github.io/MixedRealityToolkit-Unity/README.html

[19] “VRTK - Virtual Reality Toolkit.” [Online]. Available:
https://vrtoolkit.readme.io/

[20] “Quickstart for Google VR SDK for Unity with Android.”
[Online]. Available: https://developers.google.com/vr/develop/unity/get-
started-android

[21] “Unity Real-Time Development Platform | 3D, 2D VR & AR
Visualizations.” [Online]. Available: https://unity.com/

[22] N. Hossain, M. A. Hossain, M. Z. Hossain, M. H. I. Sohag, and S. Rah-
man, “OAuth-SSO: A Framework to Secure the OAuth-Based SSO
Service for Packaged Web Applications,” in Proceedings - 17th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications and 12th IEEE International Conference on Big
Data Science and Engineering, Trustcom/BigDataSE 2018, sep 2018,
pp. 1575–1578.

[23] “Electron | Build cross platform desktop apps with JavaScript, HTML,
and CSS.” [Online]. Available: https://electronjs.org/

[24] T. Kushida and Y. Shibata, “Framework of end-to-end performance
measurement and analysis system for Internet applications,” in Interna-
tional Conference on Information Networking, vol. 2001-January. IEEE
Computer Society, 2001, pp. 674–679.

[25] A. A. Simiscuka and G.-M. Muntean, “Synchronisation between Real
and Virtual-World Devices in a VR-IoT Environment,” in Proc. of
the IEEE International Symposium on Broadband Multimedia Systems,
2018, pp. 1–6.

