Forensic Analysis of File System Intrusions using Improved Backtracking

Sriranjani Sitaraman and S. Venkatesan
Department of Computer Science
The University of Texas at Dallas
Richardson, Texas 75083-0688.
ginss@student.utdallas.edu, venky @utdallas.edu

Abstract

Intrusion detection systems alert the system administra-
tors of intrusions but, in most cases, do not provide de-
tails about which system events are relevant to the intrusion
and how the system events are related. We consider intru-
sions of file systems. Existing tools, like BackTracker, help
the system administrator backtrack from the detection point,
which is a file with suspicious contents, to possible entry
points of the intrusion by providing a graph containing de-
pendency information between the various files and pro-
cesses that could be related to the detection point. We im-
prove such backtracking techniques by logging certain ad-
ditional parameters of the file system during normal opera-
tions (real-time) and examining the logged information dur-
ing the analysis phase. In addition, we use data flow anal-
ysis within the processes related to the intrusion to prune
unwanted paths from the dependency graph. This results in
significant reduction in search space, search time, and false
positives. We also analyze the effort required in terms of
storage space and search time.

Keywords: Intrusion Detection, Data Flow Analysis, Dy-
namic Slicing, Backtracking, File System

1. Introduction

Computer intrusions and attacks are increasing every
year [3] and many of these are done with automated and
sophisticated attack techniques [2]. Consequently, discov-
ery or detection of intrusion is becoming more difficult. To
help in determining how an attack happened and who is be-
hind the attack, many events are logged continuously during
a machine’s normal operation. After an intrusion, the sys-
tem administrators have to examine huge log files for con-
nections from unusual network locations or unusual activity
in the system. Tools such as Tripwire [18] [19] help system

administrators by automating some parts of intrusion detec-
tion. A detection point refers to the state on the local com-
puter that alerts the user of the intrusion [20]. Deleted or
modified files, processes with unusual activity, setuid or set-
gid files, unauthorized entries in system configuration file or
network configuration file, etc., are called detection points.
A number of security tools are available to help detect in-
trusions, secure the system, and deter break-ins [1].

The logs provide a list of events that occurred prior to the
intrusion, and often it is the system administrator’s task to
determine how these events relate to each other and how
these events affect the detection point. For example, the
attacker may have installed a back-door in one login ses-
sion, and used that back-door to gain unauthorized access
in a subsequent session. An installed rootkit is an exam-
ple of such Unix intrusions [12]. The log will not indicate
that these two sessions are related and extensive examina-
tion of the log is needed. An automated process for detect-
ing dependencies between the various system events would
greatly benefit intrusion analysis. BackTracker is such a
tool, and was developed by King and Chen [20] to automat-
ically identify the entry point used to gain access to a sys-
tem and the sequence of steps leading to the detection point
by displaying chains of events in a dependency graph.

We next present an overview of the BackTracker system
and describe how it determines the sequence of events that
affect a detection point.

1.1. BackTracker

BackTracker uses a modified Linux kernel to log events
that describe dependencies between operating system ob-
jects [20]. There are two components: the online compo-
nent, which runs and logs information when the computer
is in operation and the off-line component, which analyzes
the log after an intrusion. King et al [21] show how Back-
Tracker can generate forward causal graphs that can be used
to track other hosts that are involved in multi-hop intrusions.

While the various applications in the system are execut-



ing, BackTracker’s online logger component logs external
information associated with events such as invocations of
system calls and the related OS-level objects like files and
processes. Some events create dependencies. For example,
writing to a file by a process causes the file (the sink ob-
ject) to depend on the process (the source object). The de-
pendency associated with an event is represented as source
— sink. If process P writes to file f, the dependency cre-
ated by this event is represented as P — f. The time thresh-
old for an object refers to the maximum time that an event
can occur and still be considered relevant for that object.
The time threshold of an object can be considered as a time
instant %,,,; and all time instants ¢ such that ¢ < t,,45-
With the log of the objects and dependency-causing events,
BackTracker’s off-line graph generator component, namely
GraphGen, constructs the dependency graph as follows.
First, GraphGen is initialized with the object associated
with the detection point and its time threshold is set to the
earliest time that unusual contents/behavior was noticed in
the detection point. GraphGen then reads the log of events
in the reverse order of their occurrence starting from the
time the detection point was identified. For each event E,
GraphGen evaluates whether E can affect any object that is
already in the dependency graph and whether the event has
occurred within the time threshold of such an object in the
graph. If the event E is determined to affect an object O4 in
the graph and the source object for this event, O1, is not al-
ready in the graph, then O; is added to the graph. The time
threshold of O; is set to the time ¢ when event E occurs be-
cause E does not depend on events that occur after 7. More
details about the various events and dependencies tracked
by BackTracker can be found in [20].

As an example, consider the sequence of events (from
the log) shown in Table 1. The intrusion detection system
determined that File 7 has suspicious contents. Let the ac-
tual path of the attacker be: File 2 — Process B — Process
D — File 6 — Process F — File 7. With File 7 as the de-
tection point, BackTracker constructs the dependency graph
corresponding to the sequence of events of Table 1 as shown
in Figure 1. In the graph, the label on each event shows the
time of occurrence of the event.

We consider the problem of presenting a compact depen-
dency graph to the system administrator to analyze. The de-
pendency graph generated by BackTracker may be too large
even after applying some of the suggested filtering rules. We
propose two additional steps that can reduce the size of the
dependency graph. First, we add additional fields to the log
with details about file offsets where a read or write opera-
tion is performed, and use this information while generating
the graph. Second, we propose the use of data flow analysis
within processes to determine the events relevant to the de-
tection point. Each of these two steps can reduce the graph
size significantly. Data flow analysis has been used exten-
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Table 1. Sample Sequence of System Events

Process A creates Process B
Process B reads from File 1
Process B reads from File 2
Process B reads from File 3
Process B creates Process D
Process D writes to File 4
Process D writes to File 5
Process D writes to File 6
Process B creates Process C
Process C reads from File 4
Process C writes to File 7
Process B creates Process E
Process E reads from File 5
Process E writes to File 7
Process B creates Process F
Process F reads from File 6
Process F writes to File 7

File 7 is identified as the detection point
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Figure 1. Dependency Graph generated by
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sively to optimize code during the compilation process [8].
Data flow information such as reaching definitions, that in-
dicate which definitions of a variable may be used at a point
of concern in a program, can be collected using static or dy-
namic methods, and this information can be used to reduce
the number of possible paths in the dependency graph.

Our initial analysis shows that there is a moderate space
overhead in the logging phase and time overhead in the
analysis phase, but the resulting graph size is quite small
when compared to the size of the graphs constructed with-
out our optimization.

The rest of the paper is organized as follows: In Sec-
tion 2, we describe the system model used, and Section 3
presents an overview of the main components of our tool.
Our solution to the problem of large dependency graphs is
presented in Section 4. Section 5 discusses ideas for im-
plementation of the tool, and Section 6 analyzes the algo-
rithm’s performance, and limitations of our approach. Sec-
tion 7 compares our contribution to related work, and Sec-
tion 8 concludes the paper.

2. System Model

Consider a typical Unix system where the operating sys-
tem, commonly called as the kernel, interacts directly with
the hardware. The user applications use the system call in-
terface to access the operating system’s functions. Data is
stored in files and files are organized on the hard disk in a
Unix-based file system. The file system is accessed via sys-
tem calls. The attributes of files such as the file’s owner,
file size, last modification time, etc., are stored in inodes. A
program is an executable file, and a process is an instance
of the program in execution [10]. Processes execute simul-
taneously in the Unix system, and system calls allow cre-
ation, termination, synchronization, etc., of processes.

There are two main components: an online logger and
an off-line graph generator. The logger component can be
built into the kernel or implemented as a loadable kernel
module and executed along with other user applications. In
the event of an intrusion, with the log of events and a detec-
tion point, the off-line graph generator constructs a graph
of dependencies that relate to the detection point. The graph
generator’s output is given to the system administrator for
analysis of the intrusion.

We now describe the various objects, events and depen-
dencies that are relevant to the backtracking tool. The back-
tracking tool is used for tracking file system based intru-
sions only. It tracks the flow of information between operat-
ing system objects and events. It does not track application
level objects or events.

1. Objects:
The OS-level objects that are tracked by the back-
tracking tool are files, processes and filenames. A file

object is identified by its inode and contents. A pro-
cess object is described by its unique PID and a ver-
sion number. Every process except the swapper pro-
cess is tracked from its creation to termination. Swap-
per is tracked from the time it makes the first system
call. Filename objects indicate the absolute pathnames
of files. These objects are affected by system calls such
as creat(), open(), unlink(), etc.

. Events:

The system calls invoked by processes are the
events that are tracked by logger. The system call
events affect OS objects. For example, when a pro-
cess writes to a file f using the write() system call,
file f is the object affected by the event. When log-
ger logs an event, it stores all the identifying informa-
tion about the calling process and the affected object.
In addition to that, logger stores the values of the pa-
rameters that were provided as input to the system call
as well as the return value of the system call. As de-
scribed in Section 4, this information will be used
when the graph generator analyzes the trace and per-
forms data flow analysis to reduce the size of the
graph. Note that this logging operation can be per-
formed by modifying the system call or by modifying
the application/system program.

. Dependencies:

An event E results in a dependency between the OS
objects that are associated with E. A dependency is
represented as source object — sink object.

Dependencies can be of the following types:

(1) Between two processes:

Such dependencies are created when one process cre-
ates another process (using the fork() system call) or
sends a signal to another process. A dependency of the
form Process A — Process B is created when Process
A forks Process B. The same dependency is created
when Process A sends a signal to Process B with the
kill() system call.

(ii) Between a process and a file:

A Process — File dependency is created when the
file’s contents or attributes are affected by some ac-
tion by a process. The write() and chown() system calls
are examples that produce a Process — File depen-
dency. A read() system call introduces a dependency
of the type: File — Process. This dependency arises
due to the fact that the process’ actions may depend on
the contents read from the file. As an example, a pro-
cess A depends on a file F when process A reads data
from file F, and this is represented as File FF — Pro-
cess A.

(iii) Between a process and a filename:

A Process — Filename dependency is created when
the process invokes a system call that modifies a file-



name object. Examples of such system calls are re-
name(), unlink(), creat(), link(), mount(), etc. A File-
name — Process dependency is created when a sys-
tem call that takes a filename object as input succeeds.
For example, system calls such as open(), stat(), etc.,
will not succeed if the file identified by the filename ar-
gument does not exist. In such cases, the Filename —
Process dependency is not created.

2.1. Definitions

Following are some terms used in the subsequent sec-
tions.

Offset Interval in a File We define offset interval, [a, D],
b > a, in a file f as the set of byte offsets from a to b

inf.

Suspicious Offset Interval A suspicious offset interval of
afile f is an offset interval in f that is known to contain
suspicious contents (for example, if file f is a detection
point). Note that a file can have more than one suspi-
cious offset interval. Let the set of all suspicious off-
set intervals of a file f be denoted by S;. S}, for a file
[, is initialized with either the offset interval where sus-
picious contents are found (if f is a detection point) or
is initialized to null (for all other files).

Offset Interval of Read/Write Operation The offset in-
terval of a read or write operation is [a, b] if the read or
write operation was performed between offsets a and
b in the file. For example, if a process reads n bytes
from a file from an offset of 100 from the start of the
file, then the offset interval of this read() system call is
[100, 1004-n].

Overlapping Offset Interval Offset interval, w, of a write
operation is said to be overlapping an offset interval s
of file f if w and s have some common offsets, i.e., if
w N's # ¢. For example, if a process writes to offsets
[50, 100] of file f, it overlaps offset intervals [75, 125],
[25, 60], [75, 80], etc., of file f.

Latest Overlapping Offset Interval For each offset b in
a suspicious interval s of file f, we define the latest
overlapping offset interval as the offset interval corre-
sponding to the latest write that was performed at off-
set b in file f. If no write operation was performed at
offset b in suspicious interval s of file f, then the lat-
est overlapping offset interval for b is null. Note that a
suspicious offset interval consists of one or more off-
sets, and hence may have multiple latest overlapping
offset intervals.

3. Design of Backtracking tool

Figure 2 illustrates the various steps involved in back-
tracking a file system based intrusion. When the programs
are executing, the logger component logs the system events.
An intrusion detection system detects an intrusion either
immediately after it occurs or at a later time. A detection
point (a suspicious OS object) is identified. With the detec-
tion point and the trace of the system events (found in the
log), the off-line graph generator component constructs the
dependency graph. This dependency graph can be further
pruned using the data flow analysis tool explained in Sec-
tion 4.2.

We now explain the two main components of the back-
tracking tool in more detail.

Logger:

Logging of system events and affected operating sys-
tem objects while the system is executing constitutes an
important phase of the tool, thereby enabling backtrack-
ing from the detection point to the entry point of intrusion.
The responsibility of the logger is to monitor all the ap-
plications executing on the target system and log the var-
ious events occurring on the system at the OS level. The
logger logs all the information needed to enable a re-
play of all the events, if possible, during the subsequent
analysis and graph generation phase. This involves trac-
ing the system calls executed by the various applications,
and logging them along with the values of the input param-
eters and return values.

Graph Generator:

The graph generator is an off-line component of the tool
that analyzes the log created by the online logger com-
ponent. The detection point, indicated by an intrusion
detection system or other tools, is used as the start-
ing point for the analysis, and the log is examined ‘back-
wards’ i.e., from the last event to the first, in a manner
similar to BackTracker. An outline of the graph genera-
tion algorithm as used in BackTracker is given below. Note
that the dependency graph is initialized to the object corre-
sponding to the detection point.

Initialize dependency graph to object corresponding to the detec-
tion point.
/* read events from latest to earliest, starting from the time when
the detection point was identified by the intrusion detection sys-
tem™/
for each event E in log {

let E =01 = O>

if (O3 exists in the graph and E affects O2 by the time
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threshold of O)
if (object O; not already in graph) {
add O, to graph
connect O to Oz with directed edge O1 — O»
set time threshold of O; to time of E
}
}

4. Improvements to BackTracker

The motivation for our work has been the reduction in
the size of the graph generated by BackTracker. We now
explain how to find unwanted paths in the graph. The two
main improvements to the existing tool, BackTracker, are
presented below.

4.1. Offset Intervals

We log the file offsets when read or write operations are
performed. The offset intervals associated with the read()
and write() system calls help in reducing the size of the re-
sulting dependency graph. For instance, consider that Pro-
cess A writes to File 1 to offset interval [10, 20], and Pro-
cess B reads from File I subsequently from offset interval
[50, 100] with no intermediate operation (by any process)
that modifies the contents of File . In this case, there does
not exist a dependency between processes A and B with the
path: Process A — File 1 — Process B. BackTracker would
include such a path in the dependency graph because the
write operation of Process A to File 1 had happened within
the time threshold of the read operation of File I by Pro-
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Dependency
Graph

cess B. We remove such dependencies from the graph using
the offset interval information.

We propose changes to the graph generation algorithm
when a write event or a read event is encountered in the log.
The changes are described in the following sections.

4.1.1. Write Event The following checks are per-
formed in the graph generation algorithm while examin-
ing a write event E from the log in order to use the available
offset interval information. Let Sy be the set of all suspi-
cious offset intervals of a file f. If f is the detection point,
then S} is initialized to the suspicious offset interval de-
tected in f, otherwise, Sy is initialized to null.

if (E corresponds to a wrife() system call by process P on file f) {
let E=0p — O f
if (Oy exists in graph and E affects Oy by time
threshold of Oy)
if (offset interval of E is a latest overlapping offset
interval for some suspicious offset interval s of file f,
i.e‘, se S f)
if (Op not already in graph) {
add Op to graph
connect Op to Oy with directed edge, Op — Oy
set time threshold of Op to time of E

}

4.1.2. Read Event When aread event E of process P from
file f is encountered, the event is added to the graph if the
object associated with P is already in the graph. We need to
know what the suspicious offset intervals of a file are as it
is not necessary to track write operations that write to a part



of the file that is never read from subsequently. So, in our
backwards analysis of the event log, when we encounter a
read operation, we add the offset interval of this read oper-
ation to S¢, the set of all suspicious offset intervals of file
f

The following actions are taken by the graph genera-
tion algorithm while examining a read event E.

if (E corresponds to a read() system call by process P from file f)
{
let £ = Of — Op
if (Op exists in graph and E affects O p by time
threshold of Op)
if (O not already in graph) {
add Oy to graph
connect Oy to Op with directed edge, Oy — Op
set time threshold of Oy to time of E
add offset interval of E to the set .Sy of suspicious
offset intervals of file f

We present an example to better illustrate the benefits of
using offset intervals. Table 2 shows the same sequence of
events in the log of Table 1 with the corresponding offset in-
terval information. Figure 3 shows the dependency graph of
Figure 1 with offset interval information for the read() and
write() system calls. Suppose the intrusion detection sys-
tem indicated that File 7 is the detection point with suspi-
cious offset interval [50, 75]. Given the offset interval in-
formation for all the read() and write() system calls, our al-
gorithm will produce a dependency graph as shown in Fig-
ure 4.

The following steps were taken while generating the de-
pendency graph shown in Figure 4 for the sequence of
events in Table 2.

1. Time 18: First, the graph is initialized with File 7, the
detection point. The suspicious offset interval of File 7
is [50, 75].

2. Time 17: Process F writes to File 7 in offset interval
[50, 100]. This write event’s offset interval is deter-
mined to be a latest overlapping interval of the suspi-
cious offset interval [50, 75] of File 7. So we add the
source of this event, Process F, and an edge for the
event to the graph. The time threshold of Process F is
set to 17, the time of this event.

3. Time 16: Process F reads from File 6. The sink object
Process F of the event exists in the graph constructed
so far and the event’s time is within the time thresh-
old of the object of Process F. So, the source object of
this event, File 6, is added to the graph. Also, the off-

Time Event

1. Process A creates Process B

2. Process B reads from File 1, [50, 55]

3. Process B reads from File 2, [65, 200]
4. Process B reads from File 3, [75, 125]
5. Process B creates Process D

6. Process D writes to File 4, [300, 350]
7. Process D writes to File 5, [25, 30]

8. Process D writes to File 6, [100, 150]
9. Process B creates Process C

10. Process C reads from File 4, [5, 10]

11. Process C writes to File 7, [150, 175]
12. Process B creates Process E

13. Process E reads from File 5, [15, 20]
14. Process E writes to File 7, [100, 125]
15. Process B creates Process F

16. Process F reads from File 6, [125, 175]
17. Process F writes to File 7, [50, 100]
18. File 7 is identified to have suspicious con-

tents in [50, 100]

Table 2. Sequence of System Events with Off-
set Intervals

set interval of this read event, [125, 175] is added to
the list of suspicious offset intervals of File 6.

4. Time 15: The dependency Process B — Process F is

added to the graph as F is already in the graph and the
event occurs within the time threshold of Process F.

. Time 14: Process E writes to File 7 in offset interval
[100, 125]. This offset interval does not overlap the
suspicious offset interval of File 7, [50, 75]. So the de-
pendency corresponding to this event is not added to
the graph.

Time 13, 12: Since Process E is not in the graph, the
events occurring at times 13 and 12 are skipped.

7. Time 11, 10, 9: The write event at time 11 by Process

C to File 7 does not have an offset interval that over-
laps the suspicious offset interval of File 7. So, Process
C is not added to the graph, and the next two events at
times 10 and 9 are also skipped.

Time 8: Process D writes to File 6 in offset interval
[100, 150]. File 6 is in the graph, and its only sus-
picious offset interval [125, 175] overlaps with this
event’s offset interval. So, Process D is added to the
graph, with the time threshold set to 8.

9. Time 7, 6: Both File 4 and File 5 are not found in the

dependency graph, so these events (at time instants 7
and 6) are skipped.
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Figure 3. Graph of Figure 1 with offset inter-
val information

10. Time 5: Process D exists in the graph, so Process B is
added to the graph for this event.

11. Time 4, 3, 2: Objects for File 1, File 2 and File 3 are
added to the graph. The offset interval of each of these
read events is added to the respective file’s list of sus-
picious offset intervals.

12. Time 1: Process A is added to the graph as Process B
is found in the graph.

The dependency graph of Figure 4 has fewer objects and
dependency edges than the graph of Figure 1.

4.2. Data Flow Analysis

In the reduced dependency graph of Figure 4 that was ob-
tained after applying offset intervals information, note that
Process B had read data from File 1, File 2, and File 3. The
suspicious content that Process B passed on to Process D in
a buffer variable was written to File 6 by Process D. While
analyzing the events in the log, it is not clear from where
Process B obtained the suspicious data (and then passed to
Process D). The possible data sources are the three files,
File 1, File 2 or File 3, some internal definition of the data
buffer or user data read by Process B. We use program slic-
ing techniques on the programs of Processes D and B to de-
termine the reaching definitions for the value of the buffer
variable used in that write() system call. This approach re-
duces the search space further. Note that this may require
the source code of the programs involved.

The process global data flow analysis is used in order
to determine how data flows through the various applica-
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Figure 4. Smaller dependency graph con-
structed using offset intervals

tion program [8]. In data flow analysis, the definition d is
said to reach a point p if there is a path in the program from
the point immediately following d to p, such that d is not
“killed” along that path. The definition of a variable a is
said to be killed if between two points along the path there
is a read of @ or an assignment to a [8].

A program slice refers to the set of statements of the pro-
gram that influences the value of a variable at a point in the
program. The initial notion of a program slice was a static
slice obtained irrespective of the values of the input vari-
ables. Given a variable, a program location and a set of val-
ues for all input variables, the task of determining which
statements in the program affected the value of that vari-
able at that location is referred to as dynamic program slic-
ing [4] [6].

Static program slicing techniques can be used to reduce
the size of the dependency graph but they may be very con-
servative and inefficient. A static analysis of the source code
of a program cannot indicate what execution paths the pro-
gram may have. Hence, static program slicing may present
more reaching definitions for a variable’s value than the ac-
tual set of definitions that could possibly be executed. Dy-
namic slicing takes a particular test case, represented by a
known set of values for all the input variables, and evalu-
ates the program thereby yielding more probable program
slices.

In the example shown in Figure 4, after applying dy-
namic slicing on the programs of Process D and Process
B with the trace generated by logger, suppose that the only
reaching definition (of the buffer variable used in the write
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event at time 8) is determined to be the read() system call
invoked by Process B to read contents from File 2. This
would yield the smaller dependency graph shown in Fig-
ure 5. Note that to perform program slicing for the buffer
variable of a particular write event, the location in the pro-
gram of that write() system call, in addition to the values of
all the input variables, is needed. The location (line num-
ber) of the write() system call in the program, correspond-
ing to an event, can be determined by techniques described
in Section 5.

5. Implementation Ideas

The component logger of our tool can be built as part of
the Linux kernel or can be implemented as a Linux loadable
kernel module. OS Virtual Machines that were introduced to
enable time-sharing of expensive hardware are now used in
a variety of applications [14] [15]. The secure and fine gran-
ular logging of system execution that virtual machines pro-
vide can be used in intrusion detection [13]. User applica-
tions can be executed on the host system or inside a tar-
get system which itself is running as a user application on
the host system. In the latter case, the target system is a
host process that transfers control to logger, a Virtual Ma-
chine Monitor (VMM), whenever a system call is invoked
by a user application in the target system. Whenever log-
ger is invoked, it examines the host system for the state of

the target system process and extracts information about the
event and the affected objects.

Whenever a write() system call is invoked, logger needs
to print the line number of the write() system call in the
source program. The line number information is needed
to perform data flow analysis during the graph generation
phase of the backtracking tool. In order to make the line
numbers available to logger, this information is added to
a section of the object file during compilation of the user
application. The compiler has to be enhanced to perform
this operation and all the user applications have to be com-
piled using this enhanced compiler. The -g option of gcc
can be used to produce debugging information in the oper-
ating system’s native format [26]. The ability to read the re-
quired line number details from the debugging information
section of the object file can be built into logger. Similar ca-
pability can be found in the Gnu Debugger (GDB) applica-
tion [27].

6. Performance and Limitations

We analyze the overheads of time and storage space
in the two phases of our backtracking tool, namely log-
ging and graph generation, and compare the time and space
requirements of our improved backtracking tool with exist-
ing tools such as BackTracker.

Logging Phase:

Our logger component needs to log more informa-
tion that enables the graph generator to replay the events
and perform data flow analysis. The additional informa-
tion consists of the actual values passed to the system
calls, and the return values of the system calls. The log-
ger in our backtracking tool also needs to obtain the line
number information from the relevant sections of the ob-
ject file whenever a write() system call is encountered.

Graph Generation Phase:

With the improved graph generation algorithm, the size
of the dependency graph will be reduced. Hence, with
fewer paths to track, our backtracking tool generates the fi-
nal dependency graph faster. Dynamic slicing will produce
good results by pruning more unwanted paths in the graph,
but at the expense of additional time in the graph genera-
tion phase.

A limitation of our approach is the storage overhead dur-
ing the logging phase. The detailed traces are needed in or-
der to replay the various programs and determine program
slices dynamically. We can reduce the space required by the
log by choosing static program slicing instead of dynamic



program slicing. Note that in order to perform static data
flow analysis on a program, the source code for that pro-
gram is required. Also, execution backtracking has its lim-
itations since it may not be feasible to undo certain actions
of the applications and replay them. In such cases, dynamic
slicing techniques may produce conservative results.

7. Related Work

The idea of using causality of system events has been ex-
ploited by other research projects such as King and Chen’s
BackTracker [20] and the Repairable File System [33]. In
Repairable File System, a forward analysis from the de-
tection point is performed to determine the operating sys-
tem objects that were affected by the system intrusion.
Ammann, Jajodia and Liu [9] have proposed techniques
to detect the flow of contaminated transactions through a
database and roll back those transactions that are affected
directly or indirectly by contaminated transactions. In con-
trast, our intrusion detection tool backtracks from a detec-
tion point to determine the entry point of an intrusion. Only
OS-based objects and events are tracked.

BackTracker performs forward as well as backward anal-
ysis of operating system events to detect the flow of infor-
mation from and to the detection point. BackTracker filters
the resulting graph to prioritize likely paths of an intrusion,
but in doing so, may hide important sequences of events.
Our work, in comparison, performs backward analysis from
a detection point. With moderate storage overhead, the im-
provements suggested in this paper aim to reduce the size
of the dependency graph while retaining the important se-
quences of events that led to the detection point.

Weiser [29] [30] introduced the concept of program slic-
ing to make debugging of programs easier. Many tech-
niques to obtain static program slices were proposed in
[11] [17] [25]. In addition to debugging, program slices are
useful in testing, maintenance, and understanding of pro-
grams [4] [6]. Techniques such as PSE (Postmortem Static
Analysis) by Manevich et al [24] use information about a
program failure (such as the kind of failure, and its loca-
tion in the program’s source code) to produce a set of ex-
ecution traces along which the program can be driven to
the given failure. Notions of dynamic program slicing were
proposed by Korel and Laski [22] and Agrawal and Hor-
gan [7]. Agrawal et al present a debugging model, based
on dynamic slicing and execution backtracking techniques,
that easily lends itself to automation in [5]. Dynamic slicing
techniques are still topics of active research [31] [32]. Sur-
veys of the various program slicing methods are presented
in [16] [23] [28]. In this work, we have applied dynamic
slicing techniques for detection of file system based intru-
sions.

8. Conclusion

Analyzing an intrusion with huge log files is an ardu-
ous task for system administrators. The system administra-
tor must determine how the intruder gained access to the
system and conducted the attack. Existing tools, like Back-
Tracker, provide a dependency graph of the events in the
log that relate to the intrusion. In this paper, we have ad-
dressed the problem of reducing the size of the dependency
graph. We have proposed two improvements to the graph
generation algorithm, which when applied properly can re-
sult in significant reduction in search space and search time.
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