
1

Exploration and Exploitation in Federated Learning
to Exclude Clients with Poisoned Data

Shadha Tabatabai∗†, Ihab Mohammed∗, Basheer Qolomany‡, Abdullatif Albasser§, Kashif Ahmad§,
Mohamed Abdallah§, Ala Al-Fuqaha§

∗ School of Computer Sciences, Indiana Institute of Technology, USA.
{smtabatabai,iamohammed@indianatech.edu}

† Department of Computer Science, Western Michigan University, USA, shadhamuhinoo.tabatabai@wmich.edu
‡ Department of Cyber Systems, College of Business & Technology, University of Nebraska at Kearney, Kearney,

NE 68849, qolomanyb@unk.edu
§ Information and Computing Technologies (ICT) Division, College of Science and Engineering (CSE), Hamad

Bin Khalifa University, Doha, Qatar.
{amalbaseer,kahmad,moabdallah,aalfuqaha@hbku.edu.qa}

Abstract—Federated Learning (FL) is one of the hot research
topics, and it utilizes Machine Learning (ML) in a distributed
manner without directly accessing private data on clients. How-
ever, FL faces many challenges, including the difficulty to obtain
high accuracy, high communication cost between clients and the
server, and security attacks related to adversarial ML. To tackle
these three challenges, we propose an FL algorithm inspired by
evolutionary techniques. The proposed algorithm groups clients
randomly in many clusters, each with a model selected randomly
to explore the performance of different models. The clusters are
then trained in a repetitive process where the worst performing
cluster is removed in each iteration until one cluster remains. In
each iteration, some clients are expelled from clusters either due
to using poisoned data or low performance. The surviving clients
are exploited in the next iteration. The remaining cluster with
surviving clients is then used for training the best FL model (i.e.,
remaining FL model). Communication cost is reduced since fewer
clients are used in the final training of the FL model. To evaluate
the performance of the proposed algorithm, we conduct a number
of experiments using FEMNIST dataset and compare the result
against the random FL algorithm. The experimental results show
that the proposed algorithm outperforms the baseline algorithm
in terms of accuracy, communication cost, and security.

Index Terms—Internet of Things, Federated Learning, Edge
Computing, Deep Learning, CNNs, Distributed ML, Security.

I. INTRODUCTION

Recently Federated learning (FL) has been proposed as an
emerging approach to build Machine Learning (ML) models
across multiple decentralized edge devices [1]. This helps to
overcome the challenge of privacy preservation by keeping all
the training data on the device, decoupling the ability to do ML
from the need to store the data in the cloud. However, several
challenges need to be considered for the implementation of FL
including communication cost between the servers and clients,
the accuracy of the model, and security.

FL is vulnerable to security attacks whereby a group of
malicious clients could harm the performance of the model
by carrying out a poisoning attack [2]. These attacks may
cause the model to fail and converge to biased models that
do not accurately represent the data. Applying anti-poisoning

techniques might lead to the discrimination of minority groups
whose data are significantly and legitimately different from
those of the majority of clients [3]. In addition, detection and
identification of unauthorized IoT devices are very important
especially with the increase in the number of attacks on IoT
devices.

In this paper, to cope with the FL challenges, we propose an
FL framework inspired by evolutionary techniques consisting
of three stages. In the first stage, participating clients are
grouped randomly into a number of clusters. Subsequently,
a random model is selected for each cluster. In the second
stage, models are explored and the best performing cluster,
in terms of classification accuracy, is selected in a repetitive
process. In each iteration, all the clusters are trained in parallel
and the worst performing cluster is removed from the process
till one cluster remains. Additionally, in each iteration, several
clients may be expelled from each cluster either due to their
low performance compared with other clients in the cluster or
their data being poisoned. The remaining clients of removed
clusters are exploited by joining the best-performing cluster.
In the third stage, the best performing cluster is utilized such
that FL is trained with the cluster’s model using the remaining
clients in that cluster.

The salient contributions of this paper are:

• Optimize the performance of FL in terms of accuracy
by exploring a number of clusters, each with a different
model, to select the best performing model (i.e., cluster).

• Optimize the security of FL by identifying clients with
poisoned data and expel them from every cluster using
cosine similarity while surviving clients are exploited in
every iteration.

• Optimize the communication cost during the training
process by expelling clients with either poisoned or weak
data. Thus fewer clients participate in the training process
leading to less communication.

The organization of the remainder of the paper is as follows.
Related literature is reviewed in Section II. The system model

ar
X

iv
:2

20
4.

14
02

0v
1

 [
cs

.D
C

]
 2

9
A

pr
 2

02
2

2

Table I: An overview of the related work.

Ref. Year Target/Focus
Accuracy Communication cost Security

[4] 2020 X
[5] 2020 X
[6] 2020 X
[7] 2019 X
[8] 2020 X
[3] 2020 X
[9] 2021 X
[10] 2021 X
[11] 2020 X

This Work 2021 X X X

is described in Section III. Section IV discusses the proposed
algorithm. The used dataset and conducted experiments are
explained in Section V. A discussion of the results and the
salient lessons learned are provided in Section VI. Finally, the
paper is concluded in Section VII by summarizing the work
and identifying future research directions.

II. RELATED WORK

Recently, a significant amount of work has been done in the
area of FL. This section reviews recent related works on the
different aspects of the work, including algorithm optimization
and poisoning attacks against FL. The reviewed papers focus
on optimizing the algorithm used in FL to gain more accuracy,
reduce communication between the clients and the server, or
enhance security. To the best of our knowledge, this work is
the first attempt that optimizes FL model accuracy, reduces the
number of client-server communication rounds, and enhances
the security of FL models. We describe and compare the most
relevant previous works with our work in Table I.

A. Algorithm Optimization

Several interesting optimization techniques have been pro-
posed to deal with the challenges associated with FL, including
learning an ML model in an FL environment, unbalanced
distribution of local data, and reduce the generated traffic in
the network.

Mohammed et al. [4] proposed a stateful FL heuristic
algorithm to solve the problem of optimizing accuracy in
stateful FL with a budgeted number of candidate clients by
selecting the best candidate clients in terms of test accuracy
to participate in the training process. Ahmed et al. [5] tried to
improve the accuracy of the FL model by employing unlabeled
data available at each client through an active learning scheme.
Qolomany et al. [6] proposed a Particle Swarm Optimization
(PSO)-based technique to optimize the hyperparameter set-
tings for the local ML models in an FL environment. They
evaluated and compared the proposed approach with the grid
search technique. They found that the number of communi-
cation rounds used by their proposed approach is two orders
of magnitude less than the grid search method. To address
the issue of local clients’ data distributions diverge, Sattler
et al. [8] proposed clustered multitask FL framework, which
exploits geometric properties of the FL loss surface to group
the client population into clusters with jointly trainable data

distributions. They found that the cosine similarity between the
weight-updates of different clients is highly indicative of the
similarity of their data distributions. Yao et al. [7] proposed a
feature fusion method by aggregating the features from both
the local and global models to address the problem of high
communication round cost when the local data is distributed
in a Non-IID way. Yao and Sun [12] proposed a local continual
training strategy to address the problem of weight divergence
of ML model in FL environment by evaluating the important
weight matrix on a small proxy dataset on the central server
and then used to constrain the local training.

B. Poisoning Attacks Against Federated Learning
The communication protocol amongst different nodes in the

FL environment could be exploited by attackers to launch data
poisoning attacks, which has been demonstrated as a big threat
to most ML models. To improve the robustness of real-world
ML systems, it is critical to study how well these models
perform under poisoning attacks.

To this aim, Singh et al. [3] proposed two approaches to
distinguish malicious behaviors of a node from legitimate
ones in FL. The first approach is based on micro aggre-
gation, with this approach, clients who identify themselves
as belonging to a minority group announce some relevant
attributes to their peers, such as gender, sexual orientation,
or their ethnicity. While the second approach is based on
Gaussian mixture models to characterize the distribution of
the client-provided updates. Doku and Rawat [9] proposed an
approach based on an SVM model for data vetting process
to mitigate data poisoning attacks in an FL setting. They
introduced the concept of a facilitator that gets assigned to
an end device. The facilitator’s job is to ensure the data that
an end device owns has not been compromised. Zhang et al.
[10] proposed a poisoning attack model based on generative
adversarial networks to explore an active and powerful attack
model, poisoning attacks, in FL-aided IoT systems. They
designed a poison data generation method to eliminate the
conventional attacking assumption that the attacker already
owns a proportion of other participants’ training data. Cao et
al. [13] proposed a scheme, Sniper, to eliminate poisoned local
models from malicious participants during training. Sniper
identifies benign local models by solving a maximum clique
problem, and poisoned local models will be ignored during
global model updating. They analyzed how the number of
poisoned samples and the number of attackers as variables
affecting the performance of distributed poisoning attacks.
They observed that the attack success rate increases linearly
with the number of poisoned samples. The attack success
rate increases with the number of attackers when the number
of poisoned samples is unchanged and the increasing speed
becomes faster when more attackers are involved. Liu et
al. [11] proposed a blockchain-based secure FL framework
to address data privacy leakage issues related to ensuring
secure FL in 5G networks. They used smart contracts in
blockchain to validate the model updates against poisoning
attacks automatically, they also introduced the local differential
privacy technique in smart contracts to prevent membership
inference attacks.

3

III. SYSTEM MODEL

We assume one server, N clients, and C clusters such that
there are N/C clients per cluster except for the last cluster,
which may have fewer clients as shown in Fig. 1. We also
assume a training budget of R rounds. There are three stages
for the system to find and train the best model. In the first
stage, the server randomly assigns clients to C clusters and
selects a random model for each cluster. In other words, the
server assigns the same model to all clients of the same cluster.
Additionally, the server has a small unlabeled dataset used
for testing models during the training process to determine
the performance of models and thus determining the best and
worst-performing models. The use of an unlabeled dataset
rather than a labeled one ensures the privacy of data on the
server. In the second stage, the system runs C − 1 iterations
to explore models. In each iteration, clients in each cluster
are engaged with the server for a number of communication
rounds to train the global model of that specific cluster. By
the end of each iteration, two actions take place. First, some
clients (depending on the value of X as explained later) are
expelled from each cluster due to a poisoned or poor dataset.
Second, the best and worst-performing models (i.e., clusters)
are determined, and the worst cluster is removed, and its clients
are exploited and assigned to the best performing cluster. By
the end of the last iteration, only one cluster remains with
M ≤ N clients as shown in Fig. 1. In the third stage, clients
in the remaining cluster engage with the server for a number
of iterations to train the remaining global model.

 ...
Client 1

Cloud server

Client 2 Client N/C

Cluster 1

 ...
Client 1 Client 2 Client N/C

Cluster j

 ...
Client 1 Client 2 Client N/C

Cluster C

Model 1

Model j

Model C Cloud
server

 ...
Client 1 Client 2 Client M

Best Cluster

Best
Model

Trained Model

Figure 1: An illustration of the system model. The cloud server
running the proposed algorithm communicates with the local
servers in different clusters to train a number of global models
in stage 2 then the best model is trained in stage 3.

IV. PROPOSED ALGORITHM

The proposed algorithm consists of three stages. In the first
stage (Algorithm 1, lines 1 through 7), C clusters are formed
and each cluster hosts about N/C clients and uses a model
selected randomly. We created a pool of random models to
select from. Each model in the pool is created with three
parameters: number of convolutional layers (1 or 2), filters
(64, 128, 196, or 256), and kernel size (3x3, 3x5, 5x3, or
5x5). There is an input layer with 28x28 size. Also, a max-
pool layer is used after every convolutional layer. The last 3
layers are one flatten layer and two dense layers.

In the second stage (Algorithm 1, lines 8 through 27), mod-
els are explored, and the best performing model (i.e., cluster)

Algorithm 1 Proposed heuristic
Input: N : number of clients, C: number of clusters, R: number of com-
munication rounds, E: number of epochs, Rc: number of communication
rounds per cluster, X: percentage of expelled clients per cluster per phase
Output: Trained global model

// Server initialization
1: for c = 1 to C do
2: Pick random model Mc for cluster c
3: Initialize the global model Mc

4: Pick Nc ≤ N/C clients for cluster c
5: end for
6: Set Estage2 = (R / 2) x E
7: Set Ec = Estage2 / (C - 1) / Rc

// Find the best model in terms of predicted labels
8: while C > 1 do
9: for c = 1 to C do

10: for r = 1 to Rc do
11: Server send global model Mc to all clients in c
12: Clients train global model on local dataset with Ec epochs and

return updated model
13: Server average aggregated model parameters from clients
14: end for
15: Predict labels of the unlabeled dataset using the global model on the

server
16: Predict labels of the unlabeled dataset for every returned clients’

model on the server
17: Compute cosine similarity for every returned clients’ models
18: Exclude X% of clients with the lowest cosine similarity from cluster

c
19: end for
20: Compute the average of predicted labels using global models of all

clusters
21: Compute cosine similarity for predicted labels of every cluster against

the average predicted labels of all clusters
22: Find ch the cluster with the highest cosine similarity
23: Find cl the cluster with the lowest cosine similarity
24: Move all clients from cl to ch
25: Delete cluster cl
26: Set C = C − 1
27: end while

// Train the last remaining cluster
28: Set c = last remaining cluster number
29: for r = 1 to R/2 do
30: Server send global model Mc to all clients in c
31: Clients train global model on local dataset with E epochs and return

updated model
32: Server average aggregated model parameters from clients
33: end for
34: Return the trained global model

is selected in a repetitive process with C−1 iterations. In each
iteration, all clients in all clusters are trained in parallel for
Rc communication rounds, then X% clients are expelled from
each cluster due to low performance or poisoned data. Next,
the cluster with the most deficient performance is deleted,
and its clients are exploited by joining the highest performing
cluster. This process continues until only one cluster is left.
In the third stage (Algorithm 1, lines 28 through 34), clients
in the remaining cluster are trained for R/2 communication
rounds, and the trained model is returned.

We can summarize the proposed algorithm (Algorithm 1)
as follows:

• Lines 1 through 5: initialize a random model and select
N/C clients randomly for each of the C clusters.

• Lines 6 through 7: set training parameters per cluster
• Lines 8 through 27: find the best model by running C−1

phases. In each phase, clients of all available clusters are
trained in parallel. Clients are evaluated in every cluster
based on the cosine similarity of predicted labels of the

4

global model against predicted labels of every client’s
model using an unlabeled dataset in the server. Then, X%
clients with the lowest cosine similarity are expelled from
every cluster. The low performance of expelled clients is
either related to poor data or poisoned data. Finally, the
clusters are evaluated based on their average predicted
labels, and the cluster with the lowest cosine similarity
is deleted with its clients moved to the cluster with the
highest cosine similarity.

• Lines 28 through 34: train the remaining clusters and
return the trained model.

V. EXPERIMENTAL SETTINGS

A. Dataset

We use the Federated Extended MNIST, FEMNIST [14],
for classifications tasks. The FEMNIST is used for both letters
and digits (A-Z, a-z, and 0-9), and it has 244,154 images for
training and 61500 for testing. We use this dataset under non-
i.i.d data distribution, where the FEMNIST dataset is first split
into 62 partitions (number of labels). Then each of the 900
users is assigned batches of two classes only.

For adversarial versions: we applied Fast Gradient Sign
Method (FGSM) proposed by Goodfellow [15]. FGSM is
widely used to produce adversarial examples. The original
input is manipulated by adding or subtracting a small error
of ε to each data sample. ε is a small number controlling the
size of the adversarial attack to be effective. Any addition
or subtraction of the ε depends on the gradient sign for any
given input that is either positive or negative. Adding errors in
the gradient direction means that classification is intentionally
altered so that the model classification fails.

We divided the training dataset over N clients in all
experiments and used a random unlabeled number of records
from the test dataset on the server, which is used for evaluating
clients’ local models and global cluster models.

B. Experiments

To evaluate the performance of the proposed algorithm, we
compared the results of the proposed algorithm against the
random FL algorithm (baseline algorithm), which is also used
as the baseline algorithm in [4]. To ensure a fair comparison,
we use the same number of epochs for both algorithms. We
set R, the number of communication rounds to 32, and the
number of epochs E to 8 for all experiments of the baseline
algorithm, so every client uses a total of 256 (8 x 32) epochs.
We used less than or the equal number of epochs (≤ 256) with
all experiments of the proposed algorithm.

For example, assume that we have 8 clusters. Since there
are 256 total epochs available for every client in the baseline
algorithm, we use half of it or less in the second stage of the
proposed algorithm and use the other half in the third stage
of the proposed algorithm. To do that, we first compute the
total number of epochs available for the second stage of the
proposed algorithm as shown in equation (1), which is 128.

Estage2 =
R

2
E (1)

Since we have C − 1 iterations, we need to compute the
number of epochs per client in each iteration, and the total
number of epochs per client for the C − 1 iterations must
be ≤ 128. Assuming that Rc, the number of communication
rounds per cluster is 4, we compute the total number of epochs
used by every client per iteration in the second stage of the
proposed algorithm as shown in equation (2). This number is
4.57, so we round down the number to 4 epochs. Consequently,
the second stage of the proposed algorithm is using only 112
epochs (4 epochs times 4 rounds times 7 iterations) and not
128.

Ec =
Estage2

(C − 1)Rc
(2)

In the third stage of the proposed algorithm, we use R/2
times E epochs, which is 128. Thus, the proposed algo-
rithm is actually using less number of epochs, 240 in this
example, compared to the baseline algorithm. In other words,
the proposed algorithm consumes fewer computing resources
compared to the baseline algorithm. In general, the proposed
algorithm uses ≤ epochs compared to the baseline algorithm.

We conducted 208 total experiments using the parameters
shown in Table II. We run 16 experiments with the baseline
algorithm using all combinations of N and Pperc. Then we
run 192 experiments with the proposed algorithm using all
combinations of N , C, Pperc, and Xperc.

Running those experiments on a single computer takes
months. Thus, we utilized tens of nodes in the Holland
Computing Center at the University of Nebraska [16]. We run
all of the 16 experiments of the baseline algorithm in parallel
as a single batch, then divided the 192 experiments of the
proposed algorithm into 8 batches, each having 24 experiments
that run in parallel.

Table II: Simulation Parameters.

Sym. Parameter Value(s)
N No. of clients (100, 200, 400, 900)
C No. of clusters (4, 8, 16, and 32)
R Communication rounds 32
E Epochs 8
B Batches 32
Rc Rounds per cluster 4
P Percentage of poisoned dataset (0, 10, 20, and 40)
X Percentage of expelled clients (0, 10, and 20)

per cluster

VI. RESULTS DISCUSSION

Since we cannot present all 208 experiments, we fixed
some parameters and show the results for changing the other
parameters.

A. Performance of Clustering

We measured the performance of both algorithms in terms
of accuracy using a non-poisoned dataset (P = 0%) and
disabled expelling in the proposed algorithm (X = 0%).
Results are illustrated in Fig. 2a (summary of 20 experiments),
which shows the superior performance of the proposed al-
gorithm over the baseline algorithm using different numbers
of clusters and clients. These results support the claim that

5

200 400 600 800
Number of clients

0.76

0.78

0.80

0.82

0.84
Ac

cu
ra

cy Proposedc = 4
Proposedc = 8
Proposedc = 16

Proposedc = 32
Baseline

(a) Accuracy of the proposed v.s. the baseline
algorithms with P = 0% and X = 0%.

1 2 3 4 5 6 7
Iteration

0

20

40

60

80

100

120

Ac
cu

ra
cy

cluster 0
cluster 1
cluster 2
cluster 3

cluster 4
cluster 5
cluster 6
cluster 7

(b) Accuracy of models (i.e clusters) used in the
proposed algorithm with N = 400, P = 40%,
and X = 20%.

X=0% X=10% X=20% Baseline
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

ProposedP = 0
ProposedP = 10
ProposedP = 20
ProposedP = 40

BaselineP = 0
BaselineP = 10
BaselineP = 20
BaselineP = 40

(c) Accuracy of the proposed v.s. the baseline
algorithms with C = 32 and N = 900.

X=0% X=10% X=20% Baseline
10

15

20

25

30

35

40

No
. o

f C
om

m
un

ica
tio

n
ro

un
ds

 x
 1

00
0

ProposedP = 0% BaselineP = 0%

(d) Communication cost of the proposed v.s. the
baseline algorithms with N = 400, P = 0%, and
C = 8.

Figure 2: Comparison of the proposed FL algorithm against
the baseline.

the second stage of the proposed algorithm selects a better
model than the baseline algorithm and thus results in better
(i.e. higher) accuracy while using the same number of epochs.
However, this gain in performance comes at the expense of
communication cost, which can be reduced when clients are
expelled (i.e., X ≥ 0) as discussed in subsection VI-C. Fig. 2b
shows the second stage of the proposed algorithm in action. It
shows the accuracy of each model (i.e., cluster) over iterations,
starting with 8 models at iteration 1 and ending with one model
(best performing model in cluster 5) at iteration 7.

B. Performance with Poisoned Dataset

To study the effect of the poisoned dataset on the perfor-
mance of the two algorithms, we run both algorithms using
different percentages of the poisoned dataset as shown in Fig.
2c. In this figure, we can see that when the poisoned percent-
age of the dataset is higher, especially when P = 40%, the
performance of the baseline algorithm in terms of accuracy is
severely impacted. On the other hand, the proposed algorithm
is barely impacted due to clustering (i.e. better performing
model) and expelling of clients with the poisoned dataset.

Table III: Efficiency of expelling clients with N = 400, P =
40%, X = 20%, and C = 8.

Iteration True
Positive

False
Positive

True
Negative

False
Negative

Total
Nodes

1 24 56 184 136 400
2 31 33 151 105 320
3 37 11 140 68 256
4 31 9 131 37 208
5 20 12 119 17 168
6 16 10 109 1 136
7 1 20 89 0 110

Figure 3: Meaning of Negative, Positive, True, and False in
Table III

C. Performance with Expelling Clients

Expelling clients with poisoned or poor dataset prevent the
deterioration of the performance of the proposed algorithm
as indicated in Fig. 2c compared to the baseline algorithm.
However, expelling a client with a good dataset can reduce
the performance of the proposed algorithm. To study the
expelling process in more depth, we track the number and
status of expelled clients after each iteration and create a
confusion matrix as shown in Table III. Fig. 3 explains the
meaning of the four main columns in Table III. For example,
a True Positive number represents the number of clients being
expelled by the proposed algorithm that has a poisoned dataset.
A False Positive is not always a bad indication because the
expelled clients may have a poor dataset. On the other hand,
a False Negative always negatively impact the performance
of the proposed algorithm. We start with 400 nodes in the

6

experiment in Table III with a total of 160 poisoned nodes
(40%). In the first iteration, the number of False Positive is
higher than the number of True Positive, which is expected
since the proposed algorithm is just starting and need more
training. Also, the number of False Negative is high because
the proposed algorithm is defined to expel only 20% after each
iteration and thus cannot eliminate all poisoned clients in one
iteration. In the second iteration and on, the number of True
Positive becomes close or higher than the number of False
Positive, which proves that the proposed algorithm is working
as expected and detects poisoned clients more accurately. After
the last iteration, we have only 110 clients left out of the 400,
0 False Negative, and all of the 160 clients with poisoned
datasets are expelled successfully (i.e., 100%). Out of the 290
expelled clients, there are 130 clients with a clean dataset, and
those have poor datasets compared with the remaining clients.

The proposed algorithm uses only 110 clients out of 400 in
the third stage and still gets better results compared with the
baseline algorithm in terms of accuracy. This big reduction in
the number of utilized clients reduces the communication cost
tremendously, as illustrated in Fig. 2d.

D. Lessons Learned

The key lessons learned from the experiments conducted in
this work can be summarized as follows.

• The proposed algorithm can select a better model com-
pared to the baseline algorithm due to using exploration
and exploitation and thus results in better accuracy while
using the same number of epochs.

• The proposed algorithm is better suited to cope with poi-
soned data, compared to the conventional FL algorithm,
by expelling clients with the poisoned dataset.

• The proposed algorithm can accurately identify the clients
with poisoned or poor data without affecting the overall
performance of the final model.

• The expelling process not only expels clients with poi-
soned and poor dataset but also reduce communication
cost.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an algorithm that clusters clients
in the first stage into a number of clusters, each with a random
model. In the second stage, the proposed algorithm explores
those models (i.e., clusters) by training them in a number of
iterations and reduces the number of clusters by one after each
iteration to find the best performing model (i.e., cluster). Also,
in each iteration, the proposed algorithm expels some clients
that have poisoned or poor datasets while surviving clients are
exploited in the next iterations. Then, in the third stage, the
proposed algorithm continues the training process with the
one remaining cluster, representing the selected model (best
performing model) and returning the trained selected global
model. The proposed algorithm is compared with a baseline
algorithm, which is the random FL. Results show that the
proposed algorithm is performing better in terms of accuracy
and number of communication rounds when configured to
expel clients compared with the baseline algorithm.

In the future, we plan to solve the selection of clients
as an optimization problem to maximize the accuracy and
minimize communication rounds given a fixed percentage of
the poisoned dataset.

ACKNOWLEDGMENT

This publication was made possible by NPRP grant # [13S-
0206-200273] from the Qatar National Research Fund (a
member of Qatar Foundation). The statements made herein
are solely the responsibility of the authors.

REFERENCES

[1] A. M. Albaseer, M. Abdallah, A. Al-Fuqaha, and A. Erbad, “Fine-
grained data selection for improved energy efficiency of federated edge
learning,” IEEE Transactions on Network Science and Engineering,
2021.

[2] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of federated
learning,” Future Generation Computer Systems, vol. 115, pp. 619–
640, 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X20329848

[3] A. K. Singh, A. Blanco-Justicia, J. Domingo-Ferrer, D. Sánchez, and
D. Rebollo-Monedero, “Fair detection of poisoning attacks in federated
learning,” in 2020 IEEE 32nd International Conference on Tools with
Artificial Intelligence (ICTAI), 2020, pp. 224–229, ISSN: 2375-0197.

[4] I. Mohammed, S. Tabatabai, A. Al-Fuqaha, F. E. Bouanani, J. Qadir,
B. Qolomany, and M. Guizani, “Budgeted online selection of candidate
IoT clients to participate in federated learning,” IEEE Internet of Things
Journal, pp. 1–1, 2020, conference Name: IEEE Internet of Things
Journal.

[5] L. Ahmed, K. Ahmad, N. Said, B. Qolomany, J. Qadir, and A. Al-
Fuqaha, “Active learning based federated learning for waste and natural
disaster image classification,” IEEE Access, vol. 8, pp. 208 518–208 531,
2020.

[6] B. Qolomany, K. Ahmad, A. Al-Fuqaha, and J. Qadir, “Particle swarm
optimized federated learning for industrial IoT and smart city services,”
in GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–6, ISSN: 2576-6813.

[7] X. Yao, T. Huang, C. Wu, R. Zhang, and L. Sun, “Towards faster and
better federated learning: A feature fusion approach,” in 2019 IEEE
International Conference on Image Processing (ICIP), 2019, pp. 175–
179, ISSN: 2381-8549.

[8] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under privacy
constraints,” IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–13, 2020, conference Name: IEEE Transactions on
Neural Networks and Learning Systems.

[9] R. Doku and D. B. Rawat, “Mitigating data poisoning attacks on a
federated learning-edge computing network,” in 2021 IEEE 18th Annual
Consumer Communications Networking Conference (CCNC), 2021, pp.
1–6, ISSN: 2331-9860.

[10] J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu, “PoisonGAN:
Generative poisoning attacks against federated learning in edge com-
puting systems,” IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3310–3322, 2021, conference Name: IEEE Internet of Things Journal.

[11] Y. Liu, J. Peng, J. Kang, A. M. Iliyasu, D. Niyato, and A. A. A. El-
Latif, “A secure federated learning framework for 5g networks,” IEEE
Wireless Communications, vol. 27, no. 4, pp. 24–31, 2020, conference
Name: IEEE Wireless Communications.

[12] X. Yao and L. Sun, “Continual local training for better initialization
of federated models,” in 2020 IEEE International Conference on Image
Processing (ICIP), 2020, pp. 1736–1740, ISSN: 2381-8549.

[13] D. Cao, S. Chang, Z. Lin, G. Liu, and D. Sun, “Understanding distributed
poisoning attack in federated learning,” in 2019 IEEE 25th International
Conference on Parallel and Distributed Systems (ICPADS), 2019, pp.
233–239, ISSN: 1521-9097.

[14] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[16] Holland computing center-university of nebraska. [Online]. Available:
https://hcc.unl.edu/

https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://hcc.unl.edu/

	I Introduction
	II Related Work
	II-A Algorithm Optimization
	II-B Poisoning Attacks Against Federated Learning

	III System Model
	IV Proposed Algorithm
	V Experimental Settings
	V-A Dataset
	V-B Experiments

	VI Results Discussion
	VI-A Performance of Clustering
	VI-B Performance with Poisoned Dataset
	VI-C Performance with Expelling Clients
	VI-D Lessons Learned

	VII Conclusions and Future Work
	References

