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Abstract—In this work, a multi-stage Machine Learning (ML)
pipeline is proposed for pipe leakage detection in an indus-
trial environment. As opposed to other industrial and urban
environments, the environment under study includes many in-
terfering background noises, complicating the identification of
leaks. Furthermore, the harsh environmental conditions limit
the amount of data collected and impose the use of low-
complexity algorithms. To address the environment’s constraints,
the developed ML pipeline applies multiple steps, each addressing
the environment’s challenges. The proposed ML pipeline first
reduces the data dimensionality by feature selection techniques
and then incorporates time correlations by extracting time-based
features. The resultant features are fed to a Support Vector
Machine (SVM) of low-complexity that generalizes well to a small
amount of data. An extensive experimental procedure was carried
out on two datasets, one with background industrial noise and
one without, to evaluate the validity of the proposed pipeline. The
SVM hyper-parameters and parameters specific to the pipeline
steps were tuned as part of the experimental procedure. The best
models obtained from the dataset with industrial noise and leaks
were applied to datasets without noise and with and without leaks
to test their generalizability. The results show that the model
produces excellent results with 99% accuracy and an F1-score
of 0.93 and 0.9 for the respective datasets.

Index Terms—Industrial Internet of Things, Sound Event De-
tection, Industrial Event Detection, Machine Learning Pipeline,
Support Vector Machine

I. INTRODUCTION

The Internet of Things (IoT) technologies have been widely

adopted in economic, industrial, and health sectors given by

their promise of sensing, automating, and actuating processes

[1]. As part of their perceived function, IoT sensors can

classify gathered data to rationalize the phenomena monitored

over an extended period. The task of classifying time-series

data gives rise to Time Series Classification (TSC) as a

challenging aspect of the data mining field. In that regard,

the classification of the gathered data can detect the existence

or absence of the monitored phenomena.

Audio Event Classification (AEC) represents one appli-

cation leveraging the data collected by IoT devices. Sound

classification applications span automatic speech recognition

[2], and Environment Sounds Classification (ESC) [3]. In com-

parison to other disciplines, non-stationarity and aperiodicity

characterise ESC tasks [4]. The events in an urban or industrial

environment, belonging to the class of ESC tasks, display no

specific structure and are randomly generated as opposed to

music and speech signals. Such factors challenge identifying

sound events of interest in an industrial environment.

In an industrial facility, stand-alone or fluid-carrying pipes

integrated into larger systems are essential for manufacturing

processes [5]. The processes result in unfavourable conditions

for the facility’s workers such as the exposure to high temper-

atures or the inhalation of harmful material, often rendering

the area around these pipes unreachable for humans. These

conditions hinder the workers’ ability to identify any leaks by

eye test or manual experimentation. As such, augmenting pipes

with sensors to collect nearby acoustic variations and linking

them to the leakage phenomenon can be achieved using Indus-

trial IoT (IIoT) devices. To extract the concealed relationships

between the collected acoustic data and the presence of leaks,

supervised Machine Learning (ML) techniques can be utilized.

The leakage detection problem has been previously ad-

dressed in literature in the works of Beghi et al. [6] and in real-

world implementations of the Wessex county water leakage

detection challenge [7]. In comparison with these environ-

ments, the industrial setup under study exhibits two distinctive

characteristics. First, the industrial framework encompasses

many interfering sounds that can potentially mask the identi-

fication of leaks. Such noises may include the manufacturing

process, which can be broken down into multiple phases, each

displaying its unique characteristics. Second, the conditions

created by the manufacturing process challenge extensively

running experiments that simulate leak conditions; thus, con-

tributing to a limited amount of collected data. Moreover, the

developed module should be deployed on gateways of limited

computational capabilities close to the sensors collecting the

data. This aspect is prevalent in the edge computing paradigm

[8] that is adopted in the realm of IIoT applications to mitigate

the communication issues between sensors and gateways [9].

The data pertaining to our study were collected in an

industrial setup in collaboration with an industry partner, and

the fluid leakages were manually created. The acoustic data

were represented in the time-frequency domain to address the

high-dimensionality of the raw acoustic signals. To address the

challenges imposed by the industrial setting under study and

its requirements, the contributions of this work are as follows:

• Identify the challenges associated with fluid leakage de-
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tection in an industrial setting and highlight its uniqueness

in comparison to other settings;

• Propose an ML pipeline that addresses each of the

challenges imposed by the industrial environment;

• Apply the proposed pipeline to three datasets, collected

in different industrial settings, and explain its capacity to

identify fluid leakages while minimizing false alarms.

The rest of the paper is structured as follows: Section 2

outlines the related work. Section 3 describes the methodology.

Section 4 provides the experimental setup. Section 5 explains

the results and Section 6 concludes the paper.

II. RELATED WORK

The problem of identifying leaks is a synergy between the

TSC and ESC tasks. Therefore, this section will investigate the

contributions of the research community in both disciplines.

Research conducted to address TSC tasks have experi-

mented with hand-crafted and automatic feature extraction

techniques. The works in [10, 11, 12, 13] applied Deep Neural

Networks (DNNs) to time-series datasets of the UCR repos-

itory, used as a benchmark to compare different approaches.

These approaches either use the raw time-series data as inputs,

as is the case for the work in [10], or transform the time-series

data into images, that is adopted in the remaining works of this

category. In the realm of hand-crafted feature extraction, the

works in [14, 15] are the most prominent. Salamon et al. [14]

created a codebook from the time-frequency domain data to

encode different frames of the data. The encoded frames based

on this codebook are fed to a decision tree algorithm to classify

the TSC tasks in the UCR repository. On the same dataset,

the work in [15] showed that the classification accuracy of

Fully Convolutional Network (FCN), when fed with statistical

features, outperforms the approach that only uses the raw input

data.

The surveyed ESC tasks include works classifying poly-

phonic and monophonic sounds, which resemble our collected

data that include overlapping leak and industrial noise in-

stances. The approaches proposed were applied to the De-

tection and Classification of Acoustic Scenes and Events

(DCASE) challenge, which represents the largest collection

of monophonic sounds. Koutini et al. [16] and Yuji el al.

[17] are two works that applied DNNs to extract features and

classify monophonic sounds. On the other hand, the authors

in [18, 19] have also used DNNs to classify polyphonic sound

events derived from the DCASE datasets. They synthetically

created polyphonic sounds by overlapping different sounds

and employing data augmentation techniques to address data

scarcity issues. All of the mentioned works, except for the

case of polyphonic sounds, have reported high accuracy results

relative to each of their tasks, in the range of 90%.

Evaluating the outlined approaches will target the datasets

the researchers used to test their methods as they reflect the

environment under study, and the algorithms used for ESC

and TSC tasks. The methods that apply DNNs for both TSC

and ESC tasks on either image transformations of raw input

data or the input data itself essentially violate two of the main

constraints of this industrial setup. First, the limited capability

of gateways hinders the training and testing of DNN models

due to their resource-intensive nature. Second, to avoid over-

fitting, such models require large amounts of data, which are

not available in the current environment. On the other hand,

the datasets used to evaluate different methods do not reflect

the industrial environment because there is no transition phase

from an in-existent event to the event itself. To address these

limitations, this study offers a light-weight ML approach that

combines feature selection and feature engineering techniques

applied to time-frequency data. The solution addresses the

concerns related to any industrial environment.

III. METHODOLOGY

This section explains the method undertaken to tackle the

leakage detection problem. The first subsection describes the

datasets. The second subsection details the different steps of

the applied Machine Learning Pipeline.

A. Data Description

Each of the collected datasets describes the Power Spectral

Density values (PSD) of the process under study. In each

dataset, the columns represent the time domain, and the rows

represent the frequency domain. The proposed ML pipeline

was applied to three different datasets, each with its specific

length and ambient conditions. The details of each dataset are

provided in Table I. Separated by a dash ( ), the naming con-

vention identifies the existence of leaks and industrial noise.

The datasets were collected with a one-second granularity,

and the frequencies obtained are in the range of 0 to 65,536

Hz with a sampling frequency of 131,072 Hz. The resulting

datasets are of row size 5,000 and column size equivalent to

the period of data collection. The last column in the table

represents the leak intervals in each of the datasets. Based

on Table I, the Leak process dataset has 4 leaks, and the

Leak noprocess dataset has 3 leaks.

Name Duration (sec) Leaks

Leak process 3096 [1191 : 1276] , [1370 : 1450] ,
[1796 : 1886] , [1990 : 2081]

Leak noprocess 3069 [2300 : 2348] , [2623 : 2670] ,
[2783 : 2833]

NoLeak noprocess 2634 N/A

TABLE I: Datasets’ Details

B. Machine Learning Pipeline

The proposed ML Pipeline is depicted in Figure 1. Five

stages of pre-processing, training, validation, and testing are

applied to the dataset with leaks and manufacturing noise

denoted by Leak process. This dataset is elected for this

procedure because it encompasses a more profound environ-

ment than the other two available datasets. The other two

datasets go through the same procedure, except that the model

selection phase is replaced by the best model trained on the

Leak process dataset. The description of each stage of the ML

pipeline is as follows:



Fig. 1: Machine Learning Pipeline

1) Granular Dataset Creation: Each of the datasets in table

I is an input to this stage. The first stage creates three datasets

of 1000 Hz, 2000 Hz, and 5000 Hz granularities to reduce

the dimensionality of the datasets by grouping sub-bands. The

value of each sub-band is calculated using three metrics: mean,

median, and inter-quartile range (iqr). The metrics are chosen

to study the potential effect of outliers in each sub-band on

leakage detection.

2) Frequency Band Selection: This stage takes as an input

the granular datasets created in the previous stage. The data

pre-processing necessitates the extraction of sub-bands that

best represent the leakages, regardless of other interfering

factors. While these factors can affect a host of sub-bands,

selecting specific bands can minimize their potential effect

on masking the identification of leaks. Pearson correlation is

calculated to quantify the assumed linear relationship between

the sub-bands and the probability of leaks. This step aligns

with the goal of reducing the dimensionality of the data

to accelerate the ML modelling [20]. The resulting datasets

following this stage include the features with the top-most

correlation values with the output variable.

3) Feature Engineering: This stage takes the resulting

datasets from the previous step and applies a time-based

feature engineering technique to each of the sub-bands. The

temporal aspects are captured by overlapping adjacent time

windows and calculating statistical and temporal features.

The time-based features are listed in Table II. In this

table, xi denotes the value of the sub-band at time step

i after implementing the sliding window process and N

represents the ten-second time frame. For At, five different

values of t were considered to calculate the auto-correlations:

t = {1, 2, 3, 4, 5}. For pctt, three different values of t were

considered: t = {1, 2, 3}. Determining the bins that different

values of xi belong is a prerequisite for calculating the

Shannon Entropy. To mirror the leakage uncertainty, the 5
th,

10
th, 95

th, 99
th quantiles are calculated for the leak data.

Accordingly, this data displays a distinctively higher entropy

values compared to the data with no leaks.

In addition to the listed features, Approximate Entropy

APEn and Sample Entropy SampEn were included in the

feature engineering procedure. Due to space constraints, the

keen readers can refer to the work in [21] to check their

calculation procedure. APEn [21] quantifies the amount of

unpredictability of fluctuations in time series data to highlight

the transition phase between the two stages of absence and

presence of leaks and vice versa. SampEn [21] addresses the

limitations pertaining to the calculation of APEn by eliminat-

ing the re-calculation of a template vector, which adds a bias

to the APEn values. It serves a similar purpose to APEn in

terms of quantifying the underlying data periodicities. Due to

space limitations, the full explanation of some features will be

omitted. The work of Sohaib et al. [22] provides a detailed

explanation of some of the adopted features.

Since the time-based features require a specific time window

to be calculated, a ten-second time window is considered. A

leak is identified when a period of ten seconds has passed

with leak instances, reflecting that no anomalous non-leak

sound events are being recorded in that time window. The

resulting datasets include 52 predictors for two sub-bands,

each representing a time-based feature, and one output variable

representing the existence of leaks. The number of rows varies

depending on the overlapping time window and the original

size of the dataset.

4) Model Selection: The time-based features extracted in

the previous step are the input to this Model Selection stage.

This stage conducts extensive experimentation to decide the

best parameters, which encompass finding the best hyper-

parameters for the chosen algorithm, the size of the overlap-

ping time window, the granularity and sub-band coupling, and

the best metric to detect leaks.

The Support Vector Classifier (SVC) algorithm is chosen

to classify the data to leak and no leak instances. This algo-

rithm is selected for multiple reasons. It is a low-complexity

ML algorithm that uses linear, polynomial, and radial kernel

functions. These functions map the initial feature space into

a higher-dimensional space, which enables evaluating feature

interactions that may contribute to improving the distinction

between leak and no leak instances. Accordingly, this “kernel

trick” refines the construction of a hyper-plane with maximal

margins to provide better generalization for linearly or non-

linearly separable kernel functions [23].

The light-weight nature of the SVC algorithm favours

its deployment on IIoT gateways of limited computational

resources; thus, facilitating the model’s re-training and testing

on new data. Moreover, the scarcity of data in such a harsh

environment requires a model that can generalise well with a

small amount of data, which is a feature of the SVC algorithm.

In the field of light-weight algorithms, Federated Learning

approaches are promising in IIoT applications [24], which will

be explored in future work. The SVC algorithm determines



Feature Name Equation Feature Name Equation Feature Name Equation

Peak P = max(|xi|) Impulse Factor P
1
N

∑
N

i=1
|xi|

Square Root Mean SRM = ( 1
N

∑

N

i=1

√

|xi|)2

Clearance Factor P

SRM
Root Mean Square

√

( 1
N
E) Margin Factor P

SRM

Energy E =
∑

N

i=1 x
2 Crest Factor P

RMS
Peak-to-peak max(xi) −min(xi)

Kurtosis 1
N

∑

N

i=1(
xi−x

σ
)4 Skewness 1

N

∑

N

i=1(
xi−x

σ
)3 Shape Factor RMS

1
N

∑
N

i=1
|xi|

Index Maximum P

N
Index Minimum

min(|xi|)
N

Auto-correlation At =
∑N−t

i=1
(Xi−X̄)(Xi+t−X̄)

∑
N

i=1
(Yi−Ȳ )2

Percentage Change pctt =
(Xi−Xi−t)×100

|Xi−t|
Shannon Entropy −

∑

N

i=1 P (xi) logP (xi) Rate Entropy H(Xn|Xn−1,Xn−2)

TABLE II: Time-based Features

the hyper-plane separating the involved classes using a limited

amount of data. In particular, the instances that are close to

the hyper-plane drive the decision boundary, which separates

the two classes of the leak and no leak instances. As such,

if the data points fed to the SVC model are representative of

both classes, the SVC would be able to generalise to different

scenarios. In this industrial setup, it is critical to provide

the reasons for a particular classification result. To that end,

the developed SVC model provides better interpretability for

any resulting classification when compared to deep learning

models.

IV. EXPERIMENTAL SETUP

This section explains the experimental setup. It starts with

outlining the evaluation criteria and explaining the parameters

used for different types of datasets. Next, it discusses the

experimental procedure in terms of the used parameters and

selected models in light of the proposed ML pipeline.

A. Evaluation Criteria

The models built using different parameters are evaluated

using the standard performance metrics specific to a classifi-

cation task. These metrics include accuracy, specificity, recall,

and precision. Different metrics are prioritized depending on

the testing dataset .For the Leak noprocess and Leak process

datasets, precision, recall, and specificity will be used as an

indicator of the models’ performance. These indicators reflect

the model’s ability to correctly identify leak instances while

minimizing false alarms. For the Leak noprocess dataset, a

higher priority will be given to precision and recall as indi-

cators of the quality of the model and the chosen parameters.

Such considerations will be highlighted while explaining the

obtained results.

B. Experimental Procedure

The different parameters involved in the experimental pro-

cedure are summarized in Table III. As is the case in any

ML modelling, the dataset is split into training, validation,

and testing sets. The training set is used to train the model,

which is evaluated on the validation set to select the best

parameters outlined in table III. Since 864 parameters are

being tuned, the hyper-parameters of the SVC model and the

overlapping time window parameter are selected based on their

performance on the validation dataset. This intermediate step

reduces the total search space of the parameters and allows

for better interpretation and analysis of the effect of the other

parameters on the performance of the developed models. The

testing set is used to select the granularity-metric and sub-

bands combinations.

All the parameters were selected on the Leak process

dataset based on their performance on its respective val-

idation and testing sets. The best performing model, en-

compassing the {granularity, sliding window, metric} param-

eters and SVC hyper-parameters (regularization parameter,

kernel, and gamma), is evaluated on the datasets with dif-

ferent ambient conditions, denoted by Leak noprocess and

NoLeak noprocess datasets.

Parameter Values

granularity {1000, 2000, 5000}

sliding window {3, 5, 7}

SVC kernel {linear, rbf}

SVC Cost {1, 10, 100, 1000}

SVC gamma {1, 0.1, 0.001, 0.0001}

metrics {mean, median, iqr}

TABLE III: Experimental Parameters

V. RESULTS

This section first outlines the parameters that best performed

on the dataset with industrial noise. After that, the results of

applying the obtained models to datasets with no industrial

noise are evaluated.

A. Parameter Selection and Hyper-parameter Optimization

The best overlapping time window and SVC hyper-

parameters are obtained based on their performance on the

validation set. The selected hyper-parameters are the linear

kernel and the 1 penalizing cost and 7 as the overlapping time

window. The validation step has disqualified some granularity-

metric and band combinations, but it still did not provide

a clear-cut favorite set of combinations. As such, several
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Fig. 2: Effect of metrics on the performance of sub-bands on the testing set of the Leak process dataset

combinations qualified for the next step, which were evaluated

on the testing set of the Leak process dataset.

Figure 2 depicts the results of applying these combinations

to the testing set. Due to space restrictions, the precision and

recall were only taken as metrics for evaluating the models.

The discrepancy in performance for different metrics of the

same band shows the effect of outliers on the performance

of different band combinations. In most cases, the mean

metric displayed the better results compared with outlier-

resistant metrics such as median and iqr. With regard to band

combinations, the combinations of low and high bands, such

as band 0 5k 40k 45k, have displayed poor recall results

when compared to combinations involving lower bands. Given

that these band combinations are selected based on their

correlation with leaks, the obtained results show that high

bands have no contribution to identifying leaks. Instead, these

high correlation values are attributed to the effect of industrial

noise. These results show the importance of the inclusion of

multiple bands for identifying leaks and the effect of industrial

noise in emulating them.

The only two combinations that have displayed high

precision and recall are the combinations of iqr and

band 2k 3k 1k 2k and mean and band 2k 4k 0 2k. These

combinations qualify for the subsequent analysis stage that

takes the models built on them and applies them to the

Leak noprocess and NoLeak noprocess datasets.

B. Best Performing Models Implementation

The two best performing combinations are trained on

the whole Leak process dataset and evaluated on the

Leak noprocess and NoLeak noprocess datasets. This ap-

proach assesses the generalizability of the model developed

to be applied to conditions with no industrial noise as it has

proven its merit in its presence. The parametric results of the

given model are provided in Table IV and V. The results

show that both models managed to identify most of the leaks,

reflected by high recall, while avoiding false alarms, reflected

by high precision. Applied to the Leak noprocess dataset, the

two models successfully identified all the normal cases. For

the Leak process dataset, slight differences in results between

the models can be highlighted. The results show that the

combination of mean and band 0 2k 2k 4k outperforms the

other combination in identifying leaks, which demonstrate

that the wider bands are more informative in terms of leak

detection. Additionally, this result shows that leaks can be

better detected when incorporating outlier calculation. This

conclusion is emphasized by the better results displayed by

the combination that includes the mean metric.

Metrics Leak noprocess NoLeak noprocess

accuracy 0.99 1

recall 0.82 N/A

precision 1 N/A

specificity 1 1

TABLE IV: Results for iqr and band 1k 2k 2k 3k

Metrics Leak noprocess NoLeak noprocess

accuracy 0.99 1

recall 0.88 N/A

precision 1 N/A

specificity 1 1

TABLE V: Results for mean and band 0 2k 2k 4k

VI. CONCLUSION

This paper addressed detecting leakages in fluid-carrying

pipes in a harsh industrial environment. This environment is

distinct compared to other urban and isolated environments in

terms of the inclusion of interfering noise and the deployment

requirements of any detection module. The former condition

challenges the identification of leaks. The latter results in data

scarcity imposing the use of low-complexity ML techniques.

To address these limiting conditions, this work proposes an

ML pipeline encompassing feature selection techniques and

time-based feature engineering. The resulting data is fed to

an SVC algorithm that satisfies the environment’s deployment

requirements. The models obtained following the proposed

ML pipeline successfully identified leaks in environments with

and without industrial noise. While the results obtained are



promising, there is still considerable room for improvement.

A suggested method would evaluate the proposed approach

using various light-weight ML classification models such as

Decision Trees and ensemble learners to compare them to the

currently developed SVC model. Additionally, it is critical to

simulate leaks and industrial noise to increase the amount of

available data, allowing for a more extensive and profound

evaluation.
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