
Evaluation of Worm Containment Algorithms and their Effect on Legitimate
Traffic ∗

Mohamed Abdelhafez
George F. Riley

Department of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0250
{mofta7,riley}@ece.gatech.edu

Abstract

Internet worm attacks have become increasingly more
frequent and have had a major impact on the economy, mak-
ing the detection and prevention of these attacks a top se-
curity concern. Several counter–measures have been pro-
posed and evaluated in recent literature. However, the ef-
fect of these proposed defensive mechanisms on legitimate
competing traffic has not been analyzed. Clearly, a defen-
sive approach that slows down or stops worm propagation
at the expense of completely restricting any legitimate traf-
fic is of little value. Here we perform a comparative anal-
ysis of the effectiveness of several of these proposed mech-
anisms, including a measure of their effect on normal web
browsing activities. In addition, we introduce a new defen-
sive approach that can easily be implemented on existing
hosts, and which significantly reduces the rate of spread of
worms using TCP connections to perform the infiltration.
Our approach has no measurable effect on legitimate traf-
fic.

1. Introduction

The first known worm was the Morris worm in 1988
[15]. Since then, the security threats and damaging effects
of modern worms have increased dramatically. The Code
Red [11] and Nimda [3] worms infected hundreds of thou-
sands computers around the world, and in 2003 the SQL
Slammer worm [10] infected more than 90% of the vulner-
able hosts (75,000) in less than 10 minutes. It has become
apparent that no human intervention can react on a timely
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enough basis to react to these types of attacks, and there-
fore automatic detection and prevention mechanisms are a
necessity.

In order to design and implement detection mechanisms,
it is important to understand the basic behavior and activi-
ties of a typical, modern–day worm [20].

There are three stages in the worm life-cycle:

1. Propagation: The worm is transfered to a certain host
by exploiting some vulnerability

2. Activation: The worm starts to execute a set of com-
mands to gain higher access to the compromised sys-
tem

3. Infection: The worm starts looking for other hosts to
infect, and replicates itself on those hosts.

There are several different types of worms, classified by
how they find their targets:

1. Topological worms: These worms find information
about new targets from data stored on an infected host.
Many applications contain information about other
hosts, and therefore give the worm a good basis for
finding other potential victims. The Morris worm was
a topological worm.

2. Passive worms: These worms do not actively seek po-
tential victims. Instead they rely on user actions to
spread elsewhere. There have been been many pas-
sive worms like, Gnuman [2] and the CRClean [7].
Gnuman operates by acting as a gnutella node which
replies to all queries with copies of itself. If this copy
is run the worm starts on the victim machine and re-
peats the process. CRClean was intended to remove
the Code Red II from the machine. The CRClean worm
waits for a Code Red II probe, when it detects an in-
fection attempt it launches a counterattack removing
Code Red II and installing itself on the machine. These
worms spread without any scanning.
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3. Scanning worms: These worms search for new targets
by probing IP addresses across the Internet. Scanning
can be sequential where the worm works through an
address block using an ordered set of addresses, or ran-
dom where the worm selects addresses in a random
fashion.

Our focus in this study is the Scanning category of
worms, such as Code Red, Nimda, and SQL–Slammer.

There are some optimizations to the random scanning
method, such as those discussed in [19] and [17]. These in-
clude Localized scanning (Code Red II [14]), which
chooses a random address from within the same class B or
class A address space as the infected host with higher prob-
ability than other non–local addresses. Another optimiza-
tion is hit-list scanning, where the attacker collects a list
of known vulnerable hosts on the Internet before releas-
ing the worm. The worm chooses victims from this list and
assigns the newly infected host a subset of the list to con-
tinue the spread. A third optimization is permutation scan-
ning where all the worm instances share a common pseudo
random permutation of the IP address space. Using this ap-
proach, there is less chance that different worm instances
will choose the same victim, thus leading to faster in-
fection spread. In this way worms will not spend much
time scanning the same host multiple times. In a permuta-
tion scan the already infected host responds differently than
a potential target as a way of telling the worm that it is al-
ready infected. When the worm detects that it scanned an
already infected machine it realizes that another worm al-
ready scanned this portion of address space so it chooses
a new random starting point and proceeds from there, this
way coordination is imposed on the worm and needless re-
infections are removed.

A combination of hit-list and permutation scanning can
create what is termed a Warhol worm [17], which is capable
of attacking most vulnerable targets in less than 15 minutes.

A number of methods have been proposed to detect, react
to, or prevent these worm attacks. Since almost all worms
exploit some software coding error or design flaw to infect
the hosts, the most effective method would be to eliminate
these software errors. However, it is fairly clear that some
large fraction of existing or new Internet hosts will always
have some exploitable vulnerability, since not all users or
system administrators are willing or able to install security
patches as they become available. Further, new software re-
leases almost always introduce a new set of exploits.

Another approach is through the use of so–called In-
trusion Detection Systems (IDS) [1], which are either
signature-based or anomaly-based. In signature-based sys-
tems, a firewall checks incoming packets against a database
of known worm signatures and drops the packet if a match
is found. In anomaly-based systems the normal behav-
ior of hosts is monitored, and if a significant deviation in

the hosts activities is detected then some defensive ac-
tion is taken. The signature-based approach is only ef-
fective against known worms, and has no effect against
a new worm until that worm is analyzed, and its sig-
nature extracted and added to the database. Since this
is a a time-consuming activity, it is clear that such ap-
proaches have little hope in containing new worms. Thus,
the anomaly detection method is the method of choice when
faced with detection and prevention of unknown worm at-
tacks.

In this paper we will study different algorithms for worm
containment, and evaluate their effectiveness. There are sev-
eral requirements for a successful worm containment algo-
rithm.

1. Quick response: The ability to quickly detect worm ac-
tivity and stop it before it infects a significant number
of others.

2. Low False detections: The algorithm should not con-
sider a healthy host infected (false positive), since such
detections typically trigger some sort of filtering or re-
duction in capacity of that host.

3. Simplicity: The algorithm must be simple to imple-
ment and deploy, and not take excessive resources on
routers or end–systems.

2. Worm and Network Modeling

For all of our experiments, we are using the detailed
models of Internet worms found in the Georgia Tech Net-
work Simulator (GTNetS) [13]. These models are discussed
in [6], and include a number of parameters that specify the
behavior of the worm, including:

• Transport protocol: The underlying transport protocol
used by the worm, which can be either UDP or TCP.
UDP worms do not wait for any acknowledgment from
the target, while the TCP worm require a three–way
handshake (SYN/SYN–ACK/ACK before it can send its
payload.

• Infection length: The size of the exploitation data that
the worm needs to send to a host in order to infect it.

• Infection port: The transport layer port that exhibits the
security vulnerability that is to be exploited.

• Target vector: The algorithm used by the worm to de-
termine the IP address of a new victim. This can be ei-
ther uniform, local preference or sequential scanning.

• Scan rate: The rate at which UDP worms send infec-
tion packets.

• Connections: The number of simultaneous connec-
tions attempts used by TCP worms.
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For the network topology model we use a ring of Ran-
dom Tree topologies as discussed in [6]. Each random tree
is characterized by the depth and fanout as in typical tree
topologies. However, the random tree provides an additional
random probability factor that decides whether a child node
will be created or not. This leads to more realistic topolo-
gies with holes in the assigned IP address space. We also
vary the bandwidth of the links in these trees.

3. Worm Detection Algorithms

In this section, we give a short overview of worm de-
tection and prevention algorithms, and then discuss in de-
tail the five different proposed algorithms that are com-
pared here. Moore et al. [12] have studied the effective-
ness of worm containment systems and divided them into
2 types: Address blacklisting and content filtering. The Ad-
dress blacklisting approach detects the misbehavior of cer-
tain network addresses and blocks any connection attempts
from them. The Content filtering approach identifies com-
mon features of worm network connections and then filters
all connections that share these features. Of the methods we
study in detail, the the Virus Throttle 3.1 and counter mal-
ice 3.2 are examples of the first type; Packet Matching 3.3,
DAW 3.4 and TCP ACK 3.5 as examples of the second type.

Each of the proposed algorithms is discussed in detail be-
low.

3.1. Virus Throttle

The Virus Throttle approach, proposed by Williamson
[18] relies on the fact that worm scanning involves com-
municating with a large number of hosts simultaneously (or
nearly so), in order to find a vulnerable host to infect. This
behavior is assumed to be atypical of normal application ac-
tivity, which tend to communicate with a limited number of
hosts. The goal of the algorithm is to delay connection at-
tempts that appear to be more than what the host would nor-
mally make in a certain period of time. The more aggres-
sive the infection action is, the more delay its connection
requests would experience.

3.1.1. Implementation Details The Virus Throttle ap-
proach has the following parameters:

• WorkingSet: The set of the IP Addresses of the ma-
chines that this host has connected with recently. This
list has limited size; our implementation uses 5. Each
entry in the working set has a time flag.

• DelayQueue: A queue used to store packets that are to
be delayed by the algorithm.

The virus throttle approach inspects all outgoing packets
from a host, searching for TCP SYN packets. When a SYN
packet is detected, the following algorithm is run.

• If this host is in blocked state

– Drop the packet.

• else

– Compare destination address with
addresses in the working set

– If destination address is in the
working set

∗ Allow the connection immediately

– Else if working set is not full

∗ Add destination address to
the working set.

∗ Allow the connection to
proceed immediately.

– else

∗ Add the packet to the delay
queue.

∗ If delay queue size is more
than 100

· Set the state of this host
to blocked state.

The following method is called once every second.
Process-Queue()

• If working set is full

– Remove oldest member.

• If delay queue is not empty

– Pop the SYN packet from its head
and any other packets addressed
to the same destination.

– Send the packet(s).

– Add the destination address of
the packet to the working set.

3.2. CounterMalice

The CounterMalice [16] approach was developed by Sil-
icon Defense and is conceptually similar to the virus throt-
tle approach, except that it is intended to operate on a net-
work device, such as a router, rather than on an end host.
Counter malice works by monitoring the packets sent by
a given host, and building a composite score of misbehav-
ior based both on the number of unique destinations and the
number of those that haven’t responded.
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3.2.1. Implementation Details We based our implemen-
tation of the counter malice approach on the information
published in [16]. The published work lacks complete de-
tails on the working of the algorithm, but does provide suf-
ficient information to make an approximation of the ap-
proach. In our implementation, We have an entry for each
host in the subnetwork containing all the parameters men-
tioned in the virus throttle approach. When a host within a
subnetwork sends a SYN packet to a host outside the sub-
network the following method is called.

Output-packet-received()

• Does the source address represent a
new entry ?

– Create new entry

• Is the connection blocked ?

– Drop packet.

• else

– If destination address is in the
working set

∗ Allow the connection immediately.

– Else if working set is not full

∗ Add destination address to
the working set.

∗ Allow the connection immediately.

– else

∗ Add the packet to the delay
queue.

∗ If delay queue size is more
than 100.

· Set the state of that host
to blocked.

The following method is called once every second.
Process-Queues()

• Loop through the list of host
entries

– If working set is full

∗ Remove oldest member.

– If delay queue is not empty

∗ Pop the SYN packet from
its head and any other
packets addressed to the same
destination.

∗ Send the packet(s).

∗ Add the destination address
of the packet to the working
set.

3.3. Packet Matching

Packet Matching algorithm was proposed by Xuan Chen
and John Heidemann [5]. This algorithm relies on the fact
that a worm usually exploits some particular security vul-
nerability corresponding to a specific port number. Further,
the nature of worms is that an infected host will probe
other vulnerable hosts with the same vulnerability. There-
fore routers seeing unusually high levels of bi-directional
probing traffic with the same destination port number can
infer a new worm attack is underway.

3.3.1. Implementation Details The algorithm oper-
ates on 2 steps; port matching and address checking. In the
port matching step the algorithm compares the list of desti-
nation ports observed for inbound traffic to the list of des-
tination ports observed for outbound traffic. If a match is
noted, then the port is flagged as suspicious. In the ad-
dress checking step, suspicious ports are monitored to de-
tect how many unique IP addresses are being contacted,
and an exponentially weighted moving average is com-
puted for the number of unique destination IP addresses
seen. When the instantaneous number of unique destina-
tions is much larger than the moving average, the port is
flagged infected.

The authors also suggest using collaboration between
routers to disseminate suspicious and infected port infor-
mation. We did not model this extension in the algorithm in
our simulations.

Parameters used in the packet matching algorithm are:

• Outgoing port list: Ports on remote hosts that local
hosts send packets to.

• Incoming port list: Ports on the local hosts that are the
destination port for received packets.

• Suspicious Portlist: Ports that are suspicious or in-
fected.

• β: Average number of unique IPs contacted for a given
port

• N: Instantaneous number of unique IPs contacted for a
given port

• δ: Sensitivity parameter set to 3 in our implementation

• α: Weight for the moving average set to 0.125 in our
implementation

When a local host within a subnetwork sends connection
request packets to a remote host outside the subnetwork, the
following method is called.
Out-Syn-packet()

• If the destination port infected ?

– Drop packet.
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• Else if the destination port
suspicious ?

– Add the destination IP to the
list of Unique IPs associated
with this port

• Else

– Add the destination port to the
outgoing port list.

– Forward the packet.

– If the destination port is in
the incoming port list

∗ Add the port to the suspicious
ports list

When a remote host outside the local subnetwork sends
connections request packets to a local host, the following
method is called:

In-Syn-packet()

• If the destination port infected ?

– Drop packet.

• Else if the destination port
suspicious ?

– Add the destination IP to the
list of Unique IPs associated
with this port

• else

– Add the destination port to the
incoming port list.

– Forward the packet.

– If the destination port is in
the outgoing port list

∗ Add the port to the suspicious
ports list

The following method is called periodically.
Check-Infection()

• Loop through the list of suspicious
ports

• If N > β × δ

– Mark this port as infected

• Else

– Update the moving average
β = α × β + (1 − α ) × N

– N = 0

3.4. DAW

The Distributed Anti-Worm architecture (DAW [4]), has
been proposed as a distributed solution, with ISP’s deploy-
ing the algorithm on edge routers. This algorithm relies on
the fact that the failure rate for a random scanning worm is
much higher than that of a normal well–behaved host.

A connection fails if the destination host does not ex-
ist (an ICMP Host Unreachable or Network Unreachable
packet is sent) or if the destination host does exist, but has
no layer 4 protocol accepting connections on the destina-
tion port (an ICMP Port Unreachable packet is sent). In ad-
dition, a TCP Reset packet will be sent if the destination
host and port are valid, but the receiving application detects
malformed data and closes the connection. In the DAW al-
gorithm, the failure rate is measured as the number of ICMP
host, network, or port unreachable messages and TCP Re-
sets per unit time. Clearly, this algorithm assumes that there
is no filtering of ICMP or TCP reset packets by a firewall
or gateway between the source and destination. The algo-
rithm has 2 components, the DAW agent that is deployed
on the edge routers and a management station that collects
data from multiple agents. In our simulations, we only con-
sider the actions the agents individually, and do not take
collaboration between agents into account. The basic prin-
ciple is that if the connection failure rate of a host exceeds
a pre-configured threshold, the DAW agent will begin drop-
ping some of the connection requests from that host in or-
der to keep its failure rate under the threshold.

3.4.1. Implementation Details The Parameters used by
the DAW algorithm are:

• size: Size of the token bucket.

• tokens: Initialized to the size.

• c: Failure counter.

• f: Failure rate.

• β: Weight for the moving average for the failure rate
set to 0.2 in our implementation.

• t: Timestamp.

• λ: Failure rate threshold.

The following method is called every time an indication of
a failed connection is received.
Update-Failure-Rate-Record()

• tokens = tokens - 1

• c = c + 1

• If ( c is a multiple of 10 )

– f’ = 10 / (the current system
clock - t)

– If (c == 10)
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∗ f = f’

– Else

∗ f = β × f + (1 − β) × f ′

• t = the current system clock

Upon observation of a connection request from a host in
the local subnetwork, the following method is called.

Basic-Rate-Limit()

• δ = the current system clock - time

• tokens = min(tokens + δ × λ, size)

• time = the current system clock

• If (tokens ≥ 1)

– Forward the request

• Else

– Drop the request

3.5. TCP–ACK

In addition to the previously mentioned detection meth-
ods, we introduce a new method called TCP–ACK. The ap-
proach is simple, easy to deploy on a large scale, and takes
practically no resources. Our approach requires modifica-
tions to the protocol stack for existing hosts connected to
the Internet (ie. Windows, Linux, MAC-OSX, etc.), which
can easily be accomplished using the security update mech-
anisms already in place for existing operating systems. With
our modified protocol stack, any host receiving a TCP SYN
packet for non–existent port will unconditionally send a
SYN–ACK to the originator, indicating that the connection
has been accepted. The originator will then begin sending
data packets to the same destination port, which are silently
dropped.

To see the rationale behind our TCP–ACK approach,
consider the actions by a normal TCP worm without our ap-
proach in place. A TCP worm creates multiple threads (up
to some fixed limit) that attempt connection requests to ran-
dom hosts. Without TCP–ACK, a host that has no corre-
sponding layer 4 protocol at the specified port will create an
ICMP port unreachable message, and the connecting thread
receives an indication that the connection has failed. Thus,
in only one round–trip–time the worm has determined that
the target host and port is not vulnerable, and is free to try
another one.

With TCP–ACK, the connection request to hosts that are
not vulnerable (ie. those with no protocol bound to the des-
tination port) will act as if they are. At that point, the worm
will begin sending the payload packets which are silently
dropped. From the perspective of the worm, this appears as
normal lost packets, with the corresponding timeouts and
retransmissions. Instead of one round–trip–time per failed
connection, the worm is tied up for several re–transmission

timeout periods which is substantially longer, potentially
several minutes. The net result is a decrease in the effec-
tive probing rate of the worm, and a resulting decrease in
the rate of spread. If a large fraction of hosts on the Internet
implement the TCP–ACK mechanism, it will be nearly im-
possible for a TCP–style worm to effectively probe for vul-
nerabilities.

We point out that LaBrea has proposed an approach that
is conceptually similar to ours. The LaBrea [8] method uses
un-allocated IP address space to create the same trap. In this
method, if the worm sends a SYN packet to an un-allocated
address the LaBrea program would reply with a SYN ACK
with a window size of zero trapping that thread. However,
this approach requires substantial infrastructure enhance-
ments at subnetworks in order to forward the un–mapped
IP addresses to some host to create and send the SYN–ACK.
Further, worms can easily detect the window size of zero
and simply ignore any SYN–ACK with this signature. Our
results also show that for any similar approach to work, the
number of addresses with the trap installed must be more
than the number of the vulnerable hosts. Which means in
the case of LaBrea the ratio of unallocated addresses to real
hosts in a subnetwork has to be greater than one which can
not be used on a wide scale. In contrast, our approach can
be easily implemented on a wide scale simply by includ-
ing it as part of an operating system update.

4. Experimental Results

In this section, we describe the simulation experiments
we used to measure the effectiveness of each of the previ-
ously discussed detection algorithms and defenses. In addi-
tion to measuring their effect on the overall worm spread
rate, we also monitored the effect on normal web brows-
ing activity.

For the network topology model we created a topol-
ogy consisting of about 9000 nodes using 11 Random Tree
topologies connected with a ring. There are a mix of pa-
rameters for the random trees, as follows. We have 2 trees
with fanout 8 and depth 5 allocating 4096 addresses each;
4 trees with fanout 4 and depth 5 allocating 256 addresses
each; 4 trees with fanout 8 and depth 4 allocating 512 ad-
dresses each; and one tree with fanout 16 and depth 4 allo-
cating 4096 addresses, for a total of 15,360 possible IP ad-
dresses. The tree is populated with child probability such
that we have only about 60% (on average) of the possible
15,360 leaf nodes, or about an average of 9,000 leaf nodes
in each simulation. Since the random scanning of IP ad-
dresses is an essential feature of all worms, and since the
probability of a “correct guess” is a fundamental parameter
in determining the worm’s spreading rate, we have reduced
the entire Internet IP address space down to the 15,360 pos-
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Figure 1. Effect of algorithms on the network for UDP worm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Response Time (s)

No Containment
Virus Throttle

Counter Malice
Packet matching

DAW
TCP ACK r = 3

(a) cdf of response times

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50  55  60  65  70  75  80  85  90  95  100

%
 o

f I
nf

ec
te

d 
ho

st
s

Time (s)

No Containment
Virus Throttle

Counter Malice
Packet matching

DAW
TCP ACK r = 3

(b) Worm spread

Figure 2. Effect of algorithms on the network for TCP worm

sible addresses in our simulation. Thus the probability of
guessing a “good” IP address is approximately 60%.

For the worm parameters, we set the infection length to
500, the infection port to 1040, the target vector to a uni-
form random generator spanning the defined address space.
We have set the UDP worm to have a scan rate 100 probes
per second, while the TCP worm is set to have 3 simultane-
ous connections.

We conducted experiments by simulating a worm out-
break on the “ring–of–trees” network described above, and
measured the overall rate of spread for the worm. In addi-
tion, we monitored the web response time for normal web
browsing actions. The web browser model is that defined

by Mah [9], and is the default web browser model in GT-
NetS. The worm attack was not started in the simulations
until time t = 50 seconds, to allow the web browsing traf-
fic to get started and reach steady state.

Figure 1a shows the effect of the different implementa-
tions of the discussed algorithms on the web browsing re-
sponse times when a UDP worm attacks the network. Fig-
ure 1b shows their effect on the worm spread rate. Figures
2a,b shows the same results but for a TCP worm.

Since some of the defenses look specifically for the
TCP–SYN packet as an indication, we modified those algo-
rithms to treat a UDP packet as an infection attempt (since
we had no “normal” UDP traffic in these scenarios this is a
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reasonable approach).

4.1. Virus Throttle

The figures show that the throttle is capable of stopping
the UDP worm spread in less than three seconds for this
small network. However, in this environment, nearly 60%
of vulnerable hosts are infected in that same time period.
Moreover, this approach has a significant impact on the nor-
mal web browsing activity, increasing considerably the av-
erage web response time.

In the case of the TCP worm, the virus throttle approach
fails to detect it or to cause any significant reduction in its
infection spread. Further, we still notice a considerable re-
duction in the performance of browsers in the network. This
is due to the fact that the throttle is slowing down infected
hosts (all hosts in this case) both for the infection packets
and normal web browser connections, but the slow down
is not significant enough to block the worm spread signifi-
cantly.

Some of the shortcomings in the practical implementa-
tion of this approach are:

1. It is host based, so there is a risk of the worm to actu-
ally attack the algorithm and stop it from executing.

2. This approach is not effective against slow spreading
worms that are below the threshold of detection

3. Deployment must be complete in order to attain good
results, which means that deployment cost is going to
be high.

4. Complete blocking of the infected host would result in
blocking non worm traffic from that host as well.

4.2. CounterMalice

In our experiments for this approach, we placed the
counter malice algorithm on each of the first level routers
in the random trees (the children of the root of each tree).
Thus, each counter malice process has a variable number of
existing and non–existing hosts in the tree below it.

From the performance figures, we can see that the per-
formance is worse than the virus throttle approach both for
TCP and UDP worms. This is primarily due to the fact
that the counter malice algorithm can not detect infections
within a subnet, since the detection is on the gateway to
other networks. Further, once the counter malice algorithm
begins blocking actions, it has a significant degradation on
normal web browsing.

However, this approach does address some of the short-
comings of the throttle approach. Since it is not host based
we do not need to deploy it on every host but rather just
on the routers. Also it can detect slow spreading worms as
it does take into account the number of hosts that do not

respond to a connection request, but it has the additional
shortcoming of being unable to detect worm spread within
a subnetwork. Unfortunately, it still has the same detrimen-
tal effect on the normal web traffic as the virus throttle ap-
proach.

4.3. Packet Matching

In our experiments for this approach, we placed the
packet matching algorithm on each of the first level routers
in the random trees (the children of the root of each tree).

This approach is better than the previous two in the fact
that it blocks only certain port access rather than all traf-
fic for suspected host. This means that the infected host can
still have its normal traffic go through without any delays
while the worm traffic is blocked or delayed.

Figure 2a shows that, for the TCP worm, the packet
matching algorithm was able to stop the worm infections
very quickly and Figure 2 shows that the performance of
the web browsing activities improved by 20%, due to the
suppression of worm traffic.

Figure 1a shows that, for a UDP worm, the packet match-
ing algorithm was not able to stop the worm completely and
the infections continued to spread until it reached 100%,
This is due to the dynamic threshold used in this approach,
which calculates a moving average. This means that if
the worm traffic was increasing slowly for a subnetwork
such that the average would also increase slowly, the worm
would go undetected and would be considered as normal
traffic. We would expect a fixed threshold to perform better,
but this would require a customized threshold for each port,
depending on the application running on that port and the
expected level of activity on that port. Another note is that
if the infected port had been the same as the web browser
port (port 80) the detrimental effects would be extremely se-
vere, since this approach not only blocks the infected hosts,
but the entire subnetwork containing the infected host. This
approach also has a similar drawback to the counter malice
approach in that it cannot detect or affect infections within
a subnetwork.

4.4. DAW

In our experiments for this approach, we placed the
DAW algorithm on each of the first level routers in the ran-
dom trees (the children of the root of each tree).

The figures show that the DAW approach, with just the
Basic-Rate-Limit method applied, has almost no effect on
worm spread in either the TCP or UDP worm cases. How-
ever, it has significant impact on web response time, result-
ing in more than 50% of all requests failing to complete in
seven seconds or less in the case of the UDP worm, and
20% failing in the TCP worm case. This approach also has
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Figure 3. Effect of TCP–ACK on the network for TCP worm

the shortcoming of not being able to detect or react to infec-
tions within a subnetwork.

The authors also provided two additional methods to be
used for limiting the connection requests, called the Tempo-
ral Rate-Limit Algorithm and the Spatial rate-Limit Algo-
rithm. In the first one they also take into account the num-
ber of failed connections during an entire day, as they state
that a normal user may generate high failure rate in a short
period of time but that should not continue for 24 hours.
However, an infected host would have a high failure rate all
the time. Thus, they define another parameter Γ that repre-
sents the threshold for failed connections in a day.

The second method takes into account the number of
failed connections of the network as a whole, using a col-
laborative methods between the DAW processes.

We modeled the first method but instead of a period of
a day we defined for a period of one minute and we set
Γ to be equal to 30, meaning that we allow 30 failed con-
nections in one minute. The results are not shown here, but
did not show any major improvement to the BasicRateLimit
method presented.

We did not model the second method as we are not tak-
ing into account collaborative efforts between agents and
the central station.

4.5. TCP–ACK

In our new TCP–ACK approach, we define r as the ra-
tio between the number of nodes that do not have an appli-
cation associated with the worm infection port to the num-
ber of nodes that have the vulnerable application. We fur-
ther assume that all systems have the required kernel patch

to send the SYN–ACK in response to connection requests to
non–existent ports.

Figure 2a shows that for the value of r = 3, the TCP
worm is blocked completely. Further, Figure 2b shows that
the performance of the web browsers was improved, since
our approach does nothing to packets addressed to legiti-
mate hosts and ports, and our approach caused suppression
of the worm traffic.

We also ran experiments on the network by varying the
ratio r, The Figure 3 shows that for small values of r (0.8,
1) this method has no noticeable effect but by increasing r
the effectiveness of the TCP ACK algorithm increases until
it is able to stop the worm completely for r = 3 without any
negative effect on the normal web traffic.

We point out that in our model the worm does not pro-
vide its own timeout period for the hung connections to
fail. We expect that experienced worm developers will be-
come aware of this defensive method and will provide some
timeout period to terminate the connection. Regardless, the
timeout period must be much longer than the single round–
trip–time connection failure in present worms, and thus will
still reduce the overall rate of spread for TCP–style worms.

5. Conclusion

We have performed a detailed simulation–based study of
the effectiveness of several proposed worm detection and
defensive methods, and have quantified the effect of these
methods on normal web–browsing activities. Further, we in-
troduced a new defensive mechanism we call TCP–ACK,
which is shown to be effective against worms using TCP
connections for payload propagation.
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