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Abstract

ER2 (Extended R-squared) is proposed as a similarity
measure for on-line signature verification. SLR (Simple
Linear Regression) definesR2 as a measure ofgoodness-
of-fit. We observed thatR2 is a good similarity mea-
sure for 1-dimensional sequences. However, many kinds
of sequences are multidimensional, such as on-line signa-
ture sequences, 2D curves, etc. Therefore, we extendR2

to ER2 for multidimensional sequence matching. Cou-
pled with optimal alignment,ER2 outperforms DTW-based
curve matching on on-line signature verification.

1. Introduction

On-line signature verification field has gained increasing
attention in recent times. As one of the biometric authenti-
cation methods, signature has been widely accepted in real
life, because it is more user-friendly than fingerprint, iris,
retina and face. On-line signatures are acquired using digi-
tizing tablet which captures both temporal and spatial infor-
mation, such as coordinates, pressure, inclinations, etc. On-
line personal identification is facing increasing need due to
the rapid development of digitizing technology.

Two aspects pose challenges in the field of online signa-
ture verification. On one side, intra-personal variation can
be large. Some people provide signatures with poor con-
sistency. The speed, pressure and inclinations pertaining to
the signatures made by the same person can differ greatly,
which makes it quite challenging to extract consistent fea-
tures. On the other side, we can only expect few samples
from one person and no forgeries in practice. This makes it
very difficult to determine the consistency of extracted fea-
tures. Due to limited number of training samples, the deter-
mination of threshold that decides rejection or acceptance is
also an open problem.

Two sets of features are listed in [6], including 91 fea-
tures altogether. Different research groups propose different
features. Unfortunately, most of them are not consistent [2].

According to our experience, one of the most reliable fea-
ture is theshapeof the signature. The next reliable feature
is thespeedof writing. Due to lack of benchmark databases
for on-line signatures, we will not argue the consistency of
these features here but propose a novel similarity measure
for signature verification.

Given two signatures to compare, it is natural to ask
”how similar are they?” or ”what is their similarity?”. It
is intuitive to answer the similarity with a value between
0%-100% and this value should make sense. For example,
when we quantize the similarity of two signatures as 90%,
they should be very close to each other objectively, even it
is subjective to say how similar they are.

No matter what kind of features are extracted, such
a similarity measure is unavoidable. Euclidean distance,
DTW (Dynamic Time Warping) or other distances are of
relative meaning. That is, the distance itself cannot give us
any information about similarity without comparing it with
other distances. We observed thatR2 is a good similarity
measure with intuitive meaning [1]. Given two sequences,
R2 answers the similarity with a value between 0%-100%.
This kind of similarity measure is very useful for signa-
ture verification, especially noting that only few genuine
signatures are available in practice. However,R2 comes
from SLR (Simple Linear Regression) which traditionally
measures two 1-dimensional sequences. In this paper, ex-
tendR2 is extended toER2 for multidimensional sequence
matching. Also, the optimal alignment by DTW (Dynamic
Time Warping) is coupled intoER2 to enhance robustness
on signature verification.

The rest of paper is organized as follows. After§1 intro-
duction, we first provide the background of SLR andR2 in
§2. Then, we extend 1-dimensionalR2 to multidimensional
ER2 in §3. In §4, we combine DTW andER2 together
for signature verification.§5 evaluates the performance of
ER2. Finally, §6 draws conclusion and states future work.
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Figure 1. Two pairs of sequences.
R2(X1, X2) = 0.91(91%) and R2(X3, X4) =
0.31(31%). X1 and X2 have high similarity
(linearity) because the points in c) are dis-
tributed along a line. X3 and X4 have low
similarity with scattered distribution in f).

2. Simple Linear Regression Background

Given two sequencesX = (x1, x2, · · · , xn), Y =
(y1, y2, · · · , yn), linear regression statistically analyses the
distribution of points (x1, y1), (x2, y2), ..., (xn, yn) in the
X-Y space. IfX and Y has strong linear relation, i.e.,
Y ≈ β0 + β1X, we can expect the distribution of these
points is along a line, called theregression line. Fig. 1
shows examples.

To regress sequenceY on X, we first establish amodel:
Y = β0 + β1X + u, whereu is the error term. Note
thatu = (u1, u2, · · · , un). Then we estimate the parameter
β0 andβ1 in the sense of minimum-sum-of squared-error,
i.e.,

∑n
i=1 u2

i =
∑n

i=1(yi − (β0 + β1xi))2 is minimized.
From a geometric point of view, we estimate the regres-
sion line which is determined byβ0 andβ1 so that the line
fits the points in theX-Y space as close as possible. Let
Q(β0, β1) =

∑n
i=1 u2

i . Note thatQ is a function ofβ0 and
β1. To minimizeQ(β0, β1), we have∂Q

∂β0
= 0 and ∂Q

∂β1
= 0.

Starting from this, we can obtain the following results [8]:

β0 = Y − β1X (1)

and

β1 =
∑n

i=1(xi −X)(yi − Y )∑n
i=1(xi −X)2

(2)

whereX = 1
n

∑n
i=1(xi), Y = 1

n

∑n
i=1(yi).

With β0 and β1 as above, the regression line is deter-
mined. There remains a question: how well the regression
line fits the points in theX-Y space? As a measure of the

goodness-of-fit,R-squaredis defined as:

R2 = 1−
∑n

i=1 u2
i∑n

i=1(yi − Y )2
(3)

R-squared is also called thecoefficient of determination. It
can be interpreted as thefraction of the variation inY that
is explained byX. R-squaredcan be further derived as:

R2 =
[
∑n

i=1(xi −X)(yi − Y )]2∑n
i=1(xi −X)2

∑n
i=1(yi − Y )2

(4)

R2 has following properties:

• Reflexivity, i.e.,R2(X, X) = 1.

• Symmetry, i.e., R2(X, Y ) = R2(Y, X). According
to equation (4), no matterY regresses onX or X re-
gresses onY , R2 is the same.

• R2 ∈ [0, 1]. The closer the value to 1, the more the
points tend to fall along the regression line, thus, the
stronger linear relation the two sequences have.R2 =
1 means the two sequences have perfect linear relation,
while R2 = 0 means they have no linear relation at all.

Based on the properties ofR2 as above,R2 is defined
as theconfidenceof the linear relationship. Also,R2 is a
good measure for similarity. Fig. 1 show examples that
high (low) R2 value means high (low) similarity. Thresh-
old based onR2 is much more intuitive than some distance
toleranceε, such as Euclidean distance or DTW distance.
Given two sequences,R2 directly tells their similarity.

3. ExtendingR2 to ER2

Traditionally, SLR is only applied to 1-dimensional se-
quence. However, many kinds of sequences are multidi-
mensional. For an instance, the on-line handwritten signa-
ture sequence is multidimensional, including coordinates (x
andy), pressure, inclination, etc. To matchM-dimensional
sequence, we defineER2 (Extended R-squared) as:

ER2 =
[
∑M

j=1(
∑n

i=1(xji −Xj)(yji − Yj))]2∑M
j=1

∑n
i=1(xji −Xj)2

∑M
j=1

∑n
i=1(yji − Yj)2

(5)
whereXj (Yj) is the average of thej-th dimension of se-
quenceX (Y ).

ER2 has similar properties asR2, i.e., reflexivity, sym-
metryandER2 ∈ [0, 1]. The only difference is thatER2

can measure multidimensional sequences. Just likeR2,
ER2 directly tells how similar they are. In contrast, DTW
or Euclidean norms can only give a distance with relative
meaning.
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Figure 2. Four signatures and their similari-
ties with each other defined by ER2. We can
see that similarity measure by ER2 is much
more intuitive than the "distance", such as
DTW or Euclidean distance.

Fig. 2 shows examples thatER2 makes sense. Signature
(a) and (b) are genuine signatures. Signature (c) and (d) are
forgeries, although they are made by the same person. We
can see that signature (a) has high similarity with signature
(b). TheER2 between them is as high as 96.7%. The ma-
jor difference in signature (c) is that the character ”@” is
replaced by ”a”. So, the similarity between (c) and the gen-
uine ones drops to 68.4% or 70.5%. Signature (d) is made
up of two Chinese characters. The first character is the same
as other signatures while the second one is totally different
from ”@cubs”. Therefore, its similarities with other signa-
tures are all below 50%.

The signatures here are made up of Chinese character,
English character and special symbol as ”@”. The exam-
ples also demonstrates thatER2 is a language-independent
measure.

4. Combining DTW and ER2

ER2 has its drawback. It only allows one-one matching
between two sequences, just like the Euclidean norm. If two
sequences are not aligned very well or they have different
lengths,ER2 cannot be applied directly. Usually, signature
sequences are neither of the same length nor aligned well,
even by the same person. It is well known that DTW is able
to determine the optimal alignment between two sequences
with different lengths. Therefore, DTW is combined with
ER2 to unify their advantages.

4.1. DTW background

Given two sequencesX = (x1, x2, ..., xn) and Y =
(y1, y2, ..., ym), the distance DTW(X,Y ) is similar to edit
distance. To calculate the DTW distance D(X,Y ), we can
first construct ann-by-m matrix, as shown in fig. 3. Then,
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Figure 3. The path determined by DTW in
the n-by-m matrix has the minimum aver-
age cumulative cost. The marked area is
the constraint that path cannot go. The
path indicates the optimal alignment: (x1, y1),
(x2, y2), (x3, y2), · · ·, (xn−1, ym−3), (xn−1, ym−2),
(xn−1, ym−1), (xn, ym).

we find apath in the matrix which starts from cell(1, 1)
to cell (n, m) so that the average cumulative cost along the
path is minimized. If the path passes cell(i, j), then the
cell (i,j) contributescost(xi, yj) to the cumulative cost. The
cost function can be defined flexibly depending on the ap-
plication, for example,cost(xi, yj) = |xi − yi|2. This path
can be determined using dynamic programming, because
the recursive equation holds:D(i, j) = cost(xi, yj) +
min{D(i− 1, j), D(i− 1, j − 1), D(i, j − 1)}.

The path may goes several cells horizontally alongX or
vertically alongY , which makes the matching between the
two sequences not strictly one-one but one-many and many-
one. This is the robustness that DTW provides to align se-
quences.

4.2.ER2 coupled with optimal alignment

We first use DTW to determine the optimal alignment
between two sequences. Then, we stretch the two sequences
to have the same length. It is done like this: if pointxi in
sequenceX is aligned tok(k > 1) points in sequenceY ,
we stretchX by duplicatingxi k − 1 times. For sequence
Y , we stretch it in the same way. For example, in fig. 3, we
stretchX to be(x1, x2, · · · , xn−1, xn−1, xn−1, xn) andY
to be(y1, y2, y2, · · · , yn−2, yn−1, yn).

After stretching, the two sequences have the same length.
Then, we can feel free to apply equation (5) to calculate
similarity.



5. Experiments on on-line signature verifica-
tion

Our experiments focus on this concern:will ER2

coupled with optimal alignment improve the performance
of DTW on signature verification ?Signature verifica-
tion based on curve matching [4, 5] is a promising di-
rection, because curve matching is language-independent.
Segmentation-based methods [7] are dependent on lan-
guages to a large degree, since the words of some languages
are complex with a lot of possible segments and the seg-
ments may be not consistent.

We assume signature verifications have two basic re-
quirements: 1) At most 6 genuine signatures are provided
and no forgeries are available for training. 2) Given sig-
nature to be verified, the output is a similarity between
0% and 100%, not just ”yes/no”. The decision of rejec-
tion/acceptance is left to the system operator [3]. In real ap-
plications, the requirements are reasonable. Since only few
genuine signatures for enrollment, it is appropriate to use
all of them as reference prototype rather than statistically
generate a single prototype. When a signature is input for
verification, we compare it with each of these prototypes
and return the highest similarity.ER2 is a qualified sim-
ilarity measure with a confidence value between 0% and
100%. Curve matching based on DTW returns a relative
distance. We need to translate it to a similarity score. We
briefly describe two signature verification algorithms here:
1) ER2 coupled with optimal alignment; 2) DTW-based
Curve matching.

1). ER2 coupled with optimal alignment

Enrollment. Given K(K ≤ 6) genuine signatures,
Sigi = [Xi, Yi], (i = 1, · · · ,K), we first prepro-
cess each of them and save all of them in a tem-
plate. Each signature here is a 2-dimensional se-
quence ofX − Y coordinates. Preprocessing in-
cludes: 1) Smooth the raw sequence by Gaussian
filter [3]. 2) Rotate if necessary [4]. 3) Normalize
each signatureSigi by: Xi = Xi−min(Xi)

max(Xi)−min(Xi)
,

andYi = Yi−min(Yi)
max(Yi)−min(Yi)

.

Matching. Given a signatureS = [Xs, Ys], we pre-
process it in the same way as in enrollment and
match it against each of the preprocessed sig-
natures in the template. The highest similar-
ity score is returned. MatchingS with Sigi

is done as follows. First, we use a function,
namely[dist, path] = DTW (S, Sigi) to obtain
thepath. Note that we do not need thedist here.
Second, we stretch bothS andSigi to have the
same length according to the optimal alignment

indicated by thepath. Then, we calculateER2

by equation (5).

2). DTW-based Curve matching

Enrollment. Given K(K ≤ 6) genuine signatures,
Sigi = [Xi, Yi], (i = 1, · · · ,K), we first pre-
process each of them and save all of them in a
template. Preprocessing is the same as above.
The additional thing we should do is to find the
maximum distance between these preprocessed
signatures. We need it to calculate the similar-
ity score. We can obtain this by calculating the
pairwise DTW distances within the given sam-
ples and save the maximum one (denoted asMd)
to the template.

Matching. Given a signatureS = [Xs, Ys], we pre-
process it in the same way as in enrollment and
match it against each of the preprocessed signa-
tures in the template. The highest similarity score
is returned. MatchingS with Sigi is done as
follows. First, we use function[dist, path] =
DTW (S, Sigi) to obtain thedist (Here, we do
not need thepath). Then, we translatedist to
similarity score byexp(−dist

2∗Md
).

We can see that the only difference between above two
algorithms is the similarity score mechanism. We agree that
DTW is the best for curve matching with optimal align-
ment. Alignment is absolutely necessary, because no user
writes his/her signatures exactly the same each time. There
always exists some difference in the total length and over-
all shape. Through the experiments on signature verifica-
tion, we will compare the accuracy brought byER2 and
the similarity score by the Gaussian formula asexp(−dist

2∗Md
).

The reason we choose the Gaussian formula is that there
is no better choice to directly translate DTW distance to
score without statistic (recall that only few genuine sam-
ples available). In addition, we have to mention that al-
ternative curve matching based on DTW [4] is done by
dist = DTW (speed(S), speed(Sigi)) , wherespeed(S)
transforms signature sequenceS to speed sequence bySi =
Si+1−Si, i = 1, · · · , length(S)−1. Actually, we tried this
and found the results were worse by doing so.

The experimental database we used was kindly provided
by Munich etc. [4]. Each signature is a 2-dimensional se-
quence. Totally, 106 subjects are available. For each sub-
ject, there are 24 genuine signatures and 10 skilled forg-
eries. We used the first 5 signatures for enrollment and the
remaining 29 signatures were used in the test with skilled
forgeries. Signatures from different subjects including gen-
uine or skilled ones were considered as random forgeries.
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Figure 4. a) FRR and FAR curves by ER2. b)
FRR and FAR curves by DTW.

Table 1. EERs with universal/user-dependent
threshold.

Skilled Forgery Random Forgery
DTW ER2 DTW ER2

Univ. T 20.9% 7.2% 5.7% 0.9%
User. T 10.8% 4.9% 1.3% 0.2%

Fig. 4 a) shows the curves of FAR (False Acceptance
Rate) and FRR (False Rejection Rate) byER2 with univer-
sal threshold varying from 0% to 100%. The EER (Equal
Error Rate) is 7.2%. Fig. 4 b) shows the results by DTW
also with universal threshold. The EER is 20.9%, much
higher than that ofER2.

We also tested the random forgeries. The results are sum-
marized in table 1. No matter by universal threshold or user-
dependent threshold,ER2 coupled with optimal alignment
noticeably outperforms DTW-based curve matching. Please
note that if dynamic features such as speed, pressure and
inclinations are used to prune forgeries here, the EER is ex-
pected to decrease. In future work, we will try to incorpo-
rate dynamic features to improve performance further.

6. Conclusion and future work

We proposeER2 as a similarity measure for multidi-
mensional sequence matching. Signature verification sys-
tem can useER2 coupled with optimal alignment for intu-
itive similarity output and higher performance as well. The
experimental results are encouraging, although we have to
notice that further evaluation on large and real databases is
necessary.

Our future work will explore the feasibility ofER2 on
dynamic features like pressure, speed, etc.
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