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Abstract— Network calculus is a min-plus system theory for
performance evaluation of queuing networks. Its elegance stems
from intuitive convolution formulas for concatenation of de-
terministic servers. Recent research dispenses with the worst-
case assumptions of network calculus to develop a probabilistic
equivalent that benefits from statistical multiplexing. Significant
achievements have been made, owing for example to the theory
of effective bandwidths, however, the outstanding scalability set
up by concatenation of deterministic servers has not been shown.

This paper establishes a concise, probabilistic network calculus
with moment generating functions. The presented work features
closed-form, end-to-end, probabilistic performance bounds that
achieve the objective of scaling linearly in the number of
servers in series. The consistent application of moment generating
functions put forth in this paper utilizes independence beyond the
scope of current statistical multiplexing of flows. A relevant addi-
tional gain is demonstrated for tandem servers with independent
cross-traffic.

I. I NTRODUCTION

Network calculus [1], [2] is a theory of deterministic
queuing systems that is based on the early(σ, ρ)-calculus for
network delay [3] and on the work on generalized processor
sharing in [4]. Founded on min-plus algebra [5] it relates to
classical system theory, where output and concatenation of
systems can be derived by intuitive convolution formulas [6],
[7], [8], [9], [10]. Owing to these network calculus allows
for an efficient analysis of networks of queues. It facilitates
the derivation of worst-case backlogs and delays by applying
deterministic upper envelopes on traffic arrivals and lower
envelopes on the offered service, so-called arrival and service
curves [6], [4].

Although the fundamental performance bounds provided
by deterministic network calculus were proven to be tight,
that is they are attained for certain sample paths [2], the
occurrence of such worst-case events is usually rare, especially
if aggregated traffic is considered. Statistical multiplexing of
independent flows is known to smooth out burstiness with a
high probability, whereas bursts are cumulated by determin-
istic network calculus, resulting in pessimistic bounds and
overestimation of resource requirements. This has motivated
considerable research in recent time aiming at a probabilistic
equivalent which efficiently utilizes statistical multiplexing
while preserving powerful concatenation properties.
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Introducing independence of flows to the framework of net-
work calculus tightens assumptions, such that traffic sources
must not be adversarial jointly, although independent incre-
ments are not assumed and sources may still create worst-
case traffic patterns on their own. Adversarial sources and
the worst-case patterns generated by extremal shape controlled
traffic were subject to detailed investigations [11]. The perfor-
mance of multiplexing leaky bucket and peak rate constrained
on-off sources was investigated in [12] and further elaborated
in [13], where buffer and server were decoupled. General
models for regulated traffic were investigated in [14]. A cor-
responding framework for bufferless multiplexing was derived
in [15] and for buffered multiplexing in [16]. Improvements
and a generalization of the bounds in [16], [17] were provided
in [18].

A more generic class of traffic arrivals was investigated
in [19] where an exponential bound on the burstiness was
applied. The approach was extended to the concept of stochas-
tically bounded burstiness in [20] and generalized in [21].
Related models were also used in [22], [23], [1], [24], where
the pioneering work in [23], [1] carried the deterministic
(σ, ρ)-calculus from [3] forward to a stochastic setting using
(σ(θ), ρ(θ))-envelopes of the moment generating function
(MGF) of arrival processes. Backlog, delay, and output bounds
for work-conserving links were derived from Chernoff’s the-
orem in [23], [1]. A related theory for intree networks was
developed in [25] using stochastic ordering.

Generally, probabilistic backlog, delay, and output bounds
for a single server facilitate the iterative application tonet-
works of queues, using respective output bounds as input
bounds for subsequent downstream servers and adding per-
server delay and backlog bounds up. Unfortunately, this ap-
proach results in end-to-end performance bounds which are
loose and decay rapidly with the number of servers that are
traversed [26]. Few models are, however, known that allow
concatenating probabilistic service curves to derive end-to-end
probabilistic network models.

An important continuation of the work in [23] was put for-
ward in [1] applying the more generalf(θ, t)-upper constraint
for traffic sequences and a corresponding lower constraint for
the service offered by servers with time varying capacity.
The proposed framework provides calculation formulas for
stochastic backlog and delay bounds as well as the funda-
mental concatenation property. Related results for max-plus
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systems [5] were derived in [27] and applied to tandem queues
using recursive equations to describe departure times which
were then solved in matrix formulation.

A significant, alternative step towards a probabilistic, end-
to-end network calculus was presented in [28], where the
concept of effective envelopes, which are violated at most
with a defined probability, was derived using MGFs and the
Chernoff bound. Related theories use the concept of statistical
envelopes [29] and apply second order statistics [30]. The
concept of effective envelopes was further developed in [31],
[32] and [33] where the relation to the theory of effective
bandwidths, for example [1], [34], was shown. MGFs are used
extensively by the theory of effective bandwidths from where a
variety of useful traffic models are known, see for example [1],
[34], [28], [23], [16], [33] and references therein.

Effective envelopes are conceptually close to deterministic
envelopes as applied by network calculus, resulting in an
intuitive continuation including the important concatenation
theorem. However, the derivation of violation probabilities
for performance bounds as well as for concatenated effective
service curves has proven to be hard [33] and requires ad-
ditional assumptions, for example bounds on the duration of
busy periods [33] or explicit dropping of traffic that violates
a certain delay bound [35]. Once effective envelopes are fixed
no further statistical multiplexing gain is accessible andworst-
case assumptions apply, such that independence is not required
any longer.

In recent work [26] the Landau notationO was introduced
to the field of network calculus to analyze the scaling of end-
to-end performance bounds in the number of servers in series
n. This important aspect provides comparability of different
models and improves their understanding. The standards set
by deterministic network calculus are a scaling inO(n2) for
bounds that are derived iteratively compared toO(n) obtained
from end-to-end convolved service curves [2]. In [26] an
outstanding scaling of statistical bounds inO(n log n) was
achieved without assuming statistical independence, where rate
correction terms were introduced which dispense with busy
period bounds.

Until now it has, however, not been proven that end-to-end
probabilistic performance bounds can actually scale as well
as deterministic bounds. Based on the pioneering stochastic
(σ(θ), ρ(θ))-calculus [23] and following the suggestion in [1]
we develop an intuitive, system-theoretic formulation of a
probabilistic network calculus with MGFs which achieves the
target scaling inO(n) without requiring assumptions beyond
existence of respective MGFs and statistical independence.

The paper is organized as following: We derive correspond-
ing MGFs of relevant min-plus operations in Sect. II. In
Sect. III we develop a probabilistic network calculus basedon
the results from Sect. II. The scaling properties of performance
bounds are proven in Sect. IV and numerical results are shown
in Sect. V. Throughout the paper we use a discrete time model
t ∈ N0 = {0, 1, 2, . . .}.

II. M OMENT GENERATING FUNCTIONS

The particular strength of network calculus is the efficient
analysis of servers in series. Tandem servers can be concate-
nated using min-plus convolution and performance bounds
can be derived based on min-plus de-convolution. Min-plus
convolution of real-valued, bivariate functionsx(s, t) and
y(s, t) [1] and a corresponding min-plus de-convolution are
defined fort ≥ s ≥ 0 as

(x⊗ y)(s, t) = inf
τ∈[s,t]

[x(s, τ) + y(τ, t)]

(x⊘ y)(s, t) = sup
τ∈[0,s]

[x(τ, t)− y(τ, s)].
(1)

Note that the defined operators⊗ and⊘ are not commutative.
The applicability of network calculus suffers from the worst-

case modelling that is used. The deterministic view totally
neglects statistical multiplexing which, however, potentiates
significant resource savings. Related aspects are well under-
stood for single servers and the theory of effective bandwidths
provides a general traffic model which makes the statistical
multiplexing gain among independent, multiplexed flows ac-
cessible. Effective bandwidths resort to MGFs which for a
random variableX are defined for anyθ as

MX(θ) = EeθX

whereE is the expectation of its argument. In the sequel we
use the notationMX(θ) = MX(−θ) = Ee−θX .

MGFs exhibit a number of useful properties: Given two con-
stantsc1 andc2 it is known thatMc1+c2X(θ) = eθc1MX(c2θ).
Further on, for two random variablesX andY and forθ ≥ 0
it can be easily verified that

Mmin[X,Y ](θ) ≤ min[MX(θ),MY (θ)]

Mmax[X,Y ](θ) ≤ min[MX(θ),MY (θ)]
(2)

since forθ ≥ 0 it holds thatMmin[X,Y ](θ) ≤ MX(θ) as well as
Mmin[X,Y ](θ) ≤ MY (θ). For the sum of independent random
variablesX andY it is well-known for anyθ that

MX+Y (θ) = MX(θ)MY (θ)

MX−Y (θ) = MX(θ)MY (θ).
(3)

Lastly Chernoff’s theorem builds on MGFs to estimate the
violation probability of an effective boundx for a random
variableX . For anyx and allθ ≥ 0 it is known that

P{X ≥ x} ≤ e−θx
EeθX .

Throughout the remainder of this section we proof an
important connection between min-plus algebra and conven-
tional algebra established by MGFs [27], [1]. We will show
that MGFs transform min-plus convolution and de-convolution
into corresponding operators∗ and◦ in conventional algebra
which for real-valued, bivariate functionsx(s, t) and y(s, t)
are defined fort ≥ s ≥ 0 as

(x ∗ y)(s, t) =

t
∑

τ=s

x(s, τ)y(τ, t)

(x ◦ y)(s, t) =

s
∑

τ=0

x(τ, t)y(τ, s).

(4)



We will sometimes use the operators⊘ and◦ for s ≥ t ≥ 0
whereupon the supremum respectively the sum is evaluated
for all τ ∈ [0, t] which for notational convenience is omitted
in (1) and (4).

The following lemmas act on a suggestion made in [1] and
are in accordance with a similar investigation of max-plus
systems in [27].

Lemma 1 (Moment Generating Functions of⊗ and ⊘)
Let X(s, t) and Y (s, t) be independent random processes.
The MGF of the min-plus convolution respectively the MGF
of the min-plus de-convolution ofX(s, t) and Y (s, t) are
upper bounded according to

M(X⊗Y )(θ, s, t) ≤ (MX(θ) ∗MY (θ))(s, t)

M(X⊘Y )(θ, s, t) ≤ (MX(θ) ◦MY (θ))(s, t).

Proof: The MGF of the min-plus convolution ofX(s, t)
andY (s, t) is

M(X⊗Y )(θ, s, t) = Ee−θ infτ∈[s,t][X(s,τ)+Y (τ,t)].

An upper bound on the MGF follows for anyθ as

M(X⊗Y )(θ, s, t) ≤E sup
τ∈[s,t]

[

e−θ(X(s,τ)+Y (τ,t))
]

≤E

t
∑

τ=s

e−θ(X(s,τ)+Y (τ,t))

=

t
∑

τ=s

Ee−θ(X(s,τ)+Y (τ,t)).

Applying (3) and (4) completes the proof. The proof for min-
plus de-convolution⊘ is an immediate variation.

Unlike [28], [33], where MGFs and the Chernoff bound are
used to derive effective envelopes before min-plus convolution
and de-convolution are utilized, we use only MGFs and apply
the Chernoff bound in a final step to derive bounds on
the results of min-plus convolution and de-convolution. This
approach maintains random processes as long as possible,
which in case of statistical independence is beneficial for the
quality of performance bounds.

Lemma 2 (Envelopes for⊗ and ⊘) LetX(s, t) andY (s, t)
be independent random processes. Effective lower envelopes
on the min-plus convolution respectively upper envelopes on
the min-plus de-convolution ofX(s, t) and Y (s, t) that hold
at least with probability1− ε whereε ∈ (0, 1] are given by

P

{

(X ⊗ Y )(s, t) ≥

sup
θ∈(0,∞)

[

1

θ

(

ln ε− ln(MX(θ) ∗MY (θ))(s, t)
)

]}

≥ 1− ε,

P

{

(X ⊘ Y )(s, t) ≤

inf
θ∈(0,∞)

[

1

θ

(

ln(MX(θ) ◦MY (θ))(s, t) − ln ε
)

]}

≥ 1− ε.

Proof: Boole’s inequality yields

P{(X ⊗ Y )(s, t) ≤ z(s, t)}

= P

{

inf
τ∈[s,t]

[X(s, τ) + Y (τ, t)] ≤ z(s, t)
}

= P

{

t
⋃

τ=s

{X(s, τ) + Y (τ, t) ≤ z(s, t)}
}

≤
t

∑

τ=s

P{X(s, τ) + Y (τ, t) ≤ z(s, t)}.

Applying Chernoff’s bound it follows for allθ ≥ 0 that

P{(X ⊗ Y )(s, t) ≤ z(s, t)}

≤

t
∑

τ=s

P{−X(s, τ)− Y (τ, t) ≥ −z(s, t)}

≤
t

∑

τ=s

eθz(s,t)Ee−θ(X(s,τ)+Y (τ,t)).

Setting the right hand side equal toε we can solve forz(s, t)
and obtain

z(s, t) =
1

θ

(

ln ε− ln
(

t
∑

τ=s

Ee−θ(X(s,τ)+Y (τ,t))
)

)

for all θ ∈ (0,∞) where we choose the optimalθ. The proof
for min-plus de-convolution⊘ is an immediate variation.

For completeness we note that related formulas as pro-
vided by Lemma 1 and Lemma 2 can be derived with-
out assuming independence in which case these operations,
however, become costly. From Hölder’s inequalityE|AB| ≤
(E|A|κ)1/κ(E|B|ν)1/ν whereκ, ν > 1 and1/κ+ 1/ν = 1 it
follows for the sum of two random variablesX andY with
A = eθX andB = e±θY for all θ that

MX+Y (θ) ≤(MX(κθ))1/κ(MY (νθ))
1/ν

MX−Y (θ) ≤(MX(κθ))1/κ(MY (νθ))
1/ν

which replaces (3) whenever independence cannot be assumed.
Related theories which do not require independence are shown
in [19], [20] and are significantly further advanced for effective
envelopes [28], [31], [26], [33], [32], whereas this work
focuses on exploiting statistical independence.

The dual operators∗ and◦ form the basis for an intuitive
probabilistic network calculus with MGFs which features
the efficient utilization of statistical multiplexing within a
framework for effective concatenation of tandem servers. Note
that Lemma 1 can be applied iteratively to more than one
min-plus convolution or de-convolution, for example an upper
bound on the MGF of(X ⊘ (Y1 ⊗ · · · ⊗ Yn))(s, t) is given
by (MX(θ) ◦ (MY1(θ) ∗ · · · ∗MYn(θ)))(s, t). This property is
an essential prerequisite for performance analysis of tandem
servers as shown in the following sections.



III. PROBABILISTIC NETWORK CALCULUS

In this section we recall fundamental properties of network
calculus, see for example [1], and apply the results from
Sect. II to derive probabilistic performance bounds.

Arrival and departure processes are described by real-
valued, cumulative functionsA(0, t) andD(0, t) respectively
which represent the amount of data seen in the interval(0, t].
We assume that there are no arrivals in the interval(−∞, 0].
ClearlyA(0, t) andD(0, t) are nonnegative and increasing in
t. The amount of data seen in an interval(s, t] is denoted by
A(s, t) = A(0, t) − A(0, s) andD(s, t) = D(0, t)−D(0, s),
whereA(s, t) and D(s, t) are nonnegative, increasing int,
decreasing ins, andA(t, t) = 0 andD(t, t) = 0 for all t.

Definition 1 (Dynamic Server) AssumeA(0, t) andD(0, t)
are the arrival respectively departure process of a lossless
server. LetS(s, t) for t ≥ s ≥ 0 be a random process that is
nonnegative and increasing int. The server is called a dynamic
serverS(s, t) if for any fixed sample path it holds for allt ≥ 0
that

D(0, t) ≥ (A⊗ S)(0, t).

The definition of dynamic server is according to [1], [36], [37].
It extends the framework of deterministic network calculus
using bivariate functions. Note that whileA(s, t) is defined
as A(s, t) = A(0, t) − A(0, s) similar assumptions are not
generally made forS(s, t).

Example 1 (Work-Conserving Server) Consider a work-
conserving server with arrival and departure processA(0, t)
and D(0, t) respectively. For anyt ≥ 0 fix τ = sup[s ∈
[0, t] : D(0, s) = A(0, s)], that is τ is the beginning of the
last backlogged period beforet if any or otherwiseτ = t. Let
S(τ, t) be a random process that denotes the service offered
by the server in the interval(τ, t] under the condition thatτ is
the beginning of the last backlogged period beforet. Assume
that S(τ, t) is nonnegative, increasing int andS(τ, τ) = 0.
From the work-conserving property we have for any fixed
sample path thatD(0, t) = D(0, τ)+S(τ, t), that is the server
is non-idling and uses the entire available serviceS(τ, t) to
serve backlogged data. WithD(0, τ) = A(0, τ) it follows that
D(0, t) = A(0, τ) + S(τ, t) whereby Def. 1 is fulfilled.

Performance bounds for dynamic servers have been obtained
in [1], [36], [37] where it has also been shown that dynamic
servers in series can be effectively transformed into an equiva-
lent, single dynamic server. Thus, known performance bounds
extend immediately to tandem servers. For completeness Th.1
and Th. 2 rephrase these results formally and show correspond-
ing MGFs respectively probabilistic bounds. In the sequel
upper indices indicate servers respectively belonging arrival
and departure processes of a server.

Theorem 1 (Concatenation)Consider two dynamic servers
S1(s, t) and S2(s, t) in series. There exists an equivalent,
single dynamic serverS(s, t) for t ≥ s ≥ 0 where

S(s, t) = (S1 ⊗ S2)(s, t).

Assume the service offered by each of the servers has MGF
MS1(θ, s, t) respectivelyMS2(θ, s, t). Under the assumption
of statistical independence ofS1(s, t) and S2(s, t) the MGF
of the equivalent, single dynamic server is upper bounded for
t ≥ s ≥ 0 according to

MS(θ, s, t) ≤ (MS1(θ) ∗MS2(θ))(s, t).

Proof: Let Ai(0, t) and Di(0, t) be the arrival re-
spectively departure process of serveri, whereAi(0, t) =
Di−1(0, t). For any fixed sample path it follows from Def. 1
for all t ≥ 0 that

∃τ ∈ [0, t] : D2(0, t)−A2(0, τ) ≥ S2(τ, t).

In the same way it holds for anyτ ≥ 0 that

∃s ∈ [0, τ ] : D1(0, τ)−A1(0, s) ≥ S1(s, τ).

Taking the sum yields for allt ≥ 0 that

∃τ ∈ [0, t], ∃s∈ [0, τ ] : D2(0, t)−A1(0, s) ≥ S1(s, τ)+S2(τ, t)

where the right hand side is the min-plus convolution ofS1

and S2 which proves the first part. An upper bound on the
MGF of min-plus convolution of two statistically independent
random processes(S1 ⊗ S2)(s, t) follows from Lemma 1 as
(MS1(θ) ∗MS2(θ))(s, t).

Two performance measures, namely backlog and delay as
defined below, are of particular interest in the context of
networking and networked applications.

Definition 2 (Backlog and Delay) Let A(0, t) and D(0, t)
be the arrival respectively departure process of a lossless
server. The backlog at timet ≥ 0 is

b(t) = A(0, t)−D(0, t).

Assuming first-in first-out ordering the delay at timet ≥ 0
is defined as

d(t) = inf[s ≥ 0 : A(0, t)−D(0, t+ s) ≤ 0].

Theorem 2 (Backlog, Delay, and Output Bounds)
Consider a dynamic serverS(s, t) with arrival process
A(s, t). The backlog at timet ≥ 0 is upper bounded
according to

b(t) ≤ (A⊘ S)(t, t).

Assuming first-in first-out scheduling the delay at timet ≥ 0
is upper bounded according to

d(t) ≤ inf[s ≥ 0 : (A⊘ S)(t+ s, t) ≤ 0].

Note that the delay bound formulation using min-plus de-
convolution extends the domain of the definition in (1) which
is accounted for by taking the supremum over the adapted
interval [0, t], that is (A⊘ S)(t+ s, t) = supτ∈[0,t][A(τ, t)−
S(τ, t+ s)].

The departure processD(s, t) is upper bounded for any
t ≥ s ≥ 0 according to

D(s, t) ≤ (A⊘ S)(s, t).



Assume the arrival process has MGFMA(θ, s, t) and the
service offered by the server has MGFMS(θ, s, t). Under the
assumption of statistical independence ofA(s, t) and S(s, t)
an upper bound on(A ⊘ S)(s, t) with violation probability
ε ∈ (0, 1] is given by

P

{

(A⊘ S)(s, t) ≤

inf
θ∈(0,∞)

[

1

θ
(ln(MA(θ) ◦MS(θ))(s, t) − ln ε)

]}

≥ 1− ε

which provides an upper bound on(A⊘S)(s, t) that is violated
at most with probabilityε and in turn establishes probabilistic
backlog, delay, and output bounds.

Proof: Let A(0, t) andD(0, t) be the arrival respectively
departure process of the server. It follows from Def. 1 for any
fixed sample path and allt ≥ 0 that

∃τ ∈ [0, t] : D(0, t) ≥ A(0, τ) + S(τ, t)

⇔∃τ ∈ [0, t] : A(0, t)−D(0, t) ≤ A(0, t)−A(0, τ)− S(τ, t)

whereA(0, t) − D(0, t) = b(t) is the backlog at timet and
A(0, t) − A(0, τ) = A(τ, t). Reformulation using min-plus
de-convolution completes the proof of the backlog bound.

It follows from the definition of delay and Def. 1 for any
fixed sample path and allt ≥ 0 that

d(t) = inf[s ≥ 0 : A(0, t)−D(0, t+ s) ≤ 0]

⇒d(t) ≤ inf[s ≥ 0 : A(0, t)−A(0, τ) − S(τ, t+ s) ≤ 0,

∀τ ∈ [0, t+ s]].

Since A(0, t) − A(0, τ) ≤ 0 for τ ≥ t and generally
S(τ, t + s) ≥ 0 for all τ ∈ [0, t + s] it is sufficient to just
consider allτ ∈ [0, t] where A(0, t) − A(0, τ) = A(τ, t).
Reformulation using min-plus de-convolution over the interval
[0, t] completes the proof of the delay bound.

Lastly, it follows from Def. 1 for any fixed sample path and
all t ≥ s ≥ 0 that

∃τ ∈ [0, s] :D(0, s) ≥ A(0, τ) + S(τ, s)

⇔∃τ ∈ [0, s] :D(0, t)−D(0, s) ≤ D(0, t)−A(0, τ) − S(τ, s)

⇒∃τ ∈ [0, s] :D(0, t)−D(0, s) ≤ A(0, t)−A(0, τ) − S(τ, s)

sinceA(0, t) ≥ D(0, t) for causality. WithD(0, t)−D(0, s) =
D(s, t), A(0, t) − A(0, τ) = A(τ, t) and using min-plus de-
convolution the proof of the output bound is completed.

The respective probabilistic upper bound on the result
of min-plus de-convolution of two statistically independent
random processes(A⊘ S)(s, t) follows from Lemma 2.

After showing the basic network calculus theorems for
dynamic servers the remainder of this section addresses sched-
ulers which implement respective properties. Def. 1 is trivially
fulfilled by deterministic servers [1]. Beyond this obvious
class an example has been given in [36] for work-conserving
servers with time-varying capacity and in [1], [36], [37] for
the dynamic service curve based earliest deadline scheduler.
The corresponding MGF of the offered service is, however, not

derived in [1] and probabilistic performance bounds obtained
from MGFs are provided in [23], [1] for the class of work-
conserving constant rate servers only.

In the following we derive the leftover service under a
general scheduling model which does not make assumptions
about the order in which flows are served with respect to
each other. Thus, it is conservative for most schedulers and
it includes widely used aggregate first-in first-out scheduling
as well as priority scheduling. The approach that is appliedby
deterministic network calculus is based on per-flow service
curves which are derived by subtracting service that is con-
sumed by cross-traffic [1], [38], [2]. When applying effective
envelopes to model cross-traffic, probabilistic per-flow service
curves arise naturally from deterministic servers [33], [32].
Similar results are obtained here for dynamic servers, however,
using MGFs. The following derivations are made for two
flows or aggregates of flows where lower indices denote flows
respectively the service which is provided to a particular flow.
Note that any of the two flows can actually consist of an
arbitrary number of micro-flows.

Proposition 1 (General Scheduling Model)Consider two
flows with arrival processesA1(s, t) and A2(s, t) that are
scheduled at a work-conserving server with service process
S(s, t) as defined in Ex. 1. Assume thatS(s, t) is nonnegative,
increasing int, and S(s, s) = 0. Flow two sees a dynamic
server

S2(s, t) = max[0, S(s, t)−A1(s, t)].

AssumeA1(s, t) andS(s, t) are statistically independent and
have MGFMA1(θ, s, t) andMS(θ, s, t) respectively. The MGF
of the dynamic server seen by flow two is upper bounded for
θ ≥ 0 and t ≥ s ≥ 0 by

MS2(θ, s, t) ≤ min[1,MS(θ, s, t)MA1(θ, s, t)].

Proof: Let Ai(0, t) andDi(0, t) be the arrival respec-
tively departure process of flowi ∈ [1, 2]. For any fixed sample
path and anyt ≥ 0 there existss = sup[τ ∈ [0, t] : Di(0, τ) =
Ai(0, τ), ∀i ∈ [1, 2]], that is s is the beginning of the last
backlogged period beforet if any or s = t otherwise. For a
work-conserving server and the defineds it holds for any fixed
sample path that

D1(0, t) +D2(0, t) = D1(0, s) +D2(0, s) + S(s, t)

= A1(0, s) +A2(0, s) + S(s, t).

With D1(0, t) ≤ A1(0, t) for causality we obtain

D2(0, t) ≥ A2(0, s) + S(s, t)− (A1(0, t)−A1(0, s)).

SinceD2(0, t) ≥ D2(0, s) = A2(0, s) it follows that

D2(0, t) ≥ A2(0, s)+max[0, S(s, t)− (A1(0, t)−A1(0, s))].

With A1(0, t)−A1(0, s) = A1(s, t) the first part of the proof
is completed. The MGF for statistically independent random
processesA1(s, t) andS(s, t) follows from (2) and (3).



IV. SCALING OF END-TO-END PERFORMANCEBOUNDS

The scaling of end-to-end backlog and delay bounds in the
number of servers in series, denoted byn, is a crucial aspect
in network performance analysis. The benchmark set by deter-
ministic network calculus for leaky bucket sources is a scaling
in O(n2) for summation of per-server bounds andO(n) for
bounds obtained from end-to-end network service curves [26],
[2]. This result highlights the importance of the concatenation
theorem. Recently, probabilistic performance bounds thatscale
in O(n logn) were obtained in [26] using effective network
service curves and the exponentially bounded burstiness traffic
model from [19]. We show that actually a scaling inO(n) can
be achieved under the assumption of independence. Like [26]
we consider the scenario shown in Fig. 1 where performance
bounds are derived for the through flows that traverse alln
servers in series. Cross-traffic joins and leaves at each server
where we make the assumption of statistical independence.

1 2 n

...

Fig. 1. Tandem servers with cross-traffic

We apply the(σ(θ), ρ(θ))-traffic model from [1] to derive
closed-form solutions for end-to-end performance bounds.An
arrival processA(s, t) with MGF MA(θ, s, t) is (σ(θ), ρ(θ))-
upper constrained for someθ > 0 if for all t ≥ s ≥ 0 it holds
that

1

θ
lnMA(θ, s, t) ≤ σ(θ) + ρ(θ)(t− s). (5)

A related quantity1/(θt) lnMA(θ, 0, t) is known as effective
bandwidth, for example [1], [34]. A wide variety of traffic
models are known from related theories, including periodic
sources, fluid sources, on-off sources, and regulated sources,
see for example [1], [34], [28], [23], [16], [33] and references
therein, which can be described using the(σ(θ), ρ(θ))-traffic
characterization in (5).

Note that the right hand side of (5) depends only on the
length of the interval(s, t], that isδ = t− s, but not ons or t
itself. For univariate functionsx andy with x(t−s) = x(s, t)
andy(t− s) = y(s, t) for all t ≥ s ≥ 0 the operators∗ and◦
follow from (4) with δ = t− s ≥ 0 as

(x ∗ y)(δ) =

δ
∑

τ=0

x(δ − τ)y(τ)

(x ◦ y)(δ) =

∞
∑

τ=0

x(δ + τ)y(τ)

where we lets → ∞ in case of the univariate◦ operator.
Note that the univariate convolution operator∗ as opposed
to its bivariate equivalent is commutative. We will use the◦
operator also forδ < 0 whereupon the sum is evaluated for
all τ ∈ [−δ,∞).

The proof of Th. 3, which is shown in the sequel, uses
the following lemma for composition of univariate∗ and ◦
operators.

Lemma 3 (Composition of univariate ∗ and ◦) Let x(δ),
y(δ), and z(δ) be univariate, real-valued functions. It holds
that

(x ◦ (y ∗ z))(δ) = ((x ◦ y) ◦ z)(δ).

Proof: From the definition of univariate operators∗ and
◦ it follows that

(x ◦ (y ∗ z))(δ) =
∞
∑

τ1=0

x(δ + τ1)

τ1
∑

τ2=0

y(τ1 − τ2)z(τ2)

=

∞
∑

τ1=0

x(δ + τ1)
∑

u1,u2≥0:u1+u2=τ1

y(u1)z(u2)

=

∞
∑

u2=0

∞
∑

u1=0

x(δ + u1 + u2)y(u1)z(u2)

= ((x ◦ y) ◦ z)(δ)

which proves the composition rule.
The following theorem extends the results from [23], [1] to

servers with cross-traffic in series and shows the linear growth
of end-to-end performance bounds in the number of tandem
serversn. For ease of presentation we investigate the case
of homogeneous servers and flows. Solutions for the general,
heterogeneous case follow in a similar way.

Theorem 3 (End-to-End Backlog and Delay Bounds)
Considern work-conserving, constant rate servers in series,
each with capacityC and independent(σc(θ), ρc(θ)) cross-
traffic under the general scheduling model. Consider an
independent(σ(θ), ρ(θ)) aggregate of through flows that
traverses alln servers in series. Anyb and d are upper
backlog respectively delay bounds with violation probability
ε ∈ (0, 1] if for any θ ∈ (0,∞) it holds thatC > ρ(θ)+ρc(θ)
for stability and

b ≥ σ(θ) +
nρ(θ)σc(θ)

C − ρc(θ)
+

n ln γ − ln ε

θ

d ≥
σ(θ)

ρ(θ)
+

nσc(θ)

C − ρc(θ)
+

n ln γ − ln ε

θρ(θ)

where γ = 1−e−θρ(θ)(T +1)

1−e−θρ(θ) + 1
1−e−θ(C−ρ(θ)−ρc (θ)) and T =

σc(θ)
C−ρc(θ)

.
For n = 1 an improved condition under whichd is a delay

bound is

d ≥
σ(θ) + σc(θ)

C − ρc(θ)
+

ln γ′ − ln ε

θ(C − ρc(θ))

whereγ′ = 1
1−e−θ(C−ρ(θ)−ρc (θ)) . For n ≥ 2 the conditions are

d ≥
σ(θ) + nσc(θ)

C − ρc(θ)
+

n ln ζ − ln ε

θ(C − ρc(θ))

and d ≥ ne−θ(C−ρ(θ)−ρc (θ))

1−e−θ(C−ρ(θ)−ρc (θ)) whereζ = (1+d/n)1+d/n

(d/n)d/n
.



Clearly the conditions for backlog and delay bounds depend
linearly on the number of servers in seriesn. The first two
terms of the backlog bound can be interpreted as the burstiness
of the through flowsσ(θ) and the data accumulated due to
the rate of the through flowsρ(θ) during the latency induced
by cross-trafficσc(θ)/(C − ρc(θ)) at each of then servers.
Accordingly, the delay bound comprises the latencyσ(θ)/(C−
ρc(θ)) which is due to the burst size of the through flows and
the cumulated latency of then servers induced by cross-traffic,
that isn timesσc(θ)/(C − ρc(θ)).

Proof: The end-to-end concatenation ofn statistically
independent dynamic servers is described by convolution of
the respective MGFs, see Th. 1. Using the univariate∗ and◦
operators withδ = t − s and applying Lemma 3 the bounds
from Th. 2 build on the following MGF

MA⊘S(θ, δ) ≤(MA(θ) ◦ (MS1(θ) ∗ · · · ∗MSn(θ)))(δ)

=(MA(θ) ◦MS1(θ) ◦ · · · ◦MSn(θ))(δ).
(6)

The MGF of (σ(θ), ρ(θ))-constrained arrivals is upper
bounded byMA(θ, δ) ≤ eθ(σ(θ)+ρ(θ)δ) for θ > 0. With Prop. 1
and using the notation(x)+ = max[0, x] the MGF of the
leftover service of a work-conserving, constant rate server
with capacityC and (σc(θ), ρc(θ)) cross-traffic is bounded
according to

MSi(θ, δ) ≤ e−θ((C−ρc(θ))δ−σc(θ))
+

= e−θ(C−ρc(θ))(δ−T )+

whereT = σc(θ)
C−ρc(θ)

is a latency induced by the cross-traffic.
With (6) it follows for (σ(θ), ρ(θ)) through traffic that

MA⊘S(θ, δ)≤

∞
∑

un=0

. . .

∞
∑

u2=0

∞
∑

u1=0

eθ(σ(θ)+ρ(θ)(δ+u1+u2+···+un))

e−θ(C−ρc(θ))(u1−T )+e−θ(C−ρc(θ))(u2−T )+. . . e−θ(C−ρc(θ))(un−T )+

and after some reordering we obtain

MA⊘S(θ, δ) ≤ eθ(σ(θ)+ρ(θ)(δ+nT ))

n
∏

i=1

∞
∑

ui=0

e−θ((C−ρc(θ))(ui−T )+−ρ(θ)(ui−T )).

The sums
∑∞

ui=0 are divided into
∑⌈T⌉−1

ui=0 and
∑∞

ui=⌈T⌉ and
solved forθ > 0 andρ(θ) > 0 using geometric series which
yields

⌈T⌉−1
∑

ui=0

e−θ((C−ρc(θ))(ui−T )+−ρ(θ)(ui−T ))

= e−θρ(θ)T

⌈T⌉−1
∑

ui=0

(

eθρ(θ)
)ui

= e−θρ(θ)T eθρ(θ)⌈T⌉ − 1

eθρ(θ) − 1

= e−θρ(θ)(T+1) e
θρ(θ)⌈T⌉ − 1

1− e−θρ(θ)
≤

1− e−θρ(θ)(T+1)

1− e−θρ(θ)

and under the stability conditionC > ρ(θ) + ρc(θ)

∞
∑

ui=⌈T⌉

e−θ((C−ρc(θ))(ui−T )+−ρ(θ)(ui−T ))

= eθ(C−ρ(θ)−ρc(θ))T
∞
∑

ui=⌈T⌉

(

e−θ(C−ρ(θ)−ρc(θ))
)ui

=
e−θ(C−ρ(θ)−ρc(θ))(⌈T⌉−T )

1− e−θ(C−ρ(θ)−ρc(θ))
≤

1

1− e−θ(C−ρ(θ)−ρc(θ))

such that

MA⊘S(θ, δ) ≤ eθ(σ(θ)+ρ(θ)(δ+nT ))

(

1− e−θρ(θ)(T+1)

1− e−θρ(θ)
+

1

1− e−θ(C−ρ(θ)−ρc(θ))

)n

. (7)

From Th. 2 it follows thatb andd are a backlog respectively
delay bound which are violated at most with probabilityε if
for any θ ∈ (0,∞) it holds that

b ≥
1

θ
(lnMA⊘S(θ, 0)− ln ε)

1

θ
(lnMA⊘S(θ,−d)− ln ε) ≤ 0.

(8)

Inserting (7) into (8) and reordering completes the first part
of the proof.

Note that the derivation of the delay bound evaluates larger
intervals than stated in Th. 2 to simplify the derivation of
a conservative, closed-form bound. Taking the corresponding
restriction of the interval into account we have forn = 1 that

MA⊘S(θ,−d) ≤

∞
∑

τ=d

eθ(σ(θ)+ρ(θ)(τ−d))e−θ((C−ρc(θ))τ−σc(θ))

=eθ(σ(θ)+σc(θ)−ρ(θ)d)
∞
∑

τ=d

(

e−θ(C−ρ(θ)−ρc(θ))
)τ

=eθ(σ(θ)+σc(θ)−ρ(θ)d) e−θ(C−ρ(θ)−ρc(θ))d

1− e−θ(C−ρ(θ)−ρc(θ))

whereθ > 0 andC > ρ(θ) + ρc(θ) for stability. The delay
bound follows immediately from (8).

For n ≥ 2 we obtain from the first expression in (6) using
the commutativity of the univariate∗ operator that

MA⊘S(θ,−d) ≤

∞
∑

τ=d

eθ(σ(θ)+ρ(θ)(τ−d))

τ
∑

un−1=0

· · ·

u3
∑

u2=0

u2
∑

u1=0

e−θ((C−ρc(θ))u1−σc(θ))

e−θ((C−ρc(θ))(u2−u1)−σc(θ)) . . . e−θ((C−ρc(θ))(τ−un−1)−σc(θ)).

After some reordering we find

MA⊘S(θ,−d) ≤ eθ(σ(θ)−ρ(θ)d+nσc(θ))

∞
∑

τ=d

∑

ui≥0:
∑

n
i=1 ui=τ

e−θ(C−ρ(θ)−ρc(θ))τ .



With q = e−θ(C−ρ(θ)−ρc(θ)) the double sum becomes [39]
∞
∑

τ=d

∑

ui≥0:
∑n

i=1 ui=τ

qτ =

∞
∑

τ=d

(

τ + n− 1

n− 1

)

qτ

=
1

pn

∞
∑

τ=d

(

τ + n− 1

n− 1

)

pnqτ .

(9)

Under the stability conditionC > ρ(θ) + ρc(θ) and forθ > 0
we choosep = 1 − q where p, q ∈ (0, 1) and give (9) a
probabilistic interpretation: Consider a number of independent
trials each having probabilityp of being a success. The
probability to obtain then-th success exactly in the(τ +n)-th
trial is given by the negative binomial distribution. It equals
(

τ+n−1
n−1

)

pnqτ . Consequently, (9) can be interpreted as1/pn

times the probability thatd+ n or more trials are needed for
n successes.

The number of trials required to obtainn successes is,
however,

∑n
i=1 Xi where theXi are independent geometric

random variables that each describe the number of trials
required to obtain only thei-th success [39]. That isX1 is
the number of trials required to obtain the first success,X2 is
the additional number of trials required to obtain the second
success and so on. The probability thatx− 1 trials fail before
a success occurs at thex-th trial is P{Xi = x} = pqx−1 for
x ≥ 1 and the corresponding MGF [40] becomesMXi(ϑ) =
peϑ

1−qeϑ for qeϑ < 1. The MGF ofX =
∑n

i=1 Xi follows as
MX(ϑ) = (MXi(ϑ))

n and with Chernoff’s bound we estimate

1

pn
P{X ≥ d+ n} ≤

1

pn
inf

ϑ∈[0,∞)

[

e−ϑ(d+n)
( peϑ

1− qeϑ

)n
]

which is minimized ateϑ = d/n
q(1+d/n) if d ≥ nq

1−q to ensure
ϑ ≥ 0. It follows that

1

pn
P{X ≥ d+ n} ≤

(

q(1 + d/n)

d/n

)d

(1 + d/n)n

=

(

(1 + d/n)1+d/n

(d/n)d/n

)n

qd

which provides an upper bound for (9). Assembling all parts
we obtain

MA⊘S(θ,−d) ≤ eθ(σ(θ)+nσc(θ)−(C−ρc(θ))d)

(

(1 + d/n)1+d/n

(d/n)d/n

)n

and the delay bound follows by insertion into (8).

V. NUMERICAL RESULTS

We provide numerical delay bounds forn servers with
cross-traffic in series as shown in Fig. 1. The servers each
have capacityC and the leftover service is determined under
the general scheduling model. We use stationary, single leaky
bucket traffic sources with maximum burst sizeb and rater.
For the MGF of such regulated sources, see for example [28],
[16], it is known for θ ≥ 0 and t≥ s≥ 0 that MA(θ, s, t) ≤

1+ r(t−s)
b+r(t−s)

(

eθ(b+r(t−s)) − 1
)

. We compute stationary delay
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Fig. 2. Utilization under aggregate scheduling

bounds with violation probabilityε = 10−6 from Th. 1 and
Th. 2 and compare the results to respective bounds obtained
from deterministic network calculus, that is forε = 0. Note
that the probabilistic calculus recovers corresponding deter-
ministic bounds forθ → ∞, whereas the optimal choice ofθ
effectively exploits the statistical multiplexing gain. We show
a significant statistical gain for aggregation of independent
flows, for independent cross-traffic, and for concatenationof
independent servers, where the linear scaling of performance
bounds in the number of traversed serversn is confirmed.

Fig. 2 shows results for a single server which, however,
may be a lumped, equivalent system that represents an entire
network. For ease of presentation homogeneous flows with
maximum burst sizeb = 1 Mb and rater = 30 Mb/s
are used. Flows are added unless the target delay bound
d ≤ 10 ms is violated. Clearly with increasing number of
independent flows the probabilistic calculus can efficiently
exploit statistical independence, such that the utilization can
be significantly enhanced. For the investigated scenario the
average utilization of a 2.4 Gb/s link can be increased from
0.29 to 0.71 by allowing for a small violation probability
ε = 10−6 of the target delay boundd = 10 ms.

Fig. 3 shows the impact of high priority cross-traffic at
a priority scheduler. A constant rate server with capacity
C = 2.4 Gb/s is analyzed and delay bounds are derived for
an aggregate of 20 independent, low priority flows, each with
leaky bucket parametersb = 1 Mb and r = 30 Mb/s. At
the same timem independent, high priority flows with leaky
bucket parametersb = 20/m Mb and r = 600/m Mb/s are
scheduled. Since the sum of the traffic parameters of allm
high priority flows is constant, the deterministic delay bound
does not depend onm. It is 22.3 ms, whereas the probabilistic
bound with violation probabilityε = 10−6 decreases from
15.3 ms form = 1 and approaches 4.4 ms for largem.

Two effects which are due to statistical multiplexing can
be itemized here: Form = 1 the difference between the
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deterministic and the probabilistic delay bound is almost
entirely due to the statistical multiplexing gain among the
20 low priority flows. For an increasing number of high
priority flows an additional, important statistical multiplexing
gain among them high priority flows and between the two
priority classes can be made accessible. For comparison the
dotted lines at 2.9 ms and 4.4 ms show the probabilistic delay
bound without cross-traffic and with constant bit rate cross-
traffic respectively. Clearly as the number of independent high
priority flows increases the aggregate of the high priority flows
becomes smoother and for largem the probabilistic delay
bound approaches the bound obtained under constant bit rate
cross-traffic.

The statistical multiplexing gain becomes more and more
apparent, if the number of flows is increased. To this end
Fig. 4 shows results for the same scenario used to obtain
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Fig. 5. End-to-end concatenation of servers in series

Fig. 3, however, applying through and cross flows with burst
size b = 0.1 Mb and rater = 3 Mb/s. The number of
through and cross flows are equal and are denoted bym.
For the investigated 2.4 Gb/s linkm = 400 corresponds
to 400 through flows and 400 cross flows and results in a
sustained network load of one. Fig 4 compares deterministic
and probabilistic delay bounds for varyingm respectively
varying network load. Clearly, if the utilization is very low
there are few flows and only a small statistical multiplexing
gain can be realized. Thus, the deterministic and probabilistic
delay bounds are almost equal. On the other hand, if the
utilization is very high, large delays are seen more frequently
and the probabilistic delay bounds grow rapidly. Eventually,
for a load of one the probabilistic calculus does not provide
a finite delay bound, whereas the deterministic calculus still
does. Between these extreme points the probabilistic calculus
effectuates a significant statistical multiplexing gain resulting
in a considerable reduction of delay bounds compared to the
deterministic case.

Fig. 5 shows results forn servers with cross-traffic in
series. At each server the current cross-traffic is de-multiplexed
and fresh, independent cross-traffic is multiplexed. The same
parameters as used for Fig. 3 are applied andm = 20 is
chosen. The results confirm the scalability of the approach.
Both the deterministic and the probabilistic bounds scale in
O(n), where n is the number of servers in series. Thus,
the important end-to-end scalability of deterministic network
calculus has been achieved using a probabilistic calculus which
effectuates a noticeable statistical multiplexing gain.

Further on, the so-called Pay Bursts Only Once phe-
nomenon [2] known from deterministic network calculus can
be observed in a probabilistic setting. In brief this phenomenon
describes the observation that the increment of the end-to-end
delay bound for each additional, concatenated server is smaller
than the delay bound that would be obtained for the server in
isolation.



VI. CONCLUSIONS

We presented an end-to-end probabilistic network calculus
with moment generating functions which efficiently utilizes
statistical independence while preserving the intuitive convo-
lution formulas and the fundamental concatenation theoremof
deterministic network calculus. The derived framework meets
the benchmark set by the deterministic calculus and achieves
a linear scaling of end-to-end, per-flow backlog and delay
bounds in the number of traversed servers.

We showed how moment generating functions can effi-
ciently be used in the context of network calculus to ex-
ploit independence beyond statistical multiplexing of flows. A
relevant gain is obtained for different scheduling disciplines,
such as priority or first-in first-out scheduling, and for the
concatenation of servers. We presented numerical results for
tandem servers that support the efficiency of the approach.
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