
Efficient Real-Time Image Recognition Using
Collaborative Swarm of UAVs and Convolutional

Networks
Marwan Dhuheir∗, Emna Baccour∗, Aiman Erbad∗, Sinan Sabeeh†, Mounir Hamdi∗
∗Division of Information and Computing Technology, College of Science and Engineering,

Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
†Barzan Holdings QSTP LLC, Doha, Qatar.

Abstract—Unmanned Aerial Vehicles (UAVs) have recently
attracted significant attention due to their outstanding ability
to be used in different sectors and serve in difficult and dan-
gerous areas. Moreover, the advancements in computer vision
and artificial intelligence have increased the use of UAVs in
various applications and solutions, such as forest fires detection
and borders monitoring. However, using deep neural networks
(DNNs) with UAVs introduces several challenges of processing
deeper networks and complex models, which restricts their
on-board computation. In this work, we present a strategy
aiming at distributing inference requests to a swarm of resource-
constrained UAVs that classifies captured images on-board and
finds the minimum decision-making latency. We formulate the
model as an optimization problem that minimizes the latency
between acquiring images and making the final decisions. The
formulated optimization solution is an NP-hard problem. Hence
it is not adequate for online resource allocation. Therefore, we
introduce an online heuristic solution, namely DistInference, to
find the layers placement strategy that gives the best latency
among the available UAVs. The proposed approach is general
enough to be used for different low decision-latency applications
as well as for all CNN types organized into pipeline of layers
(e.g., VGG) or based on residual blocks (e.g., ResNet).

Index Terms—ResNet; deep CNN; optimization; classification;
Latency; inference requests; UAV.

I. INTRODUCTION

Over the last years, UAVs have been introduced as a
better alternative to the traditional technologies in various
applications such as monitoring and detecting objects from the
sky [1], rescue operations [2], goods delivery [3], etc. UAVs
have plenty of advantages as they are cost-effective, flexible
to maneuver, and efficient for data collection. In addition,
UAVs can cover a broad range of areas to detect events
(e.g., forest fires) and access difficult regions that traditional
monitoring tools cannot access, such as volcanoes. Recently,
UAVs have been exploited to prevent the spread of COVID-19
by measuring the body temperatures or delivering the vaccines
and supplies to areas that cannot be accessed with traditional
tools [4]. UAVs’ exemplary performance motivated their use
in more critical and complex missions such as monitoring
borders and collecting data from battlefields. Some of these
applications require a swarm of UAVs to improve the model’s
performance and achieve efficient results [5]. One typical
application is to distribute the image classification tasks of

a surveillance system into the swarm of UAVs in order to
reduce the latency of predicting the final decision.

The on-board classification is beneficial three-fold: Firstly,
it decreases the dependency between the UAVs and the ground
station; therefore, the on-board computation reduces the op-
erational cost. Secondly, it reduces the latency of making the
classification decision, i.e., the UAVs communicate with each
other to receive the requests, make the final decision, and avoid
remote transmission overhead. Third, knowing that UAVs
frequently capture high-resolution images for classification
even if incidents are rarely occurring and due to the harsh envi-
ronments, affording stable bandwidth links to remote servers
was problematic. However, on-board CNN inference raised
several challenges that should be resolved. More specifically,
the UAVs have restricted memory and computation operation
units to address the arrived inference requests. This motivated
us to adopt layers’ distribution of online requests among
UAV devices to benefit from resource sharing, scalability, and
network adaptability.

Therefore, it is essential to find a model that suits the
requirements of DNN into a resource-constrained swarm of
UAVs. In this context, we propose a model that splits the
DNN into layers and allocates each layer into one UAV.
The connected UAVs share the output between them until
reaching the final classification decision [6]. By following this
strategy, the classification decision will be decided locally. The
current research focuses on studying the distribution of DNN
models over resource-constrained devices without considering
the real-time load of requests, memory, and computation
restrictions. Hence, it is crucial to redesign a distribution
DNN model that considers these constraints, which will be the
contribution of this work. We propose a surveillance system
model in our work, and we use CNN networks to classify the
input image. This model receives the classification requests
and finds the best UAV participants that collaborate to achieve
the best latency while considering memory and computational
resource constraints. The designed model is general enough
to be applied to different CNN models organized into the
pipeline of layers (e.g., VGG) or based on residual blocks (e.g.,
ResNet), which is not the case of previous works focusing only
on sequential models [7], [8].

Our paper’s novel contributions are presented as follows: (1)

ar
X

iv
:2

10
7.

04
64

8v
1 

 [
cs

.C
V

] 
 9

 J
ul

 2
02

1



we introduce a system model that is composed of a swarm of
UAVs capturing images and collaborating in real-time to clas-
sify these data using CNNs having different structures. (2) We
formulate our joint approach as an optimization problem that
seeks to minimize the latency of making the final classification
decisions. This model considers the limitations of memory and
computational units in the connected UAVs and the dynamic
load of requests. (3) Due to the hardness of the proposed
optimization problem, we introduce an online heuristic solu-
tion, namely DistInference, that relaxes the optimal solution
to find the optimal placement of layers among different UAV
participants and achieve the best latency of classification.

The paper is organized as follows: Section II presents
the related work, and section III explains the system model.
Section IV shows the performance evaluation of the optimal
and heuristic solution.

II. RELATED WORK

The distribution of CNN networks among IoT systems has
been an exciting topic for many researchers. It has various
scenarios and approaches, and we present some basic ap-
proaches in this section. Authors in [7] proposed to distribute
inference requests on pervasive device units. The distribution is
per layer in which the available devices present technological
constraints. The authors focused on finding the optimal layer
placement that reduces the latency of making the classification
decision. However, they did not consider the online load of
requests in their static distribution of CNN segments. Our work
in this paper distributes different layers of each real-time in-
coming request into different UAVs in order to collaborate and
classify the input image locally. The distribution of DNN has
many advantages ranging from decreasing the classification
latency to improving the system scalability and security. The
authors in [9] explored distributing DNN over IoT devices
in a surveillance system to minimize the latency of making
the classification decision and improve the system privacy by
introducing a model called DistPrivacy. They found that when
the model is divided into small segments (i.e., feature maps)
and distributed among a higher number of IoT devices, the data
can be covered from untrusted devices, and the system privacy
increases. However, our paper’s work focuses on studying the
distribution of DNN among multiple UAVs to minimize the
classification latency and generalize the optimization problem
to include different CNN architectures such as VGG, LeNet,
ResNet, etc. This is not the case of the aforementioned
works covering only typical DNN models organized into
a pipeline of processing layers without any residual block.
Because monitoring and detecting objects using a swarm of
UAVs require high memory and computation resources, one
solution was introduced is to divide the CNN models’ layers
between UAVs and Mobile Edge Computing (MEC) servers.
The authors in [10], suggested that shallow layers of the CNN
models are executed at UAVs. Meanwhile, higher layers are
relayed to MEC servers. The intuition behind this strategy is
to reduce the intermediate data size compared to the original
data. At the same time, high computation capacities are not

necessary to process the data in shallow layers. However, this
approach increases the operational cost, and it is susceptible
to latency and bandwidth status because of the continual
transmission between MEC servers and UAVs. In our work,
the classification tasks are done on UAVs while minimizing
the classification latency and avoiding remote transmissions.
At the same time, memory usage and computation tasks cannot
exceed the predefined thresholds.

Using UAVs as computing servers improves the time ex-
ecution of the classification tasks; meanwhile, this scenario
requires considering some parameters such as the minimum
number of layers and requests that the UAV swarms need to
start working. The authors in [11] explored using multiple
UAVs as edge servers to do the computational tasks. The au-
thors suppose that if all the available layers are fully employed
in the swarm of UAVs, i.e., all UAV layers are busy executing
tasks, the UAVs work as relaying devices and off-load the
tasks into access points (APs). This study did not focus on
distributing the layers of each request to UAVs; however, to
decrease the latency, it is crucial to consider distributing the
layers of each request. Our work uses a swarm of UAVs
for calculating the computational tasks onboard UAVs, and
different layers of each request are dispersed into the UAVs,
and each UAV takes part in requests and processes it.

Fig. 1. different CNN architectures

III. DISTRIBUTED INFERENCES OVER A SWARM
OF UAVS

A. System Model

Our surveillance system model is shown in Figure 2. The
model is composed of a set of UAVs that receives instructions
to start the monitoring mission, such as forest fire detection,
tracking a target on the ground, monitoring borders, etc. The
captured images are distributed among the different UAVs, and
each UAV executes a sub-task of the inference request. When
defining the optimization problem, we consider the limitations
of UAVs. These limitations are related to UAVs’ available
resources; therefore, we add the tolerated computation load
and the maximum memory usage as constraints. In order to
complete the classification in the UAVs’ swarm, the UAV that



does not meet the constrained resource limit will pass the
request to the neighboring UAV to execute it. Our model uses a
simplistic communication model as it is not the focus of this
work, and each UAV uses a different transmission rate for
transmitting and receiving data. The scenario consists of a set
of input sources represented by, S = {S1, . . . , Ss}, capturing
images to be classified by N UAVs. Let us assume that the
i th UAV unit i ∈ NN is characterized by two important
constraints, maximum memory usage m̄i, and maximum com-
putational load c̄i.

In this scenario, UAVs’ swarm collaborates to execute
the CNN model, i.e., the UAVs receive the input data and
pass them to the CNN network models for classification.
We assume that we have r requests that belong to different
CNN trained models. We also assume that Mr is the number
of layers representing the r-th number of requests in the
considered CNN system. Accordingly, we have j layers, for
each j ∈ {1, . . . ,Mr}, and r ∈ Nr, i.e., it represents the
number of sub-tasks that is distributed among the available
UAVs and required to classify the input image. The layer j
of the CNN model is characterized by two constraints: the
memory usage mr,k, and computational complexity cr,k. The
memory usage complexity mr,k (in bytes) is defined as the
number of weights that the layer j can store multiplied by the
size of the data type intended to characterize the parameters.
The second requirement is the computational load cr,k that
is defined as the number of multiplications that the system
should execute as indicated in [12]. Let us assume that kr,j
be the memory occupation of the data transmitted from layer j
to the next layer j+1 in the r-th network, Kr,s be the memory
occupation of the received image that is transmitted from the
r-th source input to the unit executing the first layer of the r-
th request in the CNN. Moreover, each UAV i ∈ {1, . . . , N}
generates Ri request in which 0 ≤ Ri ≤ R.

Our proposed method includes residual-based architecture.
This architecture adds advantages of training much deeper
layers to decrease the latency of classification, improve clas-
sification accuracy, and improve the training error [7]. The
residual block output receives two inputs, the one from the
previous layer and the other from the shortcut connection layer.
Therefore, we define Kr,j−σ as the memory occupation of the
layer’s output of the residual block from j−σ to j in the r-th
request. The σ here represents the number of strides in the
residual block architecture. We also define the transmission
rate ρi,k that represents the transmission from the UAV i to
the UAV k, and the transmission rate of each UAV is different
depending on the distance between UAVs, the quality of the
link, and the available bandwidth.

B. Problem Formulation

The optimization problem seeks to minimize the latency
measured from capturing the images until making the decision.
We formulate the objective function by calculating the sum of
all arriving requests’ transmission and processing time.

Therefore, the proposed optimization problem depends on
two decision variables defined as follows:

Fig. 2. Surveillance System Model.

∀r ∈ NR,∀i, k, n ∈ NN ,∀j ∈ NM

δr,i,j =

{
1 if UAV i executes the j layer of request r
0 otherwise (1)

γr,n,k,j,σ =


1 if the uav n transmits the output of the layer
j − σ of request r to the uav k to process the
layer j.

0 otherwise
(2)

for r ∈ NR, i ∈ NN , and j ∈ NM = {1, . . . ,M} and M
is the maximum number of layers that the request r might
have, i.e., M = max (M1,M2, . . . ,Mr) which represents
the maximum depth of the CNNs. The parameter σ here
represents the number of strides of the residual block in the
CNN’s structure. The term γr,n,k,j,σ ∈ {0, 1} and it is the
transmission of the output layers in the UAV that transmits
from layer j − σ to layer j. The requests to be distributed is
r requests, the two UAVs n and k represent the UAV that is
outside the residual block and the one that is inside the residual
block, respectively. Equation (1) presents the output transition
between the two layers j and j + 1. In this scenario, we
have two decision variables, γr,i,j,k,σ and δr,i,j . The objective
function minimizes the latency by measuring the time of
transmission from the layer j to the next layer j + 1 and
measuring the transmission time from the residual layers. The
latency is defined by the time between capturing of size images
Kr,s by the source input Sr and generating the corresponding
decision after receiving the input of the last layer, sized Kr,Mr.
The Integer Linear programming (ILP) optimization problem
relies on the two decision variables γr,i,j,k,σ and δr,i,j and the
objective function of our problem is formulated as:

min
γr,n,k,j,σ,δr,i,j

(

R∑
r=1

N∑
i=1

M∑
j=2

N∑
k=1,k 6=i

j−1∑
σ=1

max (γr,i,k,j,1 .
Kr,j

ρi,k
,

γr,n,k,j,σ .
Kr,j−σ

ρi,k
. θ(j+1,j−σ)) +

N∑
i=1

t
(p)
i + ts)

(3)
s.t.

R∑
r=1

M∑
k=1

δr,i,k . mr,k ≤ m̄i, ∀i ∈ NN (4)



R∑
r=1

M∑
k=1

δr,i,k . cr,k ≤ c̄i, ∀i ∈ NN (5)

N∑
i=1

δr,i,j =

{
1 if j ≤ M
0 otherwise ∀r ∈ NR, ∀j ∈ NM , (6)

γr,i,k,j,σ ≤
j−1∑
σ=1

δr,i,j−σ+2, ∀r ∈ NR, ∀j ∈ NM , ∀i, k ∈ NN ,

(7)

γr,i,k,j ≤ δr,k,j+1, ∀r ∈ NR, ∀j ∈ NM ,∀i, k ∈ NN , (8)

γr,i,k,j,σ ≥
j−1∑
σ=1

(δr,i,j−σ+2 + δr,k,j+1 − 1),

∀r ∈ NR,∀j ∈ NM ,∀i, k ∈ NN ,
(9)

and where

ts =

R∑
r=1

N∑
i=1

δr,i,1 .
Kr,s

ρs,i
(10)

t
(p)
i =

R∑
r=1

N∑
i=1

N∑
k=1

δr,i,k .
cr,s
ei

(11)

Equation (3) presents the total latency of different infer-
ences, which is composed of 4 parts:

1) : The source time ts, defined in Equation (10). It is the
time required to transmit the captured images from the source
Sr to the UAV unit computing the first layer.

2) : The processing time of the current working UAV unit
t
(p)
i that is explained in equation (11), and it is the time

required for the total latency to compute all the layers assigned
to the uav i. The processing time is defined as the time ratio
between a computational load of cr,k that the layer needs to
the number of multiplications ei that UAV i can carry in a
second.

3) : The transmission time between two devices i and k,
and it is defined as the time of transmitting the intermediate
representation of the captured images of the UAV device i to
the UAV device k in the swarm, and it is defined as,

Kr,j

ρi,k
(12)

where ρi,k is the transmission data-rate from the i-th UAV
unit device to the k-th UAV unit. The transmission rate ρi,k
represents the distance and the quality of the connection
between UAVs. Since UAVs are moving, the value of ρi,k
is changing accordingly over interval of time, therefore, the
optimization solution needs to re-run for each change of
the network. Upon this point, we defer studying the impact
movement of UAVs on classification for future work.

4) : The latency of transmitting the output of the residual
layers which are represented by γr,n,k,j,σ.

Kr,j−σ
ρi,k

.θ(j+1,j−σ).
The latency from the parallel transmission is represented
by max (γr,i,k,j,1 .

Kr,j
ρi,k

, γr,n,k,j,σ .
Kr,j−σ
ρi,k

.θ(j+1,j−σ)), and it
represents choosing either the transmission that comes from
layer j to the next layerj + 1, or the transmission from layer
j − σ to the layer j

The parallel transmission in the residual block is composed
of two paths. The first path is the transmission of the two
successive layers, and the second path is the transmission
between the successive layers and the shortcut connection that
comes from the residual-based model i.e. the output from the
residual block is the summation of the two paths. θ(j+1,j−σ)is
zero if there is no residual blocks.

The constraints in equations (4) and (5) are set for the
maximum memory usage, and the maximum tolerated com-
putational load of the UAVs in the swarm, respectively. They
are thresholds to the UAVs in which it confines the work to
be within the allowable limit and to make the designed model
more realistic. The constraint in equation (6) is set for making
each layer is computed by only one UAV device.

The constraints in Equations (7), (8), and (9) are to ensure
that the value of γr,i,k,j,σ is equal to 0 if there is no trans-
mission of the layer’s output j that is executed at the device
i and the next layer that is executed at the device k and 1
if both of δr,i,j−σ+2 and δr,i,j+1 is equal to 1, i.e., it is 1 if
both of them are 1 and zero if one of them is 0. To relax the
optimization run-time and ensure the linearity of the problem,
we added the second decision variable γr,i,k,j,σ, however, it
could be replaced by δr,i,j−σ+2 and δr,k,j+1.

C. Online Heuristic

The optimization in Equation (3) is an NP-hard problem,
which is not adequate for online resource allocation. There-
fore, we propose an online heuristic solution that performs the
real-time allocation. The proposed online greedy algorithm,
namely DistInference, is explained in algorithm 1. The process
starts when an inference request is initiated, then CNN tasks
are distributed among different UAVs to begin the classifi-
cation process. The allocation of layers among the available
UAVs is greedy, and the layers are assigned one by one on
the swarm of UAVs. We choose the UAV that accomplishes
the best latency with the maximum residual computation (line
8). The chosen UAV has to respect the memory and computa-
tion constraints. Consequently, the greedy allocation does not
have any knowledge about the computation requirements; we
choose the UAV that has the lowest nrm(i) = α× t(j)+β/c̄i
(line 11). From the function of nrm, a tradeoff is initiated
between the latency and the residual computation of the UAV
device. The chosen UAV will then be tested whether it respects
the available resources of memory and computation condi1
(line 12); otherwise, it would be removed from the calculation.
Following the calculations, any UAV that suffers from resource
exhaustion would be rejected.



IV. SIMULATION RESULTS AND EVALUATION

This section illustrates the performance evaluation of our
system model. We present the optimal solution results and
compare the optimal solution with the heuristic solution. Fur-
thermore, we present the result of the heuristic algorithm with
different layers, requests, UAVs, and the minimum number of
layers to start getting rejections. Moreover, we calculate the
shared data and compare its result on ResNet and sequential
layers model. This comparison is based on the number of
requests and the length of CNN layers. We used Raspberry
Pi 3B+ with a 1.4GHz 64-bit quad-core processor and 1GB
of RAM in this simulation. The number of multiplications per
second ei (defined as the number of 10ths of the clock cycle
per second [13]) is 560 ∗ 106.

Figures 3(a) and 3(b) shows the results of the optimal
latency with different requests and CNN layers, respectively.
It is observed that as we increase the capacities of the system,
the latency decreases accordingly. Figure 3(a) explains that
as the request numbers increases, the latency increases, too.
In this calculation, we used 5 CNN layers and 5 UAVs to
receive the requests and distribute them. Figure 3(b) explains
the relationship between increasing the length of the CNN
layers and the latency of making the classification decision
using 5 requests and 5 UAVs. It is shown that as the layer
numbers increases, the latency rises accordingly. Figure 3(c)
presents the minimum number of UAVs to start accepting
requests and distributing them among the available layers to
classify the captured input image.

Figure 4 illustrates the comparison between the optimal
solution and heuristic solution with different αs and βs. It
is clear that the latency result of the optimal solution is better
than that of the heuristic solutions. In this calculation, we used
5 CNN layers and 5 UAVs to receive the requests and distribute
them. Moreover, the heuristic solution results with α and β 0.7
and 0.3, respectively give the best solution among the others
that is nearest to the optimal solution result. Therefore, we

(a) (b)

(c)

Fig. 3. Optimal solution simulation results.

consider these values of α and β in our calculations.

Fig. 4. Optimal solution Vs heuristic with different α and β

Figures 5(a), 5(b), and 5(c) illustrate the calculation of
latency under the heuristic solution depicted in algorithm
1 with different requests, CNN layers, and UAV devices,
respectively. It is observed that as we increase the capacities
of the system, the latency decreases accordingly. Figure 5(a)
explains that as the number of requests increases, the latency
increases, too. Figure 5(b) illustrates the relationship between
increasing the number of CNN layers and the latency. It is
shown that as the number of CNN layers increases, the latency
rises accordingly. To get these results, we used 70 requests
and 30 UAVs. Figure 5(c) illustrates the latency results when
we have different UAV devices in which we use ten requests
and 10 CNN layers to handle the distribution of requests. It
is clear that as we increase the number of UAVs, the latency
decreases simultaneously. Moreover, when we add more UAV
devices, the latency decreases simultaneously as more UAVs in



the same area mean closer devices and better communication
links. Figure 4(d) shows the maximum number of layers per
request in which the requests start getting rejections. For
example, with 10 requests and 30 UAVs, the maximum number
of layers is 34, and above 34 layers, we get several rejections,
and the UAV devices cannot handle all the requests correctly.

(a) (b)

(c) (d)

Fig. 5. Heuristic solution simulation results.

Figures 6(a) and 6(b) illustrate the calculations of shared
data of heuristic solutions under different requests and CNN
layers, respectively. It also compares sequential CNN models
and ResNet under a different number of requests and layers. It
is clear that sequential CNN models achieve less-shared data
than ResNet as the sequential CNN models require less shared
data and residual links need additional data to enter the layer.

(a) (b)

Fig. 6. Shared data of ResNet and sequential CNN models.

V. CONCLUSION

In this paper, we presented the system model of distributing
different layers of each request into a swarm of UAVs. Each

UAV receives several requests and do part of the requests.
The swarm of UAVs collaborates to find the minimum latency
of making the classification decision. The distribution of
the requests among the UAV swarm plays a significant role
in reducing the classification latency. We formulate this as
an optimization problem to calculate the minimum latency.
The formulated optimization problem considers two main
constraints: maximum memory usages and full computation
complexity. Next, we introduced an online solution that is
suitable for real-time scenarios. Our results proposed that
as the requests and CNN models increase, the latency rises
simultaneously. Our results also show that our proposed model
gives less latency of making classification decisions than the
online solution.

ACKNOWLEDGMENT

This work was made possible by NPRP grant # NPRP13S-
0205-200265 from the Qatar National Research Fund (a mem-
ber of Qatar Foundation). The findings achieved herein are
solely the responsibility of the authors.

REFERENCES

[1] K. Kanistras, G. Martins, M. J. Rutherford, and K. P. Valavanis, “A
survey of unmanned aerial vehicles (uavs) for traffic monitoring,” in
2013 International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2013, pp. 221–234.

[2] M. B. Bejiga, A. Zeggada, A. Nouffidj, and F. Melgani, “A convolutional
neural network approach for assisting avalanche search and rescue
operations with uav imagery,” Remote Sensing, vol. 9, no. 2, p. 100,
2017.

[3] S. Sawadsitang, D. Niyato, P.-S. Tan, and P. Wang, “Joint ground and
aerial package delivery services: A stochastic optimization approach,”
IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 6,
pp. 2241–2254, 2018.

[4] Q. Wu, J. Xu, Y. Zeng, D. W. K. Ng, N. Al-Dhahir, R. Schober, and
A. L. Swindlehurst, “5g-and-beyond networks with uavs: From commu-
nications to sensing and intelligence,” arXiv preprint arXiv:2010.09317,
2020.

[5] H. Kim, L. Mokdad, and J. Ben-Othman, “Designing uav surveillance
frameworks for smart city and extensive ocean with differential per-
spectives,” IEEE Communications Magazine, vol. 56, no. 4, pp. 98–104,
2018.

[6] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[7] S. Disabato, M. Roveri, and C. Alippi, “Distributed deep convo-
lutional neural networks for the internet-of-things,” arXiv preprint
arXiv:1908.01656, 2019.

[8] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 328–339.

[9] E. Baccour, A. Erbad, A. Mohamed, M. Hamdi, and M. Guizani,
“Distprivacy: Privacy-aware distributed deep neural networks in iot
surveillance systems,” in GLOBECOM 2020 - 2020 IEEE Global
Communications Conference, 2020, pp. 1–6.

[10] B. Yang, X. Cao, C. Yuen, and L. Qian, “Offloading optimization in
edge computing for deep learning enabled target tracking by internet-
of-uavs,” IEEE Internet of Things Journal, 2020.

[11] X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “Uav-assisted relaying and
edge computing: Scheduling and trajectory optimization,” arXiv preprint
arXiv:1812.02658, 2018.

[12] C. Alippi, S. Disabato, and M. Roveri, “Moving convolutional neural
networks to embedded systems: the alexnet and vgg-16 case,” in 2018
17th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN). IEEE, 2018, pp. 212–223.



[13] S. J. Oh, B. Schiele, and M. Fritz, “Towards reverse-engineering black-
box neural networks,” in Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning. Springer, 2019, pp. 121–144.


	I Introduction
	II RELATED WORK
	III DISTRIBUTED INFERENCES OVER A SWARM OF UAVS
	III-A System Model
	III-B Problem Formulation
	III-B1 
	III-B2 
	III-B3 
	III-B4 

	III-C Online Heuristic

	IV SIMULATION RESULTS AND EVALUATION
	V CONCLUSION
	References

