
An Empirical Analysis of Vulnerabilities
in Python Packages for Web Applications

Jukka Ruohonen
University of Turku, Finland

Email: juanruo@utu.fi

Abstract—This paper examines software vulnerabilities in
common Python packages used particularly for web development.
The empirical dataset is based on the PyPI package repository
and the so-called Safety DB used to track vulnerabilities in
selected packages within the repository. The methodological
approach builds on a release-based time series analysis of the
conditional probabilities for the releases of the packages to
be vulnerable. According to the results, many of the Python
vulnerabilities observed seem to be only modestly severe; input
validation and cross-site scripting have been the most typical
vulnerabilities. In terms of the time series analysis based on the
release histories, only the recent past is observed to be relevant
for statistical predictions; the classical Markov property holds.

Index Terms—Software vulnerability, software evolution, soft-
ware release, time series, autologistic, Safety DB, PyPI, pip

I. INTRODUCTION

The patching of vulnerabilities is a classical topic. To
provide means for prioritizing vulnerabilities to be patched,
one common approach has built upon the questions of whether
exploits for the vulnerabilities are known to exist (some-
where), and whether exploitation is observed to occur in
the wild [1], [2]. This approach may be useful for operating
system vendors, maintainers of large networks and cloud
platforms, and to national organizations trying to inform
consumers about the necessity of timely patching. Yet, the
questions related to exploits and exploitation are quite far from
the current software engineering settings with which typical
software is continuously developed, deployed, and maintained.

Development, testing, integration, and other software engi-
neering activities currently often occur on different cloud com-
puting platforms. In addition to continuous testing, integration,
and delivery, automation is one of the contemporary key-
words [3]. The automated continuous deployment frameworks
are important for vulnerability monitoring particularly in the
web application domain. Most current web applications are not
only developed but also deployed on cloud platforms by using
containers, virtual machines, and related solutions. Systematic
monitoring of vulnerabilities within such deployment systems
is a good example of the new practical challenges [4], [5].
These transformations in the ways software is engineered have
also complicated the tracking of known vulnerabilities.

Good progress has recently been made to better understand
the disclosure and patching of software vulnerabilities in open
source projects [6], [7]. However, much of the research is
based on the Common Vulnerabilities and Exposures (CVEs).

While there are good and justifiable reasons to focus on CVE-
stamped vulnerabilities, this focus also limits the scope of a
viewpoint; not all known vulnerabilities have CVEs. In fact,
the absence of CVE identifiers for many vulnerabilities has
long been the message from those promoting alternative vul-
nerability databases [8], [9]. In the open source context these
identifiers are generally allocated only for well-coordinated
and well-understood vulnerabilities in important open source
software packages. Less important, poorly maintained, or
even obscure open source packages are often bypassed—and
hosting services such as GitHub are full of such packages.

These limitations have prompted a new branch of research
for examining vulnerabilities in software repositories. While
packages used in Linux distributions have been a common
target [10], the more recent research has focused on language-
specific repositories such as npm for JavaScript [11], [12].
This is the research domain to which this paper contributes by
presenting the supposedly first study on vulnerabilities in the
Python’s PyPI repository and advancing the understanding on
release-based time series analysis of software vulnerabilities.

II. DATA

A. Sources

The dataset used is based on three sources. The primary data
source is the so-called Safety DB that was launched in 2016
for tracking vulnerabilities in open source packages written in
Python [13]. The packages tracked in the database are mostly
related to web application development. The secondary data
source is the so-called Python Package Index (PyPI) used
to archive and manage Python projects [14]. In addition, a
few descriptive observations rely on further data fetched from
NVD, that is, the National Vulnerability Database [15]. The
following cut JSON (JavaScript Object Notation) excerpt can
be used to illustrate a rather typical entry in Safety DB:

{ "advisory": "The django.views.static.serve
view in Django before 1.4.18, 1.6.x before
1.6.10, and 1.7.x before 1.7.3 reads [...]"

"cve": "CVE-2015-0221", "id": "pyup.io-33072",

"specs": ["<1.4.18",
">=1.6,<1.6.10",
">=1.7,<1.7.3"],

"v": "<1.4.18,>=1.6,<1.6.10,>=1.7,<1.7.3" }

ar
X

iv
:1

81
0.

13
31

0v
2

 [
cs

.S
E

]
 1

6
N

ov
 2

01
8

As can be seen, the advisory field provides a brief textual
description for each vulnerability archived to the database.
These descriptions follow the typically terse prose used for
describing vulnerabilities [12]. (It is also worth remarking that
the textual advisories in Safety DB are mostly plagiarized
directly from NVD and related sources.) To accompany the
textual descriptions, the cve field records a CVE potentially
assigned for a vulnerability archived to the database. The more
valuable information is stored to the specs and v fields,
which both define the releases affected by a vulnerability.

B. Operationalization

The release-based dataset was assembled as follows. For
each package in Safety DB, the full available release history
was first retrieved from the PyPI repository with the pip
package manager. Then, for each vulnerability, a zero-valued
vector v = [0, . . . , 0] was initialized such that the length r of
the vector equals the length of the corresponding package’s
ordered release history. The first element in a given v thus
corresponds with the first release made for the given package.

The vectors were filled according to the release specifica-
tions provided in Safety DB. To process the specifications,
a given version in the specs array was parsed only if the
version was present in a package’s release history reported
in PyPI. For the interval-based specifications—such as the
">=1.6,<1.6.10" condition used in the previous excerpt,
both versions were required to have valid entries. Unlike
in some previous studies [16], pre-releases were not filtered
out. Therefore, the version sequences may contain also alpha
releases (cf. 1.2.3-alpha), beta releases, release candidates
(cf. 1.2.3-rc.0), and other abstract release types that do
not fit directly into the so-called semantic versioning scheme.
In any case, for each specification, a zero-valued r-length
vector s was again initialized, and then filled with the value
one for each release affected. The binary AND operator was
used for filling the interval specifications. As an example: if{

sleft = [0, 0, . . . , 0, 1, 1, 1, 1, . . . , 1]

sright = [1, 1, . . . , 1, 1, 1, 0, 0, . . . , 0]
(1)

denote two filled vectors for an interval specification, the
resulting vector s would be [0, 0, . . . , 0, 1, 1, 0, 0, . . . , 0]. The
per-vulnerability specification vectors were then collapsed into
a given h × r matrix S, where h denotes the number of
specification vectors for a given vulnerability. The binary OR
operator was then used to construct a given vector v. That is:

v =

[
h∨

i=1

si1, . . . ,

h∨
i=1

sir

]
given s in S. (2)

The final operationalization step involved per-package ag-
gregation. If a given package was affected by m vulnerabilities
in total, such that v1, . . . , vm vectors were filled for the
package, simple summation was first used to calculate the
number of times a given release of the package was affected:

w̃ =

[
m∑
i=1

v1i , . . . ,

m∑
i=1

vri

]
given v in vk (3)

and k = 1, . . . ,m. These count data vectors are not ideal for
empirical analysis, however. The reason relates to the com-
monplace industry saying that “stop counting vulnerabilities”.

The essence behind the saying is that vulnerability counts
do not necessarily matter in terms of actual security. The
point extends to maintenance: practical package management
seldom concerns the question of how many times a given
release has been affected by vulnerabilities—a single vul-
nerability is enough to upgrade. Furthermore, vulnerability
counts cannot be reliably used to compare products, packages,
or other software elements. This point is also emphasized
by the maintainers of Safety DB—the database “is not a
hall of shame, or a list of packages to avoid” [13]. If the
database would be used as a blacklist, the resulting list
would contain well-maintained web application projects such
as Django, whereas some smaller projects might be shortlisted
as safe because these are often less rigorously maintained. For
these and related reasons, binary-valued vectors are actually
observed for all packages: an element w in an observed vector
w takes a value zero for a fully vulnerability-free release and
a value one if w̃ > 0 within a corresponding vector w̃ in (3).

III. RESULTS

A. Overview

A few general observations are presented before the time
series results. The subset of CVE-referenced vulnerabilities
(about 31% of all vulnerabilities) helps to deliver these points.

1) Calendar time: It is necessary to point out that
Safety DB does not record any calendar time information
for the vulnerabilities archived. By using the dates on which
the CVE-referenced vulnerabilities were published in NVD,
it seems that the vulnerabilities were mostly discovered and
disclosed during the 2010s (see Fig. 1). By further examining
the database’s commit history, it becomes evident that the
database was in fact initially built by examining NVD and
related sources. The later entries are based on semi-manual
keyword-based monitoring of commit logs and bug trackers
in GitHub [9]. In contrast to the so-called Snyk database [12],
no references are provided for the commits or bug reports,
however. This lack of references implies that it is impossible
to reconstruct the calendar time events. Therefore, it should be
also noted that an analysis cannot rely on analytical operators
and theoretical concepts sometimes used to examine release
histories [16]. But as will be elaborated, the binary-valued
vectors still provide a decent source for many insights even
when the calendar time intervals between releases are ignored.

n = 231

Fr
eq

ue
nc

y

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

10

20

30

40

Fig. 1. Publication Years (NVD) of the CVE-referenced Vulnerabilities

2) Squatting: The so-called typo-squatting has become a
bugbear for open source software package repositories. Partic-
ularly npm has been affected by these simple squatting attacks
with which attackers upload malicious packages to a repository
with highly similar names as the names of already existing
legitimate packages. Also PyPI has been targeted, first in
September 2017 [17] and then again in October 2018 [18]. Al-
though these cases are excluded from the analysis, it is worth
noting that both typo-squatting campaigns were likely serious
attempts; among the names of the malicious packages were
telnet, djanga, crypt, urlib3, and setup-tools.

3) Severity: The Common Vulnerability Scoring System
(CVSS) is widely used to quantify the severity of vulnerabili-
ties. For obtaining a quick overview, the so-called CVSS (v. 2)
base scores are sufficient. These range from zero to ten; the
higher the score for a vulnerability, the more severe the vulner-
ability. To aid the interpretation, it can be mentioned that the
value four is a common but somewhat arbitrary benchmark for
the base scores with respect to the importance of patching [19].
Given these remarks, the base CVSS scores are shown in Fig. 2
for the intersecting subset of vulnerabilities in Safety DB that
have CVEs and the corresponding vulnerabilities in NVD that
have CVSS entries. Presumably due to the small delays in
NVD’s CVSS vulnerability scoring [20], it can be remarked
that eight recent CVE-referenced vulnerabilities in Safety DB
did not yet have CVSS data in NVD at the time of writing.

Fr
eq

ue
nc

y

CVSS (v. 2) base score

0

50

100

0 1 2 3 4 5 6 7 8 9 10

n = 223

Fig. 2. The Severity of the CVE-referenced Vulnerabilities

The subset of vulnerabilities with both CVE and CVSS in-
formation indicate only relatively modest severity. The median
base score is five. While the histogram shown partially reflects
the second version of the CVSS standard and the general
distribution in NVD [21], it also reflects the nature of Python
as an interpreted language and the typical software packages
written with the language. Severe low-level vulnerabilities
are less common in this context. This said, there are two
vulnerabilities with the maximum score: CVE-2016-4009 and
CVE-2016-5636. Both refer to heap-based buffer overflows
that can be exploited remotely. The corresponding packages
are Pillow (a common library for handling images in Python)
and CPython, that is, the reference yet the de facto interpreter
for the whole language. These two cases are sufficient to
underline that common packages for interpreted languages are
not invulnerable to memory corruption issues. Many packages
are written with multiple programming languages, and pro-
gramming languages are written with programming languages.

4) Weaknesses: Software weaknesses are another abstrac-
tion related to vulnerabilities. When used with already known

vulnerabilities, these abstractions convey the underlying pro-
gramming mistakes and software development flaws behind
the concrete vulnerabilities observed. The so-called Common
Weakness Enumeration (CWE) framework is used in NVD
and related databases for cataloging the weaknesses behind the
vulnerabilities archived to the databases. Although Safety DB
does not use CWE, a subset of CVE-referenced vulnerabilities
that have CWE entries in NVD provides a decent glimpse on
the typical software weaknesses affecting Python packages.

CWE-134
CWE-255
CWE-295
CWE-345
CWE-361
CWE-693
CWE-798
CWE-918
CWE-93

CWE-185
CWE-190
CWE-94

CWE-189
CWE-601
CWE-611
CWE-17

CWE-284
CWE-287
CWE-352
CWE-362
CWE-22
CWE-59
CWE-77

CWE-254
CWE-200
CWE-310
CWE-119
CWE-399
CWE-264
CWE-20
CWE-79

Frequency

0 10 20 30 40

n = 201

Cross-site scripting
Input validation

Permissions, privileges,
 and access controls

Resource management errors
Buffer errors

Thus, about one third of the
 CVE-referenced vulnerabilities
 in Safety DB have been about

 input validation and XSS.

Web-only weakness
Common to most contexts

Fig. 3. The Weaknesses Behind the CVE-referenced Vulnerabilities

The results summarized in Fig. 3 show no big surprises in
terms of the overall distribution of contemporary software vul-
nerabilities; cross-site scripting (XSS) vulnerabilities and more
generally input validation bugs have continued to occupy many
top-rankings. One explanation for the explosion of cross-site
scripting vulnerabilities in the 2000s related to the adoption
boom of the PHP programming language and, perhaps to a
lesser extent, JavaScript’s increased popularity [22]. According
to the results, also the later increase in Python’s popularity [23]
seems to have contributed to the prevalence of XSS bugs.
Even though also resource management flaws and buffer-
related weaknesses have been unexpectedly common in the
web-related Python packages observed, the only real surprise
is the complete absence of structured query language (SQL)
injection bugs (CWE-89) in the CVE-referenced subset.

B. Releases

There were 765 vulnerabilities in Safety DB at the time
of retrieving the database. Due to the constraints discussed in
Subsection II-B, this amount reduced to 526 vulnerabilities
that affected the releases of 335 packages. The following re-
sults are based on the binary vectors w1, . . . ,w335 constructed.

1) Overview: Before turning to the actual vulnerabilities,
it is useful to take a brief look at the release histories
of the packages observed. The lengths of the per-package

release histories are visualized in Fig. 4. Although the standard
deviation is substantial, many of the packages have a relatively
long release lineage; the median is 27 releases and the 75th
percentile is a little over fifty releases. This observation hints
that the packages tracked in Safety DB are generally mature
and supposedly relatively well-maintained. While repository-
wide release engineering strategies and associated monitoring
may be desirable [16], the two visible outliers (awscli and
pytsite) are enough to point out that the current release
engineering practices vary a lot between Python packages.

0 50 100 150 200 250 300

Package (index, sorted)

0
100
200
300
400
500
600
700

Re
lea

se
s

Median

n = 335

0

150

0 250 500
Releases

Fr
eq

ue
nc

y

Fig. 4. Number of Releases According to PyPI

A basic question for release-based vulnerability analysis is
how common it is for a release to be vulnerable. If there
is no other available information whatsoever, this question
amounts to calculating the sum of a wk divided by the vector’s
length. The results are shown in Fig. 5 for all of the vectors.
The unconditional probability is quite large for the packages’
arbitrarily picked releases to be vulnerable. On average over a
half of the releases observed have been affected by at least one
vulnerability. The median is 0.6. The shown distribution across
the packages resembles the uniform probability distribution.

Unconditional probability that a release is vulnerable

Fr
eq

ue
nc

y (
no

. p
ac

ka
ge

s)

0.0 0.2 0.4 0.6 0.8 1.0

0
2
4
6
8

10
12
14

335 packagesMean = 0.6

Fig. 5. Unconditional Probabilities

However, the unconditional probability is not ideal because
there is additional information available even with the very
limited data provided in Safety DB. This information relates
to sequences of releases: if a release is vulnerable, it may
be probable that either the past or the future release is also
vulnerable, or both are. A classical first-order Markov chain
can be used to examine such conditional probabilities. Because
there are only two states (vulnerable and not vulnerable), the
computation amounts to iterating over all possible release pairs
and then forming a two-by-two contingency table from which

the transition probabilities can be calculated. The results are
shown in Fig. 6 for two of the main state change trajectories.

Fr
eq

ue
nc

y (
no

. p
ac

ka
ge

s)

Conditional probability
that a package's release is
 vulnerable if the previous

release was also vulnerable

0.0 0.5 1.0

0

50

100

150

200

250

300
Mean = 0.8

Fr
eq

ue
nc

y (
no

. p
ac

ka
ge

s)

Conditional probability
that a package's release is

 not vulnerable if the previous
release was not vulnerable

0.0 0.5 1.0

0

50

100

150

200

250

300
Mean = 0.9

Fig. 6. Two Conditional Probabilities (first-order Markov chains)

The left-hand side plot summarizes the transition probabil-
ities from vulnerable releases to further vulnerable releases.
The result is clear: if a random vulnerable release is picked
from a given package, it is highly probable that also the
subsequent release is affected either by the same vulnerability
or a different vulnerability. The result stems partially from
the fact that most Python vulnerabilities have affected all
previous releases. In other words, the condition "<1.4.18"
in the snippet shown in Subsection II-A is fairly typical.
Because all release pairs are counted, such conditions alone
are not a sufficient explanation; there is also a fair amount of
transitions from vulnerable to non-vulnerable releases. Indeed,
the right-hand side plot in Fig. 6 seems to indicate that once
a non-vulnerable release is reached, it is very probable that
this release is followed by another vulnerability-free release.
A further point is that the first-order Markov chain may not be
enough to capture the longer software evolution history across
releases [24]. To examine this problem a little further, a more
formal but still simple time series analysis can be considered.

2) Forecasts: The binary-valued vectors can be also mod-
eled with univariate “autologistic” regression models, which
have been studied from the 1950s onward [25], [26], [27].
In the context of time series analysis the essence behind the
models is simple: the standard logistic regression formulation
is augmented with a predefined number of autoregression (AR)
terms. Thus, the estimated conditional probability p̂ik for the
i:th release to be vulnerable in the k:th package is given by

Pr(wik = 1 | past) =
exp(β0 +

∑`k
j=1 βjw(i−j)k

)

1 + exp(β0 +
∑`k

j=1 βjw(i−j)k
)
, (4)

where β0 is a constant and β1, . . . , β`k are regression coeffi-
cients. Note that the length of an estimated vector wk is also
reduced by the package-specific AR(`k)-order of the process.

The in-sample forecast experiment is implemented by pre-
dicting the vulnerability probabilities for t = 5 and t = 10
releases, using the last five and ten releases as the forecasting
targets. Two restrictions are imposed for statistical reasons:
only packages with at least rk ≥ 25 releases are qualified to

the experiment, and, furthermore, those packages are excluded
for which the standard deviation of the (rk − [t+ `k])-length
training data is less than 0.25. These restrictions ensure
that all optimizations and statistical routines compute without
problems. In total, 99 packages passed the two criteria.

To determine the AR-orders, the maximum orders were first
restricted to αk = b0.1 × rkc, and then separate autologistic
models were estimated for each of the ninety-nine packages
using the full samples with `k = 1, . . . , αk. According to the
minimum values of the Akaike’s information criterion (AIC),
the first-order AR process was preferable for as many as 96
packages. Two packages settled for AR(2) and one package
for AR(14). Therefore, the classical Markov property seems
to be sensible for the clear majority of the packages observed.

TABLE I
A SUMMARY OF AUTOLOGISTIC FORECAST PERFORMANCE

t = 5 t = 10

Mean Median Max Mean Median Max

0.008 0.006 0.018 0.014 0.015 0.033

Basic model validation techniques (such as conventional
cross-validation) are unsuitable in the time series context.
Therefore, to summarize the overall forecasting performance
with the AIC-selected orders, the absolute differences between
the actual (binary) values and the predicted probabilities can
be used just like in conventional time series analysis. The
between-package averages of the mean, median, and maximum
absolute differences are shown in Table I. To further clarify,

1

99

99∑
k=1

(
1

t

rk∑
i=s

|wik − p̂ik |

)
, s = rk − (t+ `k) + 1, (5)

is used for the mean columns in the table, for instance.
According to the numbers shown, the predictions mostly based
on AR(1) models are highly sensible. The averages of the
maximum absolute differences are below 0.04 in both fore-
casting windows, for instance. Because most of the releases
in the t = 5 and t = 10 forecast windows have not been
vulnerable, the results largely reinforce the right-hand side plot
in Fig. 6, given that Pr(wik = 0 | past) = 1 − p̂ik via (4).
If the conventional p̂ik ≥ 0.5 threshold is used to assign the
predicted probabilities to the binary categories of vulnerable
and non-vulnerable releases, the average accuracy (correct
predictions to all predictions) is as high as 0.99. To adjust the
interpretation, consider a naïve predictor that simply assigns all
values in a package’s test data according to whether majority
of the releases in the package’s training data have been either
vulnerable or non-vulnerable. The average accuracy across
packages is as low as 0.42 for such a naïve predictor. As
is soon discussed, the exceptionally good accuracy rates for
the autologistic models do not tell the whole story, however.

IV. DISCUSSION

This paper examined vulnerabilities in common Python
packages. The results can be summarized with three points.

By assuming that the CVE-referenced subset generalizes to all
vulnerabilities in Safety DB, the first point is that many of the
vulnerabilities observed have been only mildly severe. Input
validation and XSS have been the most typical weaknesses
behind the vulnerabilities. Given that XSS is classified as
a moderately or even highly severe vulnerability in related
repository-specific vulnerability databases [11], the observa-
tion bespeaks about the desirability of using standardized
frameworks such as CVSS and CWE for practical vulnerability
tracking. The result also underlines that Safety DB is implicitly
biased toward Python packages used for web development. By
implication, the potential generalizability of the paper’s results
to all Python packages should be taken with a grain of salt.

Second, the uniform distribution seems to describe relatively
well the between-package unconditional probabilities for the
packages’ releases to be vulnerable. If a random package from
Safety DB would be picked for deployment, the choice would
be close to random in terms of the unconditional probability
for the package’s releases to be vulnerable compared to the
releases of other packages. However, such random picking
is obviously not a realistic deployment scenario. For further
research with practical relevance, a good question would
be the conditional probability for a whole container to be
vulnerable given the packages deployed within the container.
The question is challenging because the univariate per-package
conditional probabilities are dependent on release histories.

Thus, third, the time series results indicate that only the re-
cent past seems to be relevant for univariate estimation of con-
ditional probabilities. While this result is partially explained
by the fact that most vulnerabilities in Python packages have
affected all previous releases of the packages, the result is also
sensible from a practical package management viewpoint—it
is the currently installed release that sets the reference point for
an upgrade. Besides supporting somewhat similar observations
made earlier [28], the result aligns with the more general
software evolution research domain within which only short
autoregressive orders are often observed to perform well [29].
All in all, the classical Markov property seems sensible
according to the results. By implication, practical foresight
based on release histories may be difficult despite of the good
statistical performance reported. If only a current release is
used to predict whether a future release is vulnerable, the
prediction is arguably haphazard in terms of actual security:
the probability may be low, but vulnerabilities still do occur.

Moreover, another question is whether there are cross-
sectional (between-package) correlations [24]. In other words,
the probability that a package’s release is vulnerable may
be conditional on whether a release of some other pack-
age is either vulnerable or has been vulnerable in the past.
This reasoning points toward the analysis of dependencies
between packages. Although good progress has recently been
made with continuous (calendar) time approaches [16], [30],
potential dependencies between discrete-time state changes
remain poorly understood. To further complicate things, state
changes should be examined on the side of deployments;
a package is merely software—the potential security risks

realize only when the package is actually installed somewhere.
For instance, a recent industry case study indicated that many
of the vulnerable dependencies were not actually deployed;
hence, the security risks were limited [30]. Further research is
required to examine similar questions on a larger scale. Indeed,
Safety DB could be used in Internet measurement research for
examining vulnerable web applications deployed in the wild.

Finally, a few words are warranted about Safety DB and
related databases in the context of practical vulnerability track-
ing. The recent challenges in the global CVE-based tracking
infrastructure [6], [7] have also increased the proliferation
of vulnerability databases. These challenges motivated also
the introduction of Safety DB [9]. Yet, in the big picture
a centralized tracking infrastructure is desirable for software
vulnerabilities. To this end, further research is required also re-
garding the means by which the challenges could be resolved.
This line of research involves the practical question of how
the repositories and the repository-specific databases could be
integrated into the centralized CVE-based infrastructure. The
topic is timely; there have been talks [31] about the possibility
to assign CVEs via GitHub for projects hosted on the platform.

REFERENCES

[1] M. Almukaynizi, E. Nunes, K. Dharaiya, M. Senguttuvan, J. Shakarian,
and P. Shakarian, “Proactive Identification of Exploits in the Wild
Through Vulnerability Mentions Online,” in Proceedings of the Interna-
tional Conference on Cyber Conflict (CyCon U.S.). Washington: IEEE,
2017, pp. 82–88.

[2] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, “The
Attack of the Clones: A Study of the Impact of Shared Code on
Vulnerability Patching,” in Proceedings of the IEEE Symposium on
Security and Privacy (IEEE S&P 2015). San Jose: IEEE, 2015, pp.
692–708.

[3] J. Visser, “5 Automation Trends in Software Development, Quan-
tified: Lessons from Hundreds of Development Practice As-
sessments Across the Industry,” 2018, O’Reilly Media, Inc.,
available online in August 2018: https://www.oreilly.com/ideas/
5-automation-trends-in-software-development-quantified.

[4] H. Plate, S. E. Ponta, and A. Sabetta, “Impact Assessment for Vul-
nerabilities in Open-Source Software Libraries,” in Proceedings of the
IEEE International Conference on Software Maintenance and Evolution
(ICSME 2015), Bremen, 2015, pp. 411–420.

[5] J. M. SchleicherâĂŃ, M. Vögler, C. Inzinger, and S. Dustdar, “Smart
Brix—A Continuous Evolution Framework for Container Application
Deployments,” PeerJ Computer Science, no. 2:e66, 2016.

[6] F. Li and V. Paxson, “A Large-Scale Empirical Study of Security
Patches,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017). Dallas: ACM,
2017, pp. 2201–2215.

[7] J. Ruohonen, S. Rauti, S. Hyrynsalmi, and V. Leppänen, “A Case Study
on Software Vulnerability Coordination,” Information and Software
Technology, vol. 103, pp. 239–257, 2018.

[8] J. E. Dunn, “CVE? Nope. NVD? Nope. Serious Must-Patch Type
Flaws Skipping Mainstream Vuln Lists – Report: Infosec Firm Fin-
gers ’Decentralised’ Reporting,” 2018, The Register. Available on-
line in August 2018: https://www.theregister.co.uk/2018/08/14/record_
software_vulnerabilities/.

[9] pyup.io, “Finding Security Vulnerabilities in Third Party Pack-
ages,” 2018, Available online in August 2018: https://pyup.io/posts/
finding-security-vulnerabilities-in-third-party-packages/.

[10] J. Stuckman and J. Purtilo, “Mining Security Vulnerabilities from
Linux Distribution Metadata,” in Proceedings of the IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW
2014), Napples, 2014, pp. 323–328.

[11] A. Decan, T. Mens, and E. Constantinou, “On the Impact of Se-
curity Vulnerabilities in the npm Package Dependency Network,” in
Proceedings of the 15th International Conference on Mining Software
Repositories (MSR 2018). Gothenburg: ACM, 2018, pp. 181–191.

[12] J. Ruohonen and V. Leppänen, “Toward Validation of Textual Infor-
mation Retrieval Techniques for Software Weaknesses,” in Proceedings
of the 29th International Workshop on Database and Expert Systems
Applications (DEXA 2018). Regensburg: Springer, 2018, pp. 265–277.

[13] pyup.io et al., “Safety DB,” 2018, Data retrieved in September 2018
from: https://github.com/pyupio/safety-db.

[14] “The Python Package Index (pypi),” 2018, Available online in Septem-
ber: https://pypi.org/, data retrieved in September 2018 with pip.

[15] NIST, “NVD Data Feeds,” 2018, National Institute of Standards and
Technology (NIST). Data retrieved in September 2018 from: https://
nvd.nist.gov/vuln/data-feeds.

[16] A. Decan, T. Mens, and E. Constantinou, “On the Evolution of Technical
Lag in the npm Package Dependency Network,” in Proceedings of
the 34th IEEE International Conference on Software Maintenance and
Evolution (ICSME 2018). Madrid: IEEE, 2018.

[17] T. Claburn, “Pretend Python Packages Prey on Poor Typing: Typosquat-
ting Attack Hits the PyPI Registry,” 2017, The Register, available on-
line in August 2018: https://www.theregister.co.uk/2017/09/15/pretend_
python_packages_prey_on_poor_typing/.

[18] C. Cimpanu, “Twelve Malicious Python Libraries Found
and Removed from PyPI,” 2018, ZDNet, CBS Interactive,
available online in October 2018: https://www.zdnet.com/article/
twelve-malicious-python-libraries-found-and-removed-from-pypi/.

[19] L. Allodi and F. Massacci, “Attack Potential in Impact and Complexity,”
in Proceedings of the International Conference on Availability, Relia-
bility and Security (ARES 2017). Reggio Calabria: ACM, 2017, pp.
32:1–32:6.

[20] J. Ruohonen, “A Look at the Time Delays in CVSS Vulnerability
Scoring,” Applied Computing and Informatics, 2017, published online
in December.

[21] L. Gallon, “Vulnerability Discrimination Using CVSS Framework,” in
Proceedings of the 4th IFIP International Conference on New Tech-
nologies, Mobility and Security (NTMS 2011). Paris: IEEE, 2011, pp.
1–6.

[22] K. Sivakumar and K. Garg, “Constructing a “Common Cross Site
Scripting Vulnerabilities Enumeration (CXE)" Using CWE and CVE,”
in Proceedings of the International Conference on Information Systems
Security (ICISS 2007), Lecture Notes in Computer Science (Volume
4812), P. McDaniel and S. K. Gupta, Eds. Springer, 2007, pp. 277–291.

[23] S. Cass, “The 2018 Top Programming Languages: Python Stays on Top,
and Assembly Enters the Top Ten,” 2018, IEEE Spectrum, available
online in August 2018: https://spectrum.ieee.org/at-work/innovation/
the-2018-top-programming-languages.

[24] J. Ruohonen and V. Leppänen, “How PHP Releases Are Adopted in the
Wild?” in Proceedings of the 24th Asia-Pacific Software Engineering
Conference (APSEC 2017). Nanjing: IEEE, 2017, pp. 71–80.

[25] D. R. Cox, “The Regression Analysis of Binary Sequences,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 20, no. 2,
pp. 215–242, 1958.

[26] T. H. Rydberg and N. Shephard, “Dynamics of Trade-by-Trade Price
Movements: Decomposition and Models,” Journal of Financial Econo-
metrics, vol. 1, no. 1, pp. 2–25, 2003.

[27] H. Kauppi and P. Saikkonen, “Predicting U.S. Recessions With Dynamic
Binary Response Models,” The Review of Economics and Statistics,
vol. 90, no. 4, pp. 777–791, 2008.

[28] S. Murtaza, W. Khreich, A. Hamou-Lhadj, and A. B. Bener, “Mining
Trends and Patterns of Software Vulnerabilities,” Journal of Systems
and Software, vol. 117, pp. 218–228, 2016.

[29] G. Rasool and N. Fazal, “Evolution Prediction and Process Support of
OSS Studies: A Systematic Mapping,” Arabian Journal for Science and
Engineering, vol. 42, no. 8, pp. 3465–3502, 2017.

[30] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable Open Source Dependencies: Counting Those That Matter,”
in Proceedings of the 12th International Symposium on Empirical
Software Engineering and Measurement (ESEM 2018). Oulu: ACM,
2018, pp. 42:1 – 42:10.

[31] MITRE, “CVE Board Meeting Summary – 3 October 2018,” 2018,
Available online in October 2018: http://cve.mitre.org/data/board/
archives/2018-10/msg00013.html.

https://www.oreilly.com/ideas/5-automation-trends-in-software-development-quantified
https://www.oreilly.com/ideas/5-automation-trends-in-software-development-quantified
https://www.theregister.co.uk/2018/08/14/record_software_vulnerabilities/
https://www.theregister.co.uk/2018/08/14/record_software_vulnerabilities/
https://pyup.io/posts/finding-security-vulnerabilities-in-third-party-packages/
https://pyup.io/posts/finding-security-vulnerabilities-in-third-party-packages/
https://github.com/pyupio/safety-db
https://pypi.org/
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://www.theregister.co.uk/2017/09/15/pretend_python_packages_prey_on_poor_typing/
https://www.theregister.co.uk/2017/09/15/pretend_python_packages_prey_on_poor_typing/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
http://cve.mitre.org/data/board/archives/2018-10/msg00013.html
http://cve.mitre.org/data/board/archives/2018-10/msg00013.html

	I Introduction
	II Data
	II-A Sources
	II-B Operationalization

	III Results
	III-A Overview
	III-A1 Calendar time
	III-A2 Squatting
	III-A3 Severity
	III-A4 Weaknesses

	III-B Releases
	III-B1 Overview
	III-B2 Forecasts

	IV Discussion
	References

