
Design of AI-based Resource Forecasting Methods
for Network Slicing

Juan Sebastian Camargo∗†, Estefanı́a Coronado∗, Blas Gómez‡, David Rincón†, and Shuaib Siddiqui∗
∗i2CAT Foundation, Barcelona, Spain. Email: {juan.camargo, estefania.coronado, shuaib.siddiqui}@i2cat.net

†Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), Castelldefels, Barcelona, Spain.
Email: juan.sebastian.camargo.barraga@estudiantat.upc.edu, david.rincon@upc.edu

‡High-Performance Networks and Architectures, Universidad de Castilla-La Mancha, Albacete, Spain.
Email: blas.gomez@uclm.es

Abstract—With the forthcoming of 5G networks, the underlying
infrastructure needs to support a higher number of heterogeneous
services with different QoS needs than ever. For that reason, 5G
inherently provides a way to allocate these services over the
same infrastructure through the concept of Network Slicing.
However, to maximize revenue and reduce operational costs, a
method to proactively adapt the resources assigned to each slice
becomes imperative. For that reason, this work presents two
Machine Learning (ML) models, leveraging Long-Short Term
Memory (LSTM) and Random Forest algorithms, to forecast the
throughput of each slice and adapt accordingly the amount of
resources needed. The models are evaluated using NS-3, which has
been integrated with the ML models through a shared memory
framework. This enables a closed loop in which the predictions
of the models can be used at run time to introduce changes
in the network. Consequently, it makes it able to cope with
the forecasted requirements, eliminating the need for off-line
training and resembling better a real-life scenario. The evaluation
performed shows the ability of the models to predict the slices’
throughput under various settings and proves that Random Forest
provides up to 26% better results than LSTM.

Index Terms—Network Slicing, Machine Learning, Network
Simulation, Random Forest, LSTM

I. INTRODUCTION

As 5G becomes widely available, the industry is moving
towards new ways of operating the networks. The new
applications enabled by 5G demand that the network is able to
allocate different types of services over the same infrastructure
under strict Service Level Agreements (SLAs). For that reason,
5G inherently provides a way to grant the needed resources
to the different coexisting services through the concept of
network slicing. Network slicing creates different logical
networks over the same physical infrastructure, assigning
to each service the necessary resources. This allows the
Mobile Network Operators (MNOs) to make a better use
of their infrastructure, which increases profit. However, the
orchestration of such slices remains a challenge on current
research. Efficient resource allocation, maximizing profit and
minimizing operational expenditures seems imperative. This
can be achieved by fitting the maximum number of services in
the network while preserving the SLAs and, in the same way,
withholding the previously allocated resources when they are
not being used. For this purpose, it seems clear that MNOs
need to be able to anticipate the changes in the throughput

that each slice is handling to be able to proactively allocate or
withhold new resources for each slice.

At this point, there is a global trend that Artificial Intelligence
(AI) and, in particular, Machine Learning (ML) needs to be
incorporated into the future mobile networks to approximate
such complex optimization functions. Current research has
shown that ML models can be used to predict the behavior
of different Key Performance Indicators (KPIs) based on past
experiences and take autonomous decisions based on those
predictions [1], [2]. In the case of slicing, ML can be used
to predict the throughput that a slice is going to handle. This
can be used to scale the resources assigned to that particular
slice accordingly. However, to make accurate predictions, the
models need to be trained with a large amount of data.

On this basis, network simulation becomes an essential
tool, as it allows creating virtual models of the network to be
deployed in reality. Moreover, they can be used to generate big
amounts of input data in a much shorter period of time, which
is paramount given the difficulties to acquire training data from
operational networks. However, the existing approaches do
not take advantage of the full potential of the simulators, as
they are used only to generate data which is then used offline.
For this reason, classic network simulators, such as NS3 [3]
or OMNeT++ [4], need to introduce ML in their workflow.
In this context, NS3-AI [5] has been developed to allow the
interconnection between the simulator and the most widely
used state-of-the-art ML libraries, such as Keras or Sklearn.

In this work, we present two ML models to forecast the
expected throughput on a network slice at a future point: Long-
Short Term Memory (LSTM) and Random Forest. The models
base their predictions on past experiences of throughput and
Radio Access Network (RAN) metrics.

LSTM can capture previous trends from the data it is fed
upon and then use such tendencies in future predictions which
fits this work’s use case. On the other hand, Random Forest is
a classifier method that needs data preprocessing to be used
as a model with time persistence. This work seeks to compare
the efficiency and precision of these two models. Based on the
obtained prediction, we use the shared memory environment
provided by NS3-AI to adapt the resource blocks in the radio
nodes assigned to each slice in run time in contrast to the

UPCnet
Text introduït
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



existing literature. This setting facilitates online training and
provides a better affinity with real life.

The rest of the paper is organized as follows. Section
II discusses the related work. In Sec. III the design of
the forecasting methods and the implementations details are
introduced. Sec. IV presents the performance evaluation and
finally, in Sec. V the conclusions are presented.

II. RELATED WORK

A. Slicing Resource Prediction

ML approaches applied to network slicing have received
the focus of academic and industrial research due to its high
prediction accuracy and generalization capabilities, allowing
them to operate efficiently in mobile networks. However, the
traffic being transmitted through the slices is dynamic but the
capacity that lies underneath is static, generating a conflict
of under or overprovisioned capacity. Several authors have
worked over this issue thoroughly [1], [2], [6]–[11].

The works presented in [6] and [7] use a Deep Neural
Network (DNN) and LSTM as prediction models. They use
the sliding window technique in a fully-connected hidden layer
topology with an output of the sliding’s size. In particular, the
work in [6] uses the historical service provider data (i.e., traffic
demand, time, resources assigned) to forecast the amount of
resources needed to guarantee the SLA. On the other hand,
the authors of [7] modify the loss function so it includes
multi-domain KPIs input for the predictor, and allows the
incoming traffic prediction to be related to all the involved
domains in the network. While the work in [6] compares the ML
models with an Autoregressive Integrated Moving Average
(ARIMA) model, the approach presented in [7] creates an
additional Convolutional Neural Network (CNN). Additionally,
the objective function of the ML models in [7] is modified to
use a multi-domain capacity that needs to be minimized. In
the same line, the authors of [8] use ARIMA as a non-ML
model that is compared with an LSTM and a Support Vector
Regressor, with the LSTM overperforming the other two. This
approach is based on a spatiotemporal model that seeks a co-
relation between the incoming traffic and the physical location
and time of the UE. Additionally, LSTM, Time-Delay Neural
Networks and Support Vector Machine models are used in [9]
to forecast the needed resources of a virtualized base station
with the RAN parameters as input of the models.

On a different line, the authors of [1] and [2] use per-slice
throughput prediction to assign radio network resources in the
form of the Physical Resource Blocks (PRB) to predict the best
wireless resource allocation. However, there is a considerable
difference in the approach in terms of ML selected. In [1] a
web-based algorithm is presented, taking as input the number of
available time-slots of the network and their renting costs. By
contrast, in [2], the authors use a regressor tree with the PRB
historically used per equipment, per slice type, and the currently
requested PRB. However, both works perform the prediction
offline. Similarly, the approach introduced in [10] leverages
Reinforcement Learning to minimize the probability to incur
a violation of the SLA due to underprovisioning, avoiding

penalties that can considerably affect the MNO’s reputation
and budget. Finally, using a three-dimensional CNN, the work
in [11] forecasts the network capacity needed to cope with the
incoming traffic. The three CNNs are known for achieving a
high prediction level with a minimum training, helping reduce
the information gathering and training time and resources.

The body of literature using LSTM to predict throughput in
mobile networks is extensive due to its native capabilities for
time-series analysis and sequential inputs. However, Random
Forest is seldom used for network slicing predictions as,
opposite to LSTM, it is not naturally suited for sequential
information. This work seeks to compare the results of two
opposite models and find the settings on which they provide a
greater performance. Notice that it is not a common practice
to use the output obtained from the ML models back into
the simulation process. Instead, in most of the literature,
the predictions are performed offline. For that reason, the
simulation processes rarely take full advantage of the prediction
value, if any. A key part of this work is the use and fine-tuning
of a common framework that allows the interconnection of the
simulation with the prediction models, generating a control
loop that more closely resembles reality as it allows the use of
the predictions back into the simulation during its execution.

B. Support for AI Pipelines in Network Simulators

NS3 is a de-facto standard simulator for academic research
in networking technologies. With the landing of ML in
next-generation networks, there is a need to integrate these
algorithms in network simulators. To provide an answer to
this need, the authors of [12] presented a framework that
integrates OpenAI Gym and NS3. This framework has enabled
the use of Reinforcement Learning (RL) in many research
works, such as the work in [13], which introduces an RL agent
that adapts transmission rate in Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) wireless networks, and
the approach in [14], which presents a deep RL approach for
congestion control in Centralized RAN (C-RAN) scenarios.

Inspired by [12], the authors of [5] present NS3-AI, which
provides a faster and more efficient solution to enable data
interaction between NS3 and Python-based AI frameworks.
It presents an enhancement of ns3-gym as it exploits shared
memory to allow a seven times faster transmission of the data
between NS3 and the AI frameworks, which makes it perfect
for the implementation of the models used in this work.

Contributions: Based on the above, this work has two
main contributions: (i) to compare one ML model that natively
handles time-series data for slice throughput forecasting against
one ML model not natively suited to do it; and (ii) to create
a bi-directional information exchange system that actively
shares information between the prediction framework and the
simulation framework, to use the said prediction as input in
the simulation and apply changes into the network in run time.



III. DESIGN OF ML-BASED PER-SLICE THROUGHPUT
FORECASTING METHODS

This work presents two ML models to forecast the throughput
expected in network slices and validates them using a simula-
tion environment that changes the network capacity at execution
time according to the model’s predictions. Given the over-costs
generated by resource overprovisioning and the SLA penalties
due to underprovisioning, predicting the traffic that is going
to traverse an slide is of utter importance to optimize network
resources and decrease operational costs. The data obtained
from the network which is going to allow this prediction
is presented as a series of sequential time samples (time
series). LSTM naturally masters this structure and is capable of
generating long-term dependencies [15]. As the releated work
reveals, it is clear that Recurrent Neural Networks (RNNs)
are the way to go in time-series forecasting in networking.
However, models out of this category are seldom used. For
this reason, this work also studies Random Forest, given its
high resistance to overfitting and generalization characteristics,
which adapt to the dynamic nature of the mobile network
that is evaluated.

Both ML design’s used in this work represent a multivariate
time-series model H(X) that, given an ordered input matrix
X = (X1, ..., Xn) ∈ RmXn of n features, and m entries,
produces an ordered output sequence y at time t. Therefore,
denoting X

(i)
j as the element at row i and column j in X ,

each entry row is a vector X(i) = (X
(i)
1 , ..., X

(i)
n ), while

a specific value of a feature j represents a sequence of
rows (X

(1)
j , ..., X

(m)
j ). In particular, the model H(X) uses

X to predict the throughput per slice, y, for a future time
t + 1. The chosen models are trained using the dataset in
[16]. This dataset comprises a set of time series describing
channel indicator parameters and the throughput generated
by a hundred UEs (equally divided into uplink and downlink
transmissions), during 490 seconds, with a sampling frequency
of 250 ms. The data comes from a cellular network with three
UE mobility patterns (pedestrians, cars, and trains) and 21
individual cell sectors.

The training dataset needs pre-processing to clean values
not useful for this use-case. First, all the identifiers are
deleted as they do not provide meaningful information for
training. Additionally, as the models focus on predicting the
UE’s downlink traffic, only the downlink UEs are considered.
Finally, since the ML models measure the distance between the
variables to infer the output values, the data has been scaled
in the range [0, 1] to avoid higher numbers generating a bias
in the prediction. After this, a 10-feature vector, X , is ready
to be used as the training’s input. Namely: total block size,
channel quality indicator, competitive throughput CQI, new data
indicator, reference signal received, power, signal interference
noise ratio, competing for SINR, delay, and total block error
rate. With this input, we aim to predict the throughput expected
on a network slice in the next time-step, t+ 1. Although it is
possible to choose any future time-step, the analysis has shown
that the prediction error propagates along with the following

estimations because the prediction at time t+2 takes as input
the t + 1 result. Finally, the prediction y shows the output
scenarios: increase, decrease or maintain the PRBs of the radio
nodes, with the final goal of employing only the necessary
resources to handle the expected throughput in the slices.

A. Random Forest

Random Forest is based on several decision trees using
different randomly-selected samples of the input data to prevent
overfitting in the predictions. Each decision tree is based
on a subdivision of all the possible pairs of features, Xi,
and predictions, yi, defined as the instance space. The first
node divides the space into two concrete sub-spaces based
on the feature with the higher division possibility, being it
a range of said feature. The process is then repeated for the
remaining features. Random Forest provides a high capacity
for adaptability and generalization, which works with the
changing environments of mobile networks. In this work, the
implementation of Random Forest is formed by 100 individual
regression trees, with a 25% dropout possibility. Bootstraping
is used during the training process to allow each decision tree
to be trained with a random sampling of the original dataset.
This prevents overfitting and eliminates any existing bias in
the sequential data.

By default, Random Forest does not capture historical
dependencies of the input data. To solve this issue we have
used the sliding window technique depicted in Figure ??. This
method includes previous values of the variables as a way
to track trends and give relevance to historical values within
the predictions. The previous values of the target feature, y,
are included into the multi-variate time-series as additional
variables, representing t− 1, t− 2, ..., t− l where l is the size
of the sliding window. Initially, a sliding window of l = 10
was chosen, but the variable importance decreased considerably
after the third time step. For that reason, only the three previous
steps and the current throughput value are considered and used
as the final window size. These values are incorporated to the
vector X . Moreover, Reference Signal Received Power (RSRP)
and Signal Interference Noise Ratio (SINR), show marginal
relevance. For that reason, only RSRP and SINR, together with
the throughput at time t, t− 1, t− 2 and t− 3, are selected
in the final training dataset composed of 6 features.

B. LSTM

LSTM is based on a RNN topology with modified neurons
that uses gates. The gates create long-term dependencies in the
system that enables the model to interpret historical patterns
and apply that knowledge to future predictions. Gates are
mathematical models that allow the neuron to regulate what
the system can learn, forget or maintain in every iteration.
Traditionally, LSTM topology only has one LSTM layer
connected with one dense layer to provide the forecasted value.
However, in order to design a model that is able to adapt to
the variable throughput patterns, a stacked LSTM structure
is used. This type of model has additional LSTM layers that
are connected among them in a topology where the input of



a layer is the output of the preceding one. This increases the
ability of the model to analyze complex input patterns, such
as the ones present in mobile networks. The topology used for
this work consists of three LSTM hidden layers and one dense
layer acting as the output. Each of the three LSTM layers
are formed by an array of 128 neurons, with a 25% dropout
layer in-between. The input of the model is formed by a bi-
dimensional 6x3 array, where the first dimension represents the
features (SINR, RSRP and throughput in times t, t− 1, t− 2
and t− 3) and the second dimension represents the values of
those features in three previous time steps.

Finally, the output of the third layer is the input of a fully
connected dense layer, providing the predicted throughput.
The prediction model has the possibility of using a three-step
prediction in the future (t + 1, t + 2 and t + 3), but for this
work, only the first step (t+ 1) was considered. Usually, on a
multi-step predictor, the error increases with the increment of
multi-steps in the future, reducing the prediction’s accuracy.

The additional layers let the model abstract the characteristics
of the network and make connections that adapt one specific
layer to one single characteristic. The model uses the LSTM
layers as a way to particularize each of the characteristics
of the previous time-steps (t − 1, t − 2, t − 3) into each of
the three layers, respectively. The dataset is divided into 25%
for test and 75% for training, with a batch size of 32, 15
epochs and a learning rate of 0.1%. The hyperparameters
of the ML model do not have a direct relation with the
output of the model. Moreover, the fine-tuning process of
finding the optimal hyperparameter values is frequently done
experimentally, following a trial and error cycle.

C. Implementation Details

LSTM is implemented in Python using Keras, while Random
Forest is implemented using Scikit-learn. When the training
and validation of the prediction models has finished, they are
tested in an NS3 simulation. NS3 is a discrete event simulator
capable of deploying mobile network architectures in an end-
to-end format. However, NS3 runs as a closed framework, and
it does not provide a native interface to use the most extended
ML libraries, such as Keras, Scikit-learn and Pytorch. For
that reason, NS3-AI [5] is used to enable the interconnection
of NS3 with the aforementioned libraries through the use of
a shared memory pool, as shown in Figure 1. This process
enables the exchange of information among the prediction and
the simulation frameworks in run time, creating a closed-loop
cycle in-between.

The same chosen variables used as input for the training
dataset (RSRP, SINR, and throughput) are periodically sent
(every 50 milliseconds) to the prediction model using the
aforementioned shared memory pool. The prediction model
gathers and transforms the information into a multi-variate
time-series with three steps sliding window that acts as an
input of the models. At the same time, the model provides a
prediction that is used to determine an action, i.e., increasing,
decreasing, or maintaining the number of PRBs assigned to
the radio nodes. This action is then sent back to NS3 through

Fig. 1: NS3 and Python shared memory pool.

TABLE I
SCENARIOS DESCRIPTION FOR EVALUATION CAMPAIGN

Parameter Sce. 1 Sce. 2 Sce. 3 Sce. 4
Active UE 15 10 10 15
Intermittent UE 0 10 10 0
1st interval 0 5 5 0
2nd interval 0 3 3 0
On-Off cycles 0 3 3 0
Radio nodes 3 3 3 6
Mobility Pattern GM GM S GM
Initial Speed 15 m/s 15 m/s 0 15 m/s
DL/UL PRB D D D F

the same memory pool to adjust the network accordingly. This
complete cycle is repeated until the simulation time is over.

IV. PERFORMANCE EVALUATION

A. Methodology

Four scenarios are used to test the designed ML models.
Each scenario contains an area of 750 x 750 meters where 15
UEs (for scenarios 1 and 4) and 20 UEs (for scenarios 2 and 3)
are randomly placed. For scenarios 1, 2 and 4, the UEs follow
a Gauss-Markov mobility pattern, whereas in scenario 3 the
UEs are stationary. The radio nodes are connected to a Packet
Gateway Core, which in turn is linked to the Internet and then
to a remote host acting as the content provider. Afterwards, a
UDP server is installed in all UEs and configured in a point-
to-point network with a 20 Mbps throughput and a Maximum
Transfer Unit (MTU) of 1200 bytes to the remote host. The
radio nodes are configured with a default PRB value (50 PRBs)
at the beginning of the simulation and are adapted through the
simulation according to the prediction of the ML models. Each
experiment simulates 25 seconds. Six slice types are created
for each scenario and each UE is assigned to a particular slice.
Additionally, to guarantee a minimum level of service for all
users, a Proportional-Fair Scheduler (PFS) is used. A PFS is
a radio scheduler in charge of managing the RAN among the
UEs offering a trade-off between having a high throughput and
providing the required service to all the UEs. The scenarios
are described in Table I, where GM stands for Gauss Markov,



S for Stationary, D for Dynamic (i.e., PRBs changes based on
the predictions) and F for Fixed (i.e., PRBs are fixed).

Scenarios 2 and 3 have an intermittent traffic pattern with the
following behavior: the UEs delivering intermittent traffic are
activated during five seconds, followed by an idle state of three
seconds and then activated again for the next five seconds. The
first intermittent UE starts at second 3 of the simulation and
every other UE have an additional start-delay of 0.5 seconds
among each other. In order to acquire meaningful data from
the experiments, each scenario is repeated 25 times. In the
following section the average of these 25 executions is shown.

B. Results Discussion

To evaluate the accuracy of the predictions, the Mean
Squared Error (MSE), the Mean Absolute Error (MAE), the
Root Mean Squared Error (RMSE), the Explained Variation
Score (EVS), the Median Absolute Deviation (MAD) and R2

scored are computed. Each ML model is provided with the
same data to guarantee that the results are compared under the
same conditions. A summary of the error metrics is provided in
Table II. Moreover, for all scenarios a comparison between the
real throughput of the slices and the forecasted one is presented.

TABLE II
ERROR METRICS FOR ALL SCENARIOS

Error Model Sce. 1 Sce. 2 Sce. 3 Sce. 4

MSE LSTM 0.154 0.162 4.063 0.133
RF 0.045 0.038 0.128 0.036

MAE LSTM 0.321 0.335 1.716 0.314
RF 0.170 0.162 0.302 0.156

RMSE LSTM 0.396 0.402 2.015 0.365
RF 0.212 0.194 0.358 0.192

EVS LSTM 0.846 0.430 0.454 0.757
RF 0.956 0.849 0.981 0.915

MAD LSTM 0.260 0.301 1.690 0.306
RF 0.142 0.145 0.290 0.132

R2 LSTM 0.784 0.141 0.422 0.589
RF 0.937 0.732 0.981 0.886

The results of scenario 1 are shown in Figure 2 comparing
the ground-truth of the throughput with the value forecasted
by the ML models. From a graphical analysis, it is possible to
observe that LSTM underperforms Random Forest’s predictions.
LSTM’s predictions follow the traffic trend properly, but
Random Forest generates a smoother predicted signal, being
able to follow the spikes of the throughput faster and more
precise. This is confirmed in Table II, which shows that Random
Forest’s error metrics are, overall, better. However, LSTM’s
MAE and MAD metrics are low when compared with the
absolute traffic in the scenarios, making it still a viable predictor.
This final point also holds for scenario 2, for which in Table II
can be seen that the MAE and MAD metrics are similar to
scenario 1. Scenario 2 includes the intermittent traffic pattern,
forcing the models to predict based on previously unknown
information. Because of that, the EVS and R2 metrics in
both models decreased compared with the initial scenario.

Additionally, it is possible to see a biased error in scenario 2 due
to the EVS value being almost half the R2 value. This behavior
is linked with the model’s inability to generalize, meaning that
the models are memorizing the training information and are not
able to correctly predict any related information. This fact can
be verified in the results in terms of forecasted traffic depicted
in Figure 3.

(a) LSTM. (b) Random Forest.

Fig. 2: Global throughput prediction vs. real value in scenario 1.

(a) LSTM. (b) Random Forest.

Fig. 3: Global throughput prediction vs. real value in scenario 2.

Regarding scenario 3, both EVS and R2 error metrics
plummeted compared with the previous two cases for LSTM,
as shown in Table II. This could happen because scenario 3 is
the one that changes the most of all the four scenarios. The
UEs in scenario 3 do not move, compared with the always
moving UEs in the other scenarios. This behavior could affect
the traffic pattern and the way the prediction models provide
the forecasted throughput, directly affecting the error metrics.
Additionally, for LSTM, the MAE and MAD values increase,
being up to 25% of the total forecasted value. These absolute
errors, in hand with the lower EVS and R2 values show that
LSTM is not suitable to be used under these circumstances.
Conversely, Random Forest’s metrics show that the quality of
the prediction stayed the same, with low MAE and RMSE
and high values of EVS and R2, proving to be a valid model.
Furthermore, in this scenario, EVS and R2 are the same, which
corresponds to a prediction with minimal or zero bias error, as
shown in Figure 4, which depicts the great difference in the
ability of both models to generalize the predicted throughput
on more diverse network settings.

Finally, the accuracy results of scenario 4 are shown in
Table II. By analyzing these values, it is possible to see that
again the numbers are on the side of Random Forest, but not
excluding LSTM as a prediction model. Additionally, it can
be noted that both models have a small bias error, based on



(a) LSTM. (b) Random Forest.

Fig. 4: Global throughput prediction vs. real value in scenario 3.

the differences of the EVS and R2. The same conclusions
can be drawn from the throughput comparison depicted in
Figure 5. This scenario in particular has a higher network
capacity, by using double of the radio nodes, but this does
not have any effect over the prediction models as the MAE,
MAD and RMSE metrics are similar to scenarios 1 and 2,
providing a predicted value in the same order of magnitude
as the throughput value. The absolute errors are good ways of
determining the prediction quality but finally the error values
need to be analyzed by comparing them with the application
in which the model is going to be deployed, as the margins of
acceptance changes within different deployments.

(a) LSTM. (b) Random Forest.

Fig. 5: Global traffic prediction vs. real value in scenario 4.

V. CONCLUSIONS

In this paper, we have presented two ML-based through-
put forecasting methods for network slicing that proactively
improves wireless resource allocation for each network slice,
reducing costs while preserving the SLAs. Using NS3 network
simulator and NS3-AI framework, a closed loop where the
actions predicted by the ML models could be used in run
time has been created. In this setting, an LSTM and a Random
Forest model have been designed, being the second the one that
has shown a better performance for the use case presented in
this paper. The evaluation carried out has shown that Random
Forest fits the observed data 26% better than the other model.
LSTM lacks generalization and its performance drops for those
scenarios that differ the most from the training benchmark. As
future work, LSTM requires further analysis as it has not shown
the expected capacity for generalization, requiring tests with
bigger datasets and other neural network models. Moreover,
we plan to validate the results on a real-world testbed using
various traffic and UEs types.

ACKNOWLEDGMENT

This work has been supported by the EU’s H2020 project
Affordable5G (957317) and PID2019-108713RB-C51 MCIN/
AEI /10.13039/501100011033. This work is part of the R&D
project RTI2018-098156-B-C52 supported by the MCIN and
the European Regional Development Fund: ”a way of making
Europe”. This work was also supported by the Government
of Castilla-La Mancha (project SBPLY/17/180501/000353),
and Universidad de Castilla-La Mancha and the European
Union’s Social Fund (Grant 2019-PREDUCLM-10921). The
authors would also like to acknowledge CERCA Programme /
Generalitat de Catalunya for sponsoring this work.

REFERENCES

[1] R. Abozariba, M. Kamran Naeem, M. Asaduzzaman, and M. Patwary,
“Uncertainty-aware RAN Slicing via Machine Learning Predictions in
Next-Generation Networks,” in Proc. of IEEE VTC2020-Fall, Victoria,
BC, Canada, 2020.

[2] N. Salhab, R. Langar, R. Rahim, S. Cherrier, and A. Outtagarts,
“Autonomous Network Slicing Prototype Using Machine-Learning-Based
Forecasting for Radio Resources,” IEEE Communications Magazine,
vol. 59, no. 6, pp. 73–79, 2021.

[3] G. F. Riley and T. R. Henderson, “The NS-3 Network Simulator,” in
Modeling and Tools for Network Simulation, 2010, pp. 15–34.

[4] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in Proc. of the 1st international conference on Simulation
tools and techniques for communications, networks and systems &
workshops, Marseille, France, 2008.

[5] H. Yin, P. Liu, K. Liu, L. Cao, L. Zhang, Y. Gao, and X. Hei, “Ns3-Ai:
Fostering Artificial Intelligence Algorithms for Networking Research,”
in Proc. of WNS3, Gaithersburg, MD, USA, 2020.

[6] J.-B. Monteil, J. Hribar, P. Barnard, Y. Li, and L. A. DaSilva, “Resource
Reservation within Sliced 5G Networks: A Cost-Reduction Strategy for
Service Providers,” in Proc. of IEEE ICC Workshops, Dublin, Ireland,
2020.

[7] L. A. Garrido, P.-V. Mekikis, A. Dalgkitsis, and C. Verikoukis, “Context-
Aware Traffic Prediction: Loss Function Formulation for Predicting Traffic
in 5G Networks,” in Proc. of IEEE ICC, Montreal, Canada, 2021.

[8] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang,
“Spatiotemporal modeling and prediction in cellular networks: A big data
enabled deep learning approach,” in Proc. of IEEE INFOCOM, Atlanta,
GA, USA, 2017.

[9] R. Guerra-Gómez, S. R. Boqué, M. Garcı́a-Lozano, and J. O. Bonafé,
“Machine-Learning based Traffic Forecasting for Resource Management
in C-RAN,” in Proc. of EuCNC, Dubrovnik, Croatia, 2020.

[10] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5G network
slicing resource utilization,” in Proc. of IEEE INFOCOM, Atlanta, GA,
USA, 2017.

[11] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Cognitive Network Management in Sliced 5G Networks with
Deep Learning,” in Proc. of IEEE INFOCOM, Paris, France, 2019.

[12] P. Gawłowicz and A. Zubow, “NS-3 meets OpenAI Gym: The Playground
for Machine Learning in Networking Research,” in Proc. of ACM MSWiM,
Miami Beach, USA, 2019.

[13] S. Cho, “Reinforcement Learning for Rate Adaptation in CSMA/CA
Wireless Networks,” in Advances in Computer Science and Ubiquitous
Computing. Springer, 2021.

[14] I. Nascimento, R. Souza, S. Lins, A. Silva, and A. Klautau, “Deep
Reinforcement Learning Applied to Congestion Control in Fronthaul
Networks,” in Proc. of IEEE LATINCOM, Salvador, Brazil, 2019.

[15] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, J. Kolen, and
S. Kremer, “A field guide to dynamical recurrent neural networks,”
chapter Gradient Flow in Recurrent Nets: The Difficulty of Learning
Long-Term Dependencies, pp. 237–243, 2001.

[16] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond
Throughput: A 4G LTE Dataset with Channel and Context Metrics,” in
Proc. of ACM MSC, Amsterdam, the Netherlands, 2018.




