
COMPASS: A Community-driven Parallelization Advisor for Sequential Software

Simha Sethumadhavan Nipun Arora

Ravindra Babu Ganapathi John Demme Gail E. Kaiser

Department of Computer Science, Columbia University, New York, 10027

E-mail:{simha, kaiser}@cs.columbia.edu

Abstract

The widespread adoption of multicores has renewed the

emphasis on the use of parallelism to improve performance.

The present and growing diversity in hardware architec-

tures and software environments, however, continues to

pose difficulties in the effective use of parallelism thus de-

laying a quick and smooth transition to the concurrency era.

In this paper, we describe the research being conducted at

Columbia University on a system calledCOMPASS that aims

to simplify this transition by providing advice to program-

mers while they reengineer their code for parallelism. The

advice proffered to the programmer is based on the wisdom

collected from programmers who have already parallelized

some similar code. The utility ofCOMPASS rests, not only

on its ability to collect the wisdom unintrusively but also on

its ability toautomaticallyseek, find and synthesize this wis-

dom into advice that is tailored to the task at hand, i.e., the

code the user is considering parallelizing and the environ-

ment in which the optimized program is planned to execute.

COMPASS provides a platform and an extensible framework

for sharing human expertise about code parallelization –

widely, and on diverse hardware and software. By lever-

aging the “wisdom of crowds” model [28], which has been

conjectured to scale exponentially and which has success-

fully worked for wikis,COMPASS aims to enablerapidprop-

agation of knowledge about code parallelization in the con-

text of the actual parallelization reengineering, and thus

continue to extend the benefits of Moore’s law scaling to

science and society.

ACM Keywords: C.1.4: Parallel architecturesD.3.4: Software

optimizationF.3.2: Program analysisH.3.4: Recommender sys-

temsI.2.6: Knowledge AcquisitionK.4.3: Computer-supported

Collaborative Work

1 Introduction

The adoption of chip multiprocessors (CMPs) poses

methodological and linguistic challenges for sequential

software. While new programming models and languages

can help us create correct parallel programs quickly, there

is an immediate need for tools that can systematically help

in parallelizing, debugging and performance engineering of

the vast sequential legacy code base. In this paper, we out-

line our vision for such a tool.COMPASS – A Community-

driven Parallelization Advisor for Sequential Software –

proffers advice to programmers based on information col-

lected from observing a community of programmers paral-

lelize their code. The utility ofCOMPASS rests in part on

the premise that the growing popularity of CMP systems

will encourage expert programmers to parallelize some of

the existing sequential software, andCOMPASS can quickly

deploy capabilities to capture their wisdom (including any

gained through trial and error intermediate steps) for the

multicore software engineering community.

COMPASS observes expert programmers (henceforth

called gurus) parallelize their sequential code using paral-

lel programming patterns and other techniques for paral-

lelization, records their code changes (before and after),

summarizes this information and stores it in a centralized

Internet-accessible database. When a relatively inexperi-

enced new user (henceforth called a learner) wants to par-

allelize his/her code, the system first identifies the regions

of code most warranting performance improvement (deter-

mined by profiling typical executions), and then which of

those regions are most amenable to parallelization (by con-

sulting its database of previously parallelized code).COM-

PASS then presents a stylized template, or “sketch”, that can

be used as a starting point for parallelization by the learner.

1

The learner may then provide feedback to the system on the

usefulness of the advice. To effectively provide these capa-

bilities, COMPASS builds upon recent work on code clone

detection and graph matching algorithms, and introduces

program transformations for generating program sketches

from similar code.

The work described in this paper is still in progress

but our pilot system can already analyze enterprise level

code in C/C++. Once complete,COMPASS will provide

a wide range of advice for improving application perfor-

mance across multiple granularities of parallelism. Its prac-

tical utility will depend on the nature and number of users in

the system and the diversity of their code. We believe that

it is not unreasonable to imagine thatCOMPASS will be able

to provide advice for a large class of present and upcom-

ing CMP systems with templates covering: peephole Data

Level Parallelism optimizations such as using SIMD ker-

nels for inner loops, splitting loop iterations into threads us-

ing OpenMP, replacement and threading of large chunks of

serial code with vendor-supplied optimized libraries (such

as CUDA), stream dataflow graphs, and parallel patterns.

To the best of our knowledge, we are the first to propose

leveraging collective human wisdom to propagate “best

practices” about how to parallelize code. This is a new

way of thinking about (multicore) performance engineer-

ing enabled by the connectedness brought about the Inter-

net and the wide availability of parallel machines. Some-

what related is work by Deline et al. [9] on understand-

ing programs by recording source code navigation actions

from several users and work by Deganais and Robillard on

a recommendation system for adapting to framework evo-

lution [7]. COMPASS is a significant improvement over the

state of the art, where the learner has to “pull” paralleliza-

tion advice from books, class notes and/or Internet tutorial

examples. Such a process can be time consuming and error

prone.COMPASS, on the other hand, is a “push” based sys-

tem where advice is proactively proferred to the learner with

very little overhead for the learner. In addition, unlike tuto-

rials, the advice is customized to the learner’s specific cod-

ing problem. Further, unlike traditional hardware, compiler,

language or hybrid approaches for parallelization, which

have long incubation times before application end users can

benefit, typically years to decades,COMPASS can enable

rapid parallelization of sequential code because the useful-

ness of knowledge networks likeCOMPASS scale exponen-

tially as the number of users in the system increases [22].

2 System Architecture
The architecture ofCOMPASS is shown in Figure 1. The sys-

tem has four modules that combine to provide the required

functionality – the watcher, the data store, the matcher, and

the generator. The watcher observes how gurus parallelize

their code by tracking the differences in the source code be-

fore and after an optimization. The information can also be

mined semi-automatically from code bases with little hu-

man intervention. When an optimization is complete, the

watcher snips out the code regions corresponding to the op-

timization, and summarizes the before and after versions

in the form of unique identifiers, calledsignatures, and de-

posits them in the data store. The data store holds the be-

fore and after signatures as< key,value> pairs (with the

before version acting as the key and the after version serv-

ing as a value – which could in principle be reversed to

de-parallelize if warranted). When a learner wants to paral-

lelize some code, the matcher module prepares signatures of

regions of code that are considered critical for paralleliza-

tion (e.g., via hotspot profiling), and sends them to the data

store. The data store runs a query with the matcher signature

as a key, ranks the results and returns the top parallelized

signature(s) to the generator. The generator then prepares a

“sketch” of the code corresponding to the parallelized ver-

sion, presented as a graphical overlay that can be accepted

as is, modified or rejected by the learner. The learner may

optionally provide feedback to the data store on the useful-

ness of the sketch which can be used to rank parallelization

solutions when multiple matches are available.

§ An Use Case We envisionCOMPASS being useful in a

wide range of optimization scenarios, only one of which we

elaborate (refer to Sethumadhavan and Kaiser [23] for more

examples). The example described below is chosen to high-

light parallelization opportunities thatCOMPASS is likely to

be able to exploit whereas typical optimizers – compilers

and hardware – do not exploit.

§ Procedurization When chip companies design new

hardware features to improve performance, they typically

release APIs that can fully utilize the new hardware ca-

pabilities. Examples include the CUDA graphics library

for effectively using the capabilities of NVIDIA Graph-

ics Co-Processors [19] and the Intel Performance Primi-

2

Serial Code

QUERY

MATCHER

FROM DB

SIGNATURE

TOP

PARALLEL

PROGRAM
SIGNATURES

Serial Parallel

Parallel Operation & Data Structure

Discovery Using Differences

Selection

Instrumentation & Execution

Hot RegionSerial Code Program Segment Signature

T
ar

g
et

M
ac

h
in

e
In

fo
rm

at
io

n

S
yn

ta
ct

ic

In
fo

rm
at

io
n

Graphical

Overlays

AST

SKETCH

GENERATOR

User feedback to DB

SDG

Dynamic SDG Annotations

MATCHER WATCHER

GENERATOR

Data

Store

Figure 1. System architecture of the proposed COMPASS system.

tives [27] which contain specially optimized library rou-

tines for domain-specific operations such as JPEG image

processing or video transcoding using the SSE instruction

extensions. To improve performance using these libraries

without COMPASS, eachcode owner has to know about the

existence of the optimized API, know how to use the API

correctly, and then carefully adapt the code to invoke the

API. On the other hand, withCOMPASS advice, the devel-

oper is automatically informed of new/modified APIs and

gets suggestions on code segments that can be procedural-

ized as soon as a few gurus have committed their corre-

sponding code changes. An example of such an replace-

ment is shown in Figures 2, 3. The LHS code listing of

Fig. 2 shows a routine from an open source library (lib-

JPEG), replaced on the RHS by an equivalent function call

from the Intel Performance Primitives library. The LHS

code listing of Fig. 3 shows a saxpy routine replaced on the

RHS by an equivalent function call from the CUDA library.

While this is only one example optimization, in general,

COMPASS can support optimizations covering both control

and data changes, and consider different program granular-

ities (peephole to global). We believe that over time, the

number and sophistication of optimizations thatCOMPASS

can support will grow, as more gurus join the system, and

will ultimately be limited only by human ingenuity.

3 COMPASS Internals

Three important technical factors will determine the suc-

cess of theCOMPASS system: (α) effectiveness of signa-

tures in uniquely representing program segments (matcher

and watcher modules); (β) selectivity of optimization rank-

ing procedures (data store module); and (γ) efficacy of al-

gorithms used to reconstruct code sketches from signatures

(generator module). We discuss traditional solutions to the

above problems, point out their drawbacks, and describe the

novel alternatives we are developing.

The power to handle large, multiple code bases – which

are out of reach of most traditional techniques – comes from

two key aspects of theCOMPASS system: First, unlike tra-

ditional systems that require complete mechanization of the

analysis process,COMPASS acknowledges the usefulness of

human involvement (after all, programming is a human ac-

tivity) and does not have to produce the best advice all the

time. In the rare cases whenCOMPASS may produce bad ad-

vice (e.g., advice that is apparently irrelevant to the problem

at hand), such as during the early database buildup stage,

the programmer is free to discard the advice and ask for

any known alternatives. Second, and perhaps more impor-

tantly, COMPASS mitigates scalability concerns by reducing

the size of the code regions to be analyzed. It is widely

3

Figure 2. Example COMPASS Procedurization using a library call from the Intel IPP R©library [27]
void RGBToYCbCr JPEG8u C3P3R (Ipp8u∗ pSrcRGB , void RGBToYCbCr JPEG8u C3P3R (Ipp8u∗ pSrcRGB ,

i n t sr c S t e p , Ipp8u∗ pDstYCbCr [3] , i n t s r c S t e p , Ipp8u∗ pDstYCbCr [3] ,
i n t ds t S t e p , I p p i S i z e r o i S i z e) i n t d s t S t e p , I p p i S i z e r o i S i z e)

{ {
f o r (i n t i = 0 ; i < r o i S i z e . h e i g h t ; i ++) # i f d e f COMPASS

ippiRGBToYCbCr JPEG 8u C3P3R (pSrcRGB ,
f o r (i n t j =0 ; j < r o i S i z e . w id th ; j ++) s r c S t e p , pDstYCbCr , d s t S t e p , r o i S i z e) ;
{ # e l s e

i n t i ndex = i ∗ r o i S i z e . w id th + j ∗ 3 ; / / o r i g i n a l code
unsigned char R = pSrcRGB [index] ; # e n d i f
unsigned char G = pSrcRGB [index + 1] ;
unsigned char B = pSrcRGB [index + 2] ;

pDstYCbCr [0] [i ∗ r o i S i z e . w id th + j]
= 0 .299∗R + 0.587∗G + 0.114∗B;

pDstYCbCr [1] [i ∗ r o i S i z e . w id th + j]
= −0.16874∗R − 0.33126∗G + 0.5∗B + 128;

pDstYCbCr [2] [i ∗ r o i S i z e . w id th + j]
= 0 .5∗R − 0.41869∗G − 0.08131∗B + 128;

}
} /∗ Be fo re ∗ / /∗ A f t e r ∗ /

/∗ Be fo re∗ / /∗ A f t e r ∗ /
/ / y = ax + y # i f d e f COMPASS
void saxpy (i n t n , f l o a t a , f l o a t ∗x , f l o a t ∗y) { g l o b a l saxpy cuda (i n t n , f l o a t a , f l o a t ∗x , f l o a t ∗y) {

f o r (i n t i = 0 ; i < n ; i ++) i n t i = b l o c k I d x∗blockDim . x + t h r e a d I d x . x ;
y [i] = a ∗x [i] + y [i] ; i f (i<n) y [i] = a∗x [i] + y [i] ;

} }

/ / i n v o c a t i o n / / i n v o c a t i o n
saxpy (n , k , x , y) ; i n t nb locks = ((n + 255)<< 8) ;

saxpy cuda<<<nb locks ,256>>>(n , k , x , y) ;
e l s e

/ / o r i g i n a l code
e n d i f

Figure 3. Example COMPASS Procedurization using a library call from the NVIDIA CUDA R©library [19]

believed that 90% of program execution time for most ap-

plications is spent in 10% of the code.COMPASS increases

the effective scalability of traditional algorithms by focus-

ing only on the most critical regions (that 10% of the code

– profiled hotspots or marked by the user).

3.1 Program Representation

Conceptually, theCOMPASS modules that use signatures to

store and match parallelization solutions (derived parallel

patterns) are similar in spirit to work on code clone de-

tection – with two major distinctions:COMPASS attempts

to locate similar code segmentsacross several code bases

with the goal of improvingperformance, while code clone

tools generally aim to locate similar code segmentswithin a

code baseto improvemaintainability. The increased code

size and the need to look across code bases places different

stresses on the signature representation and precludes the

possibility of adopting the internal representations used for

detecting code clones.

§ Related Work Analysis Textual [2], Abstract Syn-

tax Tree (AST) [3, 14] and token-based [17] representa-

tion methods for detecting code clones have been proposed.

These encodings are effective for catching “cut and paste”

statements in a code base, but fail when the code is se-

mantically the same but syntactically different. For ex-

ample, for and while loops with slightly different syntac-

tic bodies may elude clone detection. Clearly, these repre-

sentations do not have sufficient universality to be used as

signatures in a community knowledge sharing system like

COMPASS. The Program Dependence Graph (PDG) [11],

which can be described as a graph of program statements

(nodes) and dependencies between the statements (edges),

has been proposed to overcome the syntactic limitations of

ASTs [12, 15]. In this representation, semantically identi-

cal code regions result in isomorphic portions, so detect-

ing code clones reduces to the problem of colored sub-

graph isomorphism. This process is intractable in the gen-

eral case, but solvable for small graphs (typically procedure

level PDGs) in the absence of aliases. In the presence of

aliases, however, PDGs may suffer from low specificity. For

instance, when an ambiguous node is present in a graph, all

nodes following the ambiguous node in the graph should in-

clude an edge to the ambiguous node indicating a possible

dependence. As the number of ambiguous nodes increases,

the number of ambiguous edges increases, consequently di-

minishing the power of the representation to uniquely iden-

tify code segments across large and diverse code bases.

§ Efficient COMPASS Signatures To overcome the speci-

4

ficity shortcomings of PDGs, we introduce a new program

abstraction called theSegment Dependence Graph(SDG).

Like a PDG, an SDG represents dependencies between

statements; but unlike the PDG, the SDG has no ambigu-

ous edges (and thus improves specificity). In a SDG, we

sidestep the problem of ambiguity of static alias analysis

techniques by annotating the edges with a purely dynamic

measurement of dependencies. Let us consider an example

to better explain SDGs and then illustrate the benefits over

PDGs. Consider a simple program segment withN SSA-

style statements [6]S1, . . . ,SN whereSi denotes that state-

mentSi executed afterSi−1. Also assume that the statement

S3 depends 2 times onS2 and 3 times onS1 during some ex-

ecution of the segment. The SDG for this segment will be

constructed such that the edges toS3 from S1 andS2 will be

annotated with the fraction of the times these dependences

occur, i.e., 0.4 and 0.6, respectively. To illustrate the differ-

ences from a PDG, consider the case where the statement

S2 is ambiguous, i.e., the compiler cannot statically deter-

mine if the statements followingS2 depend onS2; to de-

note this the PDG for this segment will have an edge from

S2 to all statements afterS2 but the SDG will not. While

in theory these run-time annotations hold only for a given

input, in practice the dependency information tends to be

fairly stable across inputs. We are not the first to make this

observation: compiler researchers have proposed using run-

time dependency information for profile-driven speculative

optimizations [24] and run-time system builders have im-

plemented some of these optimizations in production sys-

tems [8]. COMPASS, which does not have the same strong

correctness criteria as compilers, will also stand to benefit

from this kind of representation.

3.2 Search and Retrieval

COMPASS’s knowledge database stores SDGs as<

key,value> pairs, in which thekeycorresponds to the unop-

timized before version and thevalue is the optimized after

version. Since SDGs are graphs, queries employing only a

traditional relational database schema, which are typically

optimized for flat text and numerical data, are unlikely to

be very efficient. Further, it may be desirable to find an

approximately matching SDG if an exactly matching SDG

is not available in the data store, because minor variations

in SDGs for the same program segment are to be expected.

Minor variations can be a result of different environmental

factors such as differences in caller-callee save conventions,

register and memory allocation procedures, etc. Addition-

ally, when more than one prospective advice (value) exists

for a given SDG (key), the data store must rank the solu-

tions and return what the system considers to be the most

useful solution(s) in order.

§ Related Work Analysis We do not know of any pub-

lished work that has encountered or attempted to solve

this problem. The closest in spirit toCOMPASS’s proposed

code search system is the string-based regular expression

search service provided by the Google Labs Code Search

Engine [4]. Based on the authors’ trial of that system (its

architecture has not been published), the service appears to

be little more than a sophisticated implementation of the

unix “grep” utility over code repositories on the web, with

no perceivable ranking of search results.

§ Overview of Database Operations Since graph iso-

morphism checks are computationally expensive, to enable

quickly searching through potentially hundreds of thou-

sands of SDGs,COMPASS uses a series of pre-filters to first

narrow the number of items that have to be searched. The

pre-filters can be grouped into two categories: (a) Environ-

ment filters and (b) Graph intrinsics filters. Environment

filters use some features of the target machine specification

(such as the instruction set architecture and cache configu-

ration), the target compiler, the libraries available on the tar-

get machine, and the source language to reduce the search

scope. The features required for environmental filtering are

included by the matcher query tool as part of the segment

signature. The graph intrinsic filters are based on the num-

ber of nodes and edges in the query SDGs.

To pick one or a few candidate SDGs from the pre-

filtered SDGs,COMPASS uses a new ranking method we

call “coderank”. Our coderank metric is based on the in-

tuition that isomorphism alone is insufficient to recommend

a SDG; some times an imperfectly matching SDG but with

higher perceived usefulness may be preferred, which may

be the case if the perfect matching SDG is untrustwor-

thy and perhaps even intentionally seeded into the database

(an obvious problem with any community resource). The

coderank is computed based on three distinct characteris-

tics: (a) the structural similarity between the key and query

SDG, (b) the dependence annotation similarity between the

5

key and query SDG, and (c) the perceived importance of

the value SDG corresponding to a key SDG (similar to the

pagerank algorithm [21]). The structural similarity is com-

puted as an Isomorphism score (I-score) and is defined as

the fraction of subgraphs that are similar between the two

graphs. The annotation similarity is computed as the Eu-

clidean distance (E-score) between the dependence anno-

tation on similar edges in the two graphs. The perceived

importance score (P-score) is based on a combination of

factors including the improvement in performance on the

target machine (transmitted when the learner accepts repro-

filing results) and the number of users using a particular

advice (both gurus providing and learners accepting). An

open question is to determine the weightings of the P, E and

I-scores for determination of the most effective coderank.

3.3 Program Presentation Innovations

One of the core goals ofCOMPASS is to provide advice in a

format easy for the learner to use.COMPASS’s advice is pre-

sented in the form of a code “sketch” – an outline that shows

the main control flow and data structure changes required

for parallelism – closely matching the source code that the

user would like to parallelize. The key to such a sketch

is converting the parallelized SDGs into optimized code se-

quences tailored to the user’s code context. The challenge is

that an SDG can be translated to source code in many ways,

as it does not preserve syntactic information. For example,

it is easy to detect a loop from a SDG but difficult to say

whether the loop is afor loop or awhile loop. Similarly, it

may be possible to say two arrays are being added but may

not be possible to guess the names of the arrays when there

are more than two choices in the context. For an effective

usable sketch, a method for inferring ambiguous syntactic

information is required.

§ Related Work Analysis Decompilers [10], Source-to-

Source translators [1] and Pretty print tools [20] are com-

monly used to translate between compiler formats. The dif-

ficulty of translation, and the subsequent quality of the out-

put, depends on how much high-level syntactic information

is preserved in the input format. Pretty printing tools and

source-to-source translators start with input that has lot of

syntatic information, and generally produce reasonable out-

put; decompilers start with assembly format in which there

is very less syntactic information and produce output suit-

able for mature, patient users. The conversion tool used in

COMPASS is different from the above sinceCOMPASS’s goal

is to create only a “sketch” corresponding to the SDG, and

not the full source code. Further, the sketch is created from

two input sources: an existing source file (with full syntac-

tic information) and a parallelized SDG (with little syntactic

information), whereas previous works have only one input

format with either full syntactic information or none.

Our work is complementary to the work on sketching

languages [25, 26], which are meta-languages that permit

users to write incomplete programs that can be automati-

cally completed using sophisticated static analyis. Sketch

analysis tools expect the user to specify program invariants

and then use that invariance information along with the pro-

gram structure to create fully specified programs.COMPASS

and sketching languages can potentially enhance each oth-

ers’ utility. Other sketching schemes require humans to pre-

pare the sketches.COMPASS, in contrast, has the ability to

automatically generate sketches. Similarly, onceCOMPASS

has a sketch, if the learner’s program is annotated with in-

variants, a sketch compiler may be able to turn the sketch

into code and thus enhance productivity further.

§ Sketch Generation COMPASS uses a multi-step proce-

dure to create a sketch from an SDG. Our algorithm op-

erates on: (1) the unoptimized source code and its SDG

(called the program SDG) and (2) the response from the

data store, which contains (a) the recommended SDG (the

value from some< key,value> pair), called the advice

SDG, and (b) the SDG corresponding to the advice SDG in

the data store (the key from that pair), called the key SDG

(which is not necessarily the same as the program SDG sent

by the matcher tool). First, the program SDG is annotated

with the missing syntactic information based on source code

analysis. Then the annotated program SDG is compared to

the key SDG and semantically similar statements between

the two SDGs are used to deduce a mapping for variable

names in the key SDG. These variable names are then used

to annotate the advice SDG by simple substitutions. When

the advice SDG has been customized to the maximum pos-

sible extent based on the information available in the unop-

timized source code, the next step is to convert the advice

SDG into higher level source code. The control flow struc-

tures are determined based on the structure of the graph fol-

lowed by statement substitution in the control flow blocks.

6

Finally, the sketch (with some possibly undeterminable por-

tions) is displayed to the user as a graphical overlay.

4 Ongoing Efforts
The pilot implementation ofCOMPASS is capable of ana-

lyzing only C/C++ code and is built around several open

source tools available on the Linux platform. We use the

gcov [18] coverage tool to identify frequently executed re-

gions; an Eclipse [13] plugin for adjusting the hotspot re-

gions identified by gcov; LLVM [16], a compiler research

infrastructure, to generate signatures; and an SQL database

for storing and matching the signatures. With the cur-

rent very preliminary infrastructure,COMPASS can already

analyze enterprise-scale projects such as the open source

javascript engine v8 [5]. COMPASS identifies the most

profitable regions for parallelization, displays these regions

graphically to the user, creates signatures from the code,

sends signatures to a database, and obtains matches when

one or more exists. We seeded the database with a few

hand-coded sample optimizations. Efforts are underway

to build the sketching capabilities and a more sophisticated

database schema. We hope to open the system for trial re-

lease to a select group of users in the last quarter of 2009.

Prospective users are requested to register for an account at

http://compass.cs.columbia.edu.

The ideal evaluation forCOMPASS , i.e., its actual adop-

tion and use, requires a long term retrospective view. How-

ever, measurement of some of the characterisitics of the sys-

tem such as the number of incorrect graph matchings, the

Levinstein distance between sketch and the original code,

and number of languages and architectures supported can

bear out the effectiveness of theCOMPASS during the life

time and development of the system.

5 Conclusions
The trend towards CMPs (and implicitly the emphasis on

concurrency for performance improvements) is likely to

continue for the foreseeable future because of VLSI tech-

nology trends. The move to multicores has forced software

engineers to either reengineer their code for paralleliza-

tion or accept significant performance slowdown (because

multicores have lower clock frequency than their unipro-

cessor predecessors). We have described our vision and

provided implementation details for our pilot prototype of

an Internet-scale community-based system for rapid prop-

agation of “best practices” for parallelization of sequential

code. We envision thatCOMPASS can dramatically increase

programmer productivity when attempting to leverage to-

day’s and tomorrow’s computer hardware, and thus retain

performance improvements in line with historical trends.

COMPASS uses an alias-free program segment represen-

tation as its basis for a semantic code search engine used

to locate parallelization solutions contributed by users. The

results from the search engine are ranked using heuristics

and the most relevant parallelization strategy is returned to

the user in a custom format as a starting point for paral-

lelization. We believe thatCOMPASS as currently designed

is particularly suitable for rapid incremental parallelization

of sequential code for CMPs. Alternative approaches such

as complete re-writes of applications using new languages,

or automatic compiler analyses, may prove preferable in the

long run but seem less likely to achieve practical adoption

and success within the immediate time horizon.

A caveat for any such community system is the need to

address privacy and intellectual property concerns. This

is one reason why no syntactic information is retained in

SDGs. Users can participate anonymously, and retrieve

from COMPASS without ever contributing to it. A com-

mercial enterprise could potentially set up their own private

instance ofCOMPASS separate from the volunteer commu-

nity resource hosted at Columbia (we are currently seeking

a sponsor for longer term maintenance).

COMPASS is not just a reactive solution to fundamental

changes in computer architecture; it provides an infrastruc-

ture that can proactively influence and aid in the design of

new computer systems. For example, in the steady-state

COMPASS could be data-mined to determine the most fre-

quently requested optimizations and that information uti-

lized by computer architects to create new hardware exten-

sion units or by compiler writers to generate targeted com-

piler analyses that speedup these frequently requested (exe-

cuted) regions.

6 Acknowledgements

The Programming Systems Laboratory is funded in part by NSF CNS-

0717544, CNS-0627473 and CNS-0426623, and NIH 1 U54 CA121852-

01A1. The Computer Architecture Laboratory is funded in part by AFRL

FA8650-08-C-7851.

7

http://compass.cs.columbia.edu

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: prin-

ciples, techniques, and tools. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1986.

[2] B. S. Baker. On finding duplication and near-duplication in large

software systems. InWCRE ’95: Proceedings of the Second Work-

ing Conference on Reverse Engineering, page 86, Washington, DC,

USA, 1995. IEEE Computer Society.

[3] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna,

and Lorraine Bier. Clone detection using abstract syntax trees. In

ICSM ’98: Proceedings of the International Conference on Software

Maintenance, page 368, Washington, DC, USA, 1998. IEEE Com-

puter Society.

[4] Google Corporation. The google code search engine.

http://http://www.google.com/codesearch.

[5] Google Corporation. V8 javascript engine.

http://code.google.com/p/v8/.

[6] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. Efficiently computing static single assignment

form and the control dependence graph.ACM Trans. Program. Lang.

Syst., 13(4):451–490, 1991.

[7] Barthélémy Dagenais and Martin P. Robillard. Recommending adap-

tive changes for framework evolution. InICSE ’08: Proceedings

of the 30th international conference on Software engineering, pages

481–490, New York, NY, USA, 2008. ACM.

[8] James C. Dehnert, Brian K. Grant, John P. Banning, Richard John-

son, Thomas Kistler, Alexander Klaiber, and Jim Mattson. The

transmeta code morphingTMsoftware: using speculation, recovery,

and adaptive retranslation to address real-life challenges. InCGO

’03: Proceedings of the international symposium on Code genera-

tion and optimization, pages 15–24, Washington, DC, USA, 2003.

IEEE Computer Society.

[9] Robert DeLine, Amir Khella, Mary Czerwinski, and George Robert-

son. Towards understanding programs through wear-based filtering.

In SoftVis ’05: Proceedings of the 2005 ACM symposium on Software

visualization, pages 183–192, New York, NY, USA, 2005. ACM.

[10] Mike Van Emmerik and Trent Waddington. Using a decompiler for

real-world source recovery. InWCRE ’04: Proceedings of the 11th

Working Conference on Reverse Engineering, pages 27–36, Wash-

ington, DC, USA, 2004. IEEE Computer Society.

[11] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program

dependence graph and its use in optimization.ACM Trans. Program.

Lang. Syst., 9(3):319–349, 1987.

[12] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of

semantic clones. InICSE ’08: Proceedings of the 30th international

conference on Software engineering, pages 321–330, New York, NY,

USA, 2008. ACM.

[13] O. Gruber, B. J. Hargrave, J. McAffer, P. Rapicault, and T. Watson.

The eclipse 3.0 platform: adopting osgi technology.IBM Syst. J.,

44(2):289–299, 2005.

[14] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection

using abstract syntax suffix trees. InWCRE ’06: Proceedings of the

13th Working Conference on Reverse Engineering, pages 253–262,

Washington, DC, USA, 2006. IEEE Computer Society.

[15] Jens Krinke. Identifying similar code with program dependence

graphs. InWCRE ’01: Proceedings of the Eighth Working Con-

ference on Reverse Engineering (WCRE’01), page 301, Washington,

DC, USA, 2001. IEEE Computer Society.

[16] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. InProceedings

of the 2004 International Symposium on Code Generation and Opti-

mization (CGO’04), Palo Alto, California, Mar 2004.

[17] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-

miner: a tool for finding copy-paste and related bugs in operating

system code. InOSDI’04: Proceedings of the 6th conference on

Symposium on Opearting Systems Design & Implementation, pages

20–20, Berkeley, CA, USA, 2004. USENIX Association.

[18] GNU GPL License. Gcov: Gnu coverage tool.

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[19] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scal-

able parallel programming with cuda.Queue, 6(2):40–53, 2008.

[20] Dereck C. Oppen. Prettyprinting.ACM Trans. Program. Lang. Syst.,

2(4):465–483, 1980.

[21] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The pagerank citation ranking: Bringing order to the web. Technical

report, Stanford Digital Library Technologies Project, 1998.

[22] Daniel Reed. The law of the pack.Harvard Business Review, pages

2–3, 2001.

[23] Simha Sethumadhavan and Gail E. Kaiser. Rapid parallelization by

collaboration. Technical Report CUCS-002-09, Department of Com-

puter Science, Columbia University, New York, NY, January 2009.

[24] Jeff Da Silva and J. Gregory Steffan. A probabilistic pointer anal-

ysis for speculative optimizations.SIGPLAN Not., 41(11):416–425,

2006.

[25] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav

Bodik, Vijay Saraswat, and Sanjit Seshia. Sketching stencils. In

PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on

Programming language design and implementation, pages 167–178,

New York, NY, USA, 2007. ACM.

[26] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Se-

shia, and Vijay Saraswat. Combinatorial sketching for finite pro-

grams.SIGPLAN Notices, 41(11):404–415, 2006.

[27] E. Stewart. Intel Integrated Performance Primitives: How to Opti-

mize Software Applications Using Intel IPP. Intel Press, 2004.

[28] James Surowiecki.The Wisdom of Crowds. Anchor, 2005.

8

http://http://www.google.com/codesearch
http://code.google.com/p/v8/
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

	Introduction
	System Architecture
	COMPASS Internals
	Program Representation
	Search and Retrieval
	Program Presentation Innovations

	Ongoing Efforts
	Conclusions
	Acknowledgements

