High-Speed Analysis of SMB2 File Sharing Traffic
without TCP Stream Reconstruction

Eduardo Berrueta*, Daniel Morato*, Eduardo Magana*T, Mikel Izal*
*Dept. of Electrical, Electronic Engineering and Communications, Public University of Navarre, Pamplona, Spain
TInstitute of Smart Cities, Pamplona, Spain
email: {eduardo.berrueta, daniel.morato, eduardo.magana, mikel.izal } @unavarra.es

Abstract—This paper presents a file sharing traffic analysis
methodology for Server Message Block (SMB), a common pro-
tocol in the corporate environment. The design is focused on
improving the traffic analysis rate that can be obtained per CPU
core in the analysis machine. SMB is most commonly transported
over Transmission Control Protocol (TCP) and therefore its anal-
ysis requires TCP stream reconstruction. We evaluate a traffic
analysis design which does not require stream reconstruction. We
compare the results obtained to a reference full reconstruction
analysis, both in accuracy of the measurements and maximum
rate per CPU core. We achieve an increment of 30% in the
traffic processing rate, at the expense of a small loss in accuracy
computing the probability distribution function for the protocol
response times.

Index Terms—File sharing, traffic analysis, response time

I. INTRODUCTION

The use of network file sharing systems is a common
practice in the corporate environment [1]. User and workgroup
files are stored in disk arrays on Network Attached Storage
(NAS) systems. This architecture simplifies collaborative work
and the application of backup policies for critical documents.
Microsoft Windows, in its several versions, is the de-facto
Operating System (OS) for user desktop computers, and SMB
is the default file sharing protocol for this OS.

The first version of SMB was considered a very chatty
protocol. It was deprecated in June 2013 by Microsoft, due
also to its numerous vulnerabilities. Windows Vista established
SMB version 2 (SMB2) as the default file sharing protocol,
getting better performance and security features [2]. Finally,
SMB3 replaced SMB2 as the default version in Microsoft
Windows 8. SMB3 uses the same SMB2 messages, adding
an encryption layer. The version used is negotiated on session
establishment and both endpoints (host and NAS filer) must
support SMB3 in order to be used. As far as we have witnessed
in several corporate environments, SMB?2 is still the prevalent
version and even SMB version 1 is being used (as it has been
reported in many cases of malware using SMB1 vulnerabilities
[3]). What we present in this paper about SMB2 applies also
to SMB3, provided the encrypted messages can be decrypted
using the private keys or shared secrets.

The performance of a file server is critical for the pro-
ductivity in a collaborative environment because users expect
a behavior similar to that obtained from a local disk. The
responsiveness they perceive is the result of the file sharing
protocol design, the effects of network transport and the

response time from the hardware and OS at the NAS. From
a user’s standpoint, the whole system can be evaluated by the
response time the user measures for each SMB command his
computer sends to the NAS.

The most common non-intrusive methodology to measure
response times in network protocols is the analysis of passively
monitored network traffic between client (the user) and server
(the NAS). Due to the multi-gigabit per second rates present in
the corporate LAN, efficient traffic analysis is required in order
to obtain measurement results in a timely manner using an
affordable hardware. A basic measure of analysis performance
is the maximum rate of packets or bits per second per CPU
processing core. A high processing rate could be achieved by
low precision or biased measurement techniques. Therefore,
an evaluation of the accuracy in the measurement is required,
as it presents a trade-off with the analysis rate.

In this paper we present the design of a traffic analysis
procedure capable of dealing with several gigabits per second
of SMB file sharing traffic per CPU core, in close to real
time. It is based on an approximate methodology where
not every command is analysed. We evaluate the trade-off
in accuracy in the analysis, comparing the results to those
obtained from a perfect history reconstruction of protocol
messages. Compared to a traffic analysis based on perfect TCP
stream reconstruction, we obtained more than 30% increase in
traffic analysis rates. Meanwhile, for network scenario with
1% packet losses we maintained an error less than 0.53%
for the estimation of the 99.9 percentile of the response time
distribution and of 6.1% for a scenario with 3% packet losses.

The rest of the paper is organized as follows: Section II
presents the SMB2 protocol and the previous work about its
analysis. Section III describes the perfect reconstruction and
the approximated methodologies. In Section IV we describe
the measurement scenario and the results from the perfor-
mance evaluation are presented in Section V. Finally, Section
VI concludes the paper.

II. SMB PROTOCOL ANALYSIS

A. Related work

The scientific literature about SMB protocol is focused
on the evaluation of its performance and the optimization
for efficient file access. For example, the authors in [4]
recently compared the read and write speed for SMB version 1



and internet Small Computer System Interface (iSCSI), using
RAIDO and RAID1 disk configurations.

Although there have been previous works that measure the
response time of servers using SMB, they were focused on
protocol and server performance, and not in the design of the
analysis tool. For example, in [5] the authors highlighted the
importance of response time analysis but they did not deal with
the problem of real time analysis. They were only concerned
with detecting problems due to high disk load. However, a
monitoring tool working in a production environment must be
capable of producing these measurement results in a timely
manner even when several gigabits per second of file sharing
traffic are produced.

Bro [6] is a well known software solution capable of SMB2
protocol analysis. However, it is focused on the detection of
malicious access to network shared volumes and the lateral
movement of some malware using SMB vulnerabilities. It is
not designed for the evaluation of response times to SMB
commands.

Tools like Wireshark and TShark can be considered the
reference open source tools for traffic analysis. They are
capable of SMB2 analysis and they do compute response times
between protocol requests and responses. However, they are
tools designed for the analysis of small traffic traces. They
are not capable of dealing with a continuous stream of several
gigabits per second of traffic [7], both in terms of CPU and
RAM usage. They are also unable to decode SMB2 messages
under certain segmentation circumstances (see section III).

In the presence of packet losses, application level analysis
of protocols over TCP requires the reconstruction of the
continuous transport stream in order to provide correct results.
This can be a problem for network monitoring tasks with strict
latency and synchronous requirements [8].

We have not found any previous work on the design of
traffic analysis algorithms for SMB2 based on avoiding TCP
stream reconstruction. We propose a methodology that obtains
highly accurate analysis results with a much reduced cost in
CPU usage (resulting in faster analysis using a single CPU
core). In order to evaluate the performance gain, we have also
implemented a response time SMB2 analysis program based
on full TCP stream reconstruction.

B. SMB2

SMB2 uses a single TCP connection between client and
server for all the network volumes accessed from the client.
The protocol uses a request-response architecture, with some
asynchronous notification capabilities. Each request is identi-
fied by a numeric messagelD, which is piggybacked in the
response and is used to pair it to the request.

SMB2 supports pipelining, which means that several re-
quests can be sent before a response to any of them is
received. The responses are not required to follow the same
ordering of the requests. This last feature makes pipelining in
SMB very different to for example pipelining in version 1.1
of Hypertext Transfer Protocol (HTTP)', where the ordering

IPipelining is not a feature of HTTP/2 as it supports stream multiplexing

in the responses must repeat the ordering in the requests.
Therefore, although previous works exist on efficient HTTP
analysis [7] they do not apply to the SMB scenario.

The degree of pipelining in SMB2 is controlled by the server
using a credits system. The client usually consumes one credit
for each request command and the server provides new credits
in the response [9]. The client can keep as many requests sent
to the pipeline as credits are available.

Pipelining in SMB2 is prevalent and a fundamental protocol
characteristic to obtain high file transfer throughput. Large
read or write operations instruct large bursts of read or write
commands, creating a long pipeline. A traffic analysis software
must deal with large numbers of requests in the pipeline,
pairing responses to requests in an efficient manner.

III. SOFTWARE STRUCTURE

In this paper we describe and evaluate two methods for
the measurement of response times in SMB2. The main
difference between these two methods is the reconstruction
of the TCP stream. The method named smbtime reconstructs
the TCP stream and is able to decode every SMB2 message
present. The module named smbtimefast does not reconstruct
the TCP stream. Packet losses, disorders and retransmissions
in TCP cause some SMB2 messages to not be detected using
smbtimefast. The result is a loss of response time samples and
therefore a probable reduction in the accuracy measuring the
probability distribution function of the response time.

Both methods analyse data as soon as they are available.
In the case of smbtimefast they are available right on packet
arrival, while using smbtime they could require being stored
waiting for the arrival of segments that fill gaps in the TCP
sequence. Due to the presence of pipelining in SMB protocol
they also require maintaining a list of pending requests. When
a new response message arrives, the corresponding request
must be located in the dynamic data structure. Both methods
use the same management for this data structure in order to
provide a fair comparison. Searching for the corresponding
request can reduce the processing rate as pipelining increases
and the dynamic structure grows.

We take the results from smbtime as the ground truth values
we want to measure. We allow an infinitely deep list of
pending requests in smbtime in order to support any degree
of pipelining. Due to the TCP stream reconstruction and
the unlimited list of pending requests, the module smbtime
computes the response time for every request issued (be it a
successful response or an error response). We could not use
well-known tools such as TShark or Wireshark as the ground
truth providers because we detected missing messages in the
results of their analysis. Using TShark 3.0.0 we discovered at
least two scenarios where it drops SMB messages: when the
SMB2 header is fragmented between two TCP segments and
in some cases of TCP disorders. In certain situations, the loss
of a message can even create a cascade effect, losing several
of the following messages in the analysis provided by TShark.



A. smbtime

For the smbtime method we implemented full TCP stream
reconstruction. When a TCP segment that continues the se-
quence is received, its data are readily available for analysis.
When the new segment creates a gap in the TCP sequence,
the packet is kept in memory in a linked list, waiting for the
packets that fill the gap. Several packets could be received in
a burst after the gap. All of them are kept in memory and they
cannot be offered for analysis because data is missing in the
stream. When the missing gap is filled, the whole consecutive
sequence of application level bytes is delivered to the analysis
method. Even though some data were available earlier, the
end host could not deliver the data to the SMB client/server,
therefore we cannot use each packet timestamp when there is
disorder, but the time when the sequence becomes continuous.

We focus on measuring time from a user standpoint, there-
fore we take the time between the first packet in the request
to the last packet in the response.

We have validated the implementation of stream recon-
struction software and the SMB message dissection procedure
creating an extension of this module capable of extracting the
content of files transferred using SMB [10].

B. smbtimefast

In order to measure the improvement in analysis time with
the proposed approximations, we share as much code between
smbtimefast and smbtime as possible. Both methods must read
the traffic trace from file or from a network interface and both
must decode the headers in the IP and TCP layers in order to
group the segments from the same TCP connections.

smbtimefast takes the size of the message from each request
or response header and computes the TCP sequence byte
which corresponds to the end of the message. Packets with
sequence numbers in between the SMB header and the end
of the message can be ignored. Packet losses in the burst
of packets from the response to a message reading from
disk are not a problem if the beginning and end are present.
If the end of the message is lost and further packets are
received, smbtimefast losses track of the stream. It could keep
information about the stream and wait for the retransmitted
packets, however, this is precisely the stream reconstruction
feature we are trying to avoid.

When losses or disorders create a gap at the end of an
SMB message, the method enters a state from which it tries to
recover by searching for a valid SMB header at the beginning
of each TCP segment. A burst of messages could be lost if TCP
joins application level messages into TCP segments, however,
as soon as a small pause exists, the next message will appear
at the beginning of a TCP segment and the analysis will be
recovered.

The loss of a response message in the analysis (not in the
network) results in a request in the list of pending requests
that will never be paired with its corresponding response. The
TCP connection used by SMB lasts as long as the volume is
mounted or until the system is restarted. The analysis module
can accumulate a large number of requests without response

during this long lived connection. It is not only a matter of
samples of response time lost but also an in memory data
structure per TCP connection which only grows. Hence, we
had to implement a limiting mechanism for the size of the
pending requests lists. The larger the number of requests in the
dynamic structure the longer the search times when a response
arrives, therefore the effect of maximum list size could impact
the processing rate.

We set an expiration time 7} for requests in the pending
requests list and a maximum number [V of requests in this data
structure. In the following sections we evaluate the impact of
these parameters in accuracy and performance.

IV. MEASUREMENT SCENARIOS

We consider two different measurement scenarios: a custom
ad-hoc emulation scenario and a real case of a NAS appliance
in a production environment. We use the emulated scenario
in order to provide an in-depth analysis of the dependence of
accuracy and speed results on the configured parameters and
the losses in the network.

The emulation scenario is built using Virtual Machines
(VMs) for client, server and for an intermediate virtual switch.
We try to create a worst-case scenario based on high intensity
file transfers created by the end user and network losses
introduced at the packet switch. We measure the effect they
have on both analysis methods.

The VMs are Windows 7 hosts. The shared directory
contains 5,000 files with sizes between 1 and 100 MBytes.
We expect a worst case behavior in accuracy and speed when
a high degree of pipelining is present, therefore we simulate
an intense use of the shared directory by reading, writing,
renaming and deleting files from an automated script.

The virtual switch is a linux VM, where we configured the
kernel using the fc command for independent and identically
distributed (i.i.d.) packet losses. We repeated the procedure in
order to create traffic traces in three network scenarios: no
losses, 1%, and 3% i.i.d. packet losses.

The packet losses are only in the path between SMB client
and server and no losses are introduced in the monitoring
process. The network probe records every packet and retrans-
mission at the virtual switch port where the client is connected.

The traffic trace from a production environment is the
monitored traffic from the population of users in our university
campus to a single NAS. More than 300 users and 400 TCP
connections were registered during the working hours of a
single day, with an average connection duration close to 6
hours. We removed short connections, used for other services
over SMB. No artificial losses were introduced, as the traffic
was passively monitored using a network probe connected to
a port mirror in an Ethernet switch.

Table I shows a summary of the macroscopic characteristics
of the traces.

V. RESULTS

In this section we compare the results obtained from both
analysis procedures. We take smbtime response time results



TABLE I
DESCRIPTION OF TRAFFIC TRACES

LdavCs ) Emulated Emulated Emulated
ayL-ampus 0% losses 1% losses 3% losses
Duration 8h40min 3h27min 11h49min 53h24min
Size (Gbytes) 212 141 147 147
SMB connections
(Client hosts) 401 (330) 1(1) 1 (1) 1(1)
Avg. connection 5hS5min 3h27min 11h49min | 53h24min
duration
Avg. files opened 7640 44558 46704 46732
per connection
Avg. operations 41.9 (Read) 1.11M (R) 1.15M (R) 1.12M (R)
per connection 50.2 (Write) 1.07M (W) 1.08M (W) 1.07M (W)
Max. pipelining 257 160 157 120

as the ground truth and we measure the accuracy in smb-
timefast. We do not compare the response times on a one-
on-one basis, as there is a different amount of samples with
each methodology. We compare the probability distribution
functions of response time obtained from each one. Taking
smbtime as the ground truth, we want the distribution obtained
from smbtimefast to be as close as possible, specially for the
range of large response times, where the anomalies in system
behaviour should be located. This accuracy result is presented
in subsection V-A.

The perfect measurement obtained from smbtime is at the
expense of a higher processing time than smbtimefast. This
means that a lower traffic rate can be processed by the
same hardware using the exact procedure. Using smbtimefast,
although there is a loss in accuracy, there is an increase in
processing speed. In subsection V-B we evaluate how much
faster is the approximate methodology.

Finally, in subsection V-C we validate the results in a
different measurement scenario.

A. Accuracy results

We name 7T..s, the random variable describing the per
SMB command response time. The parameter 73, limits the
maximum 7., measurable by smbtimefast. T}, should be
configured to a value larger than the support of T..s,. This
support depends on the maximum response time the NAS filer
provides, which for extreme cases could be large (hundreds
of milliseconds). Instead of being able to measure extreme
cases, we will set a value of T3, that provides a small enough
probability P(Tresp > Tin).

Figure 1 shows the Complementary Cumulative Distribution
Function (CCDF) of T, obtained using smbtime, and the
approximation Tmsp, obtained from smbtimefast using T}, =
1 and N unbounded. The traffic trace used presents 0% extra
packet losses. Both distributions are similar until values of
Tresp close to Typ,, where the result from smbtimefast must fall
to zero. For T, = 0.9s the real value is P(Tcsp > 0.9s) =
0.28% while for the estimated TAmsp it is P(Tresp > 0.9s) =
0.10%. We must configure a larger value of T}, in order to
obtain a better approximation for large response times.

Figure 2 shows the value of the 0.1 percentile To_l estimated
from Tresp, i.e. the value of Tresp such that P(Tresp >
To.1) = 0.001%. The larger the parameter T}, the better To.1

P(Tresp > X)

smbtime ——
smbtimefast ——

10 100
x [milliseconds]

0.001

1000
Fig. 1. CCDF of response time with T=1 and N unbounded. 0% packet losses

estimates the real value obtained from smbtime. For Ty, > 2s
the error margin is negligible. We select T}, = bs as the
maximum response time; a value that should also deal with
larger response times when losses are present in the network.

1200
1000 |
";)‘ /
£ 800 / 1
2 /
S e00f / |
g /
o /
o /
~ 400 | ]
o /
/
200 | / )l
/ smbtime - - -
0 ‘ ‘ ‘ smbtimefast —~—
0 1 2 3 4 5 6
Tin (s)

Fig. 2. Improvement in the approximation of the CCDF tail of the response
time, measured at the 0.1 percentile. N unbounded. 0% packet losses

Figure 3 shows the effect of N on the estimation of the
probability distribution function of T)..,,. We use Ty, = 5s
and a range of values of NV up to the maximum degree of
pipelining present in the traffic trace. For small values of N,
large bursts of pipelined commands result in many commands
lost in the processing method implemented by smbtimefast and
a strong bias in the CCDF. We cannot accurately estimate the
CCDF for small values of probability when there is pipelining
and a small value of N is configured.

As N grows, the CCDF provided by smbtimefast gets closer
to the ground truth. Values of N larger than the maximum
pipelining present in the trace provide no improvement in
the estimation, as no further commands can be recovered.
The maximum degree of pipelining depends on the number
of credits offered by the server and it is only reached when
long files are accessed and/or many files are read/written
simultaneously. In these experiments we tried to create an
intense traffic and reached a maximum of 160 command in
the pipeline.



;\‘\"‘*—0—%
\@\S
- Soq_

R
0.1 Ba

P(Tresp > X)

smbtime

0.001
1 10 100

x [milliseconds]

Fig. 3. CCDF of response time using different values of N in smbtimefast.
0% packet losses

For the scenario with 1% network losses, we used the
conservative value of T3, = 5s. Figure 4 shows the CCDF for
Tresp and Tresp. Similar to the case without network losses,
the accuracy improves as N grows and gets closer to the
maximum level of pipelining. However, in this scenario, the
CCDF of T}esp never reaches the CCDF of T;.., for values
of Tycsp < 300ms. The estimated CCDF is not accurate for
low values of T}..,p, while it provides a good estimation for
the tail of the CCDF. We have explained that smbtimefast
cannot measure the response time for every command, as those
commands affected by network losses and retransmissions can
be lost in the analysis process due to the lack of TCP stream
reconstruction. As the tail of the distribution is accurately
estimated, the lost measurements must be biased toward the
small values of response times.

TCP detects losses by the triple acknowledgment mecha-
nism or by the expiration of the retransmission timer. In both
events it reduces the congestion window, therefore reducing
the sending rate. A smaller congestion window reduces the
maximum number of commands that could be pipelined, there-
fore Tresp reaches 7)., for smaller values of N than in the
case without network losses. When losses and retransmissions
occur, the smbtimefast method cannot measure correctly the
response times. The minimum TCP retransmission timer is in
the range of 200 ms to 300 ms, depending on the operating
system. Samples of response time up to those values are
affected by network losses and dropped by smbtimefast, which
results in a worse estimation of the CCDF. For values of 7.,
larger than the TCP retransmission timer, the reason for these
values is not network losses but the response time from the
NAS filer (disk access times). Those samples are lost in the
same proportion as any other samples, without a strong bias
from network losses, with the result of a good estimation of
the probability values for large T'csp.

Figure 5 shows the effect of both IV and network losses. We
plot the value Tio of Tmsp which provides P(Tmsp > Tw) =
0.1. As N grows, the estimated probability value gets closer
to the real one, as the cases of pipelining are better measured.

smbtime
' N=170 Ty=5
N=70 T;,=5
N=50 T;,=5
N=30 T;,=5
N=10 Tj,=56 ——

N=1 Ty,=5 —t—

1 10 100
x [milliseconds]

0.001

1000

Fig. 4. CCDF of response time using different values of N in smbtimefast.
1% packet losses

Howeyver, it reaches a limit where the dominant effect comes
from the messages lost due to network packet losses and the
lack of TCP stream reconstruction.

100
80 1
é 60 e 4
g //
= 40+ / 1
//
I
20 |/ 1
: smbtime - - - -
0 ‘ ‘ smbtimefast ——
0 50 100 150 200 250

N

Fig. 5. Improvement in the approximation of the CCDF of response time,
measured at the 10 percentile. T3, = 5s. 1% packet losses

B. Improvement in processing speed

In order to compare the maximum processing rate achiev-
able by smbtimefast compared to smbtime, we have run 50
experiments using each one of the traffic traces described
in Table I. We have configured 7;, = b5s and we have
tried different values of IV in order to evaluate its impact on
processing speed. The larger the pipeline, the more expensive
it is to keep and locate in memory the corresponding request
to a new response.

We used a computer with an Intel Xeon E5-2609 @ 1.7GHz
CPU. One CPU core was dedicated to reading the trace file
and the second one ran the analysis code. In order to reduce
the effect of reading the trace from secondary storage we used
a Solid State Disk (SSD) which offered reading rates of at least
8.7 Gbl/s.

Figure 6 shows the total time required to process the whole
141 GB trace from the scenario without network losses. We



also added the 95% confidence interval. We immediately
observe at least a 30% reduction in processing time compared
to smbtime. Taking the whole trace size, the average processing
rate using smbtime is 4.6 Gb/s, while using smbtimefast it
reaches an average of 7.1 Gb/s. In terms of RAM consumption,
smbtime analysed the whole trace using around 200KB of
RAM, and smbtimefast decreased the RAM usage to 21.5KB.
In comparison, TShark was using 10GB of RAM when only
7.3GB had been processed, increasing steadely its RAM usage.

2%k ¥ k¥ ok %
200 | 1
—_ - + + F + + T + ks
£ 150 | 1
[
£
'_
100 1
50 1
smbtime ~——<—
o ‘ ‘ ‘ ‘ smbtimefast —+—
0 20 40 60 80 100 120 140 160
N

Fig. 6. Processing time using both methods. T}, = 5s and various values
of N. 0% network losses

As the value of N is increased, the average computation
time using smbtimefast slowly increases, due to the longer
lists of pending messages. However, the average processing
time stays within the error interval for N = 1.

Similar results are obtained for the traces from the scenar-
ios with network losses. Table II shows a summary of the
processing speed obtained for each trace using reconstruction
or the approximate method. The effect of NV is negligible for
all scenarios.

TABLE I
PROCESSING SPEED IN THE EMULATED SCENARIO

Average processing speed (Gbps)

Losses Improvement

smbtime smbtimefast
0% 4.62 £0.18 6.85+0.17 48.2% £+ 3.07%
1% 4.78 £0.11 6.51 +0.17 36.19% £ 1.77%
3% 4.72 £0.17 6.17 + 0.15 30.7% + 1.85%

C. Validation in a production scenario

We validated the results using a traffic trace from an in-
production NAS filer at our university campus network. We
captured the traffic during 8 office hours, obtaining 212 GB
of traffic (Table I). We do not include the graphical results
due to space constraints, but the results are consistent with
previous experiments. The larger the value of NV, the better
the estimation, getting close to stabilization when it reaches
the maximum degree of pipelining present in the trace (257
pending requests).

The CPU that ran the analysis software was an Intel
Xeon E5-2630 @ 2.3GHz. The average processing speed was

6.8 Gb/s using smbtime and it increased to 8.3 Gb/s when
smbtimefast with N = 200 was used (22% improvement).
The RAM consumption for both proposed methodologies was
less than 1 GByte.

VI. CONCLUSIONS

We have evaluated an approximated methodology (smbtime-
fast) for the analysis of response times of NAS filers that
use the SMB protocol. smbtimefast requires two parameters
that control the number of samples retained in the event of
pipelining. A timer value of 7}, larger than the support of
response times T.¢4p, OF at least larger than the range of values
of interest, is required. It also requires a maximum number of
analysed in-flight messages N close to the maximum degree of
pipelining present, in order to provide an accurate estimation.

We have measured the reduction in accuracy from the
approximated method when packet losses are present in the
network. Even in the range of 3% packet losses, the accuracy
for the events of high response times is maintained and
it is only reduced in the range below the TCP minimum
retransmission timer value.

Compared to a full TCP stream reconstruction, the pro-
cessing speed improvement obtained from the approximated
method is at least 30%, which allows processing 7 Gb/s of
traffic in real time using a single CPU core running the analysis
task.

ACKNOWLEDGMENT

This work was supported by Spanish MINECO through
project PIT (TEC2015-69417-C2-2-R).

REFERENCES

[1] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A
First Look at Modern Enterprise Traffic. In Proceedings of the 5th ACM
SIGCOMM Conference on Internet Measurement, IMC 05, pages 2-2,
Berkeley, CA, USA, 2005. USENIX Association.

[2] Windows Explorer and SMB Traffic, September 21st
https://blogs.technet.microsoft.com/askpert/2007/09/21/windows-
explorer-and-smb-traffic/, Last access March 10, 2019.

[3] Tom Roeh. Shut Down SMBvl1, Already!. ExtraHop. https://www.
extrahop.com/company/blog/2017/shut-down-smbv1/, Last access May
17, 2019.

[4] M. Simeunovic, B. Djordjevic, V. Timcenko, and N. Jankovic. iSCSI
and CIFS Network Disks for RAIDO/RAID 1 Configurations. In 2018
26th Telecommunications Forum (TELFOR), pages 1-4, Nov 2018.

[5] Karl L. Swartz. Adding Response Time Measurement of CIFS File
Server Performance to NetBench. In Proceedings of the USENIX
Windows NT Workshop on The USENIX Windows NT Workshop 1997,
NT’97, pages 12-12, Berkeley, CA, USA, 1997. USENIX Association.

[6] Vern Paxson. Bro: a system for detecting network intruders in real-time.
Computer networks, 31(23-24):2435-2463, 1999.

[7] Carlos Vega, Paula Roquero, and Javier Aracil. Multi-Gbps HTTP
traffic analysis in commodity hardware based on local knowledge of
TCP streams. Computer Networks, 113:258 — 268, 2017.

[8] D. Muelas, J. E. L. de Vergara, J. Ramos, J. L. Garca-Dorado, and
J. Aracil. On the impact of TCP segmentation: Experience in VoIP
monitoring. In 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), pages 708-713, 2017.

[9] Microsoft Corporation, Server Message Block (SMB) Protocol versions

2 and 3. https://msdn.microsoft.com/en-us/library/cc246482.aspx, Last

access May 9, 2018.

E. Berrueta, D. Morato, E. Magafia, and M. Izal. Ransomware Encrypted

Your Files but You Restored Them from Network Traffic. In 2018 2nd

Cyber Security in Networking Conference (CSNet), pages 1-7, Oct 2018.

2007.

[10]



