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Abstract— Providing field coverage is a key issue in many
sensor network applications. For a field with unevenly distributed
static sensors, a quality coverage with acceptable network lifetime
is often difficult to achieve. We propose a hybrid network that
consists of both static and mobile sensors, and we suggest
that it can be a cost-effective solution for field coverage. The
main challenges of designing such a hybrid network are, first,
determining necessary coverage contributions from each type of
sensors; and second, scheduling the sensors to achieve the desired
coverage contributions, which includes activation scheduling for
static sensors and movement scheduling for mobile sensors.

In this paper, we offer an analytical study on the above
problems, and the results also lead to a practical system design.
Specifically, we present an optimal algorithm for calculating
the contributions from different types of sensors, which fully
exploits the potentials of the mobile sensors and maximizes the
network lifetime. We then present a random walk model for the
mobile sensors. The model is distributed with very low control
overhead. Its parameters can be fine-tuned to match the moving
capability of different mobile sensors and the demands from a
broad spectrum of applications. A node collaboration scheme is
then introduced to further enhance the system performance.

We demonstrate through analysis and simulation that, in our
hybrid design, a small set of mobile sensors can effectively address
the uneven distribution of the static sensors and significantly
improve the coverage quality.

I. INTRODUCTION

Wireless sensor networks have recently been suggested
for many protection and surveillance applications. One key
objective of these applications is to detect abnormal events in
a sensing field, which depends on the coverage quality of the
sensor network. The k-coverage is a common criterion, where
any point in the sensor field should be covered by k sensors
[18]. For many applications, it turns out that a deterministic
k-coverage is too expensive and not necessary. Therefore,
probabilistic coverage [7][22] is introduced and every point
is covered with certain probability ratio. This ratio tunes the
coverage quality and allows the sensors to switch between
sleeping and working states.

In these studies, only static sensors are used. The quality of
coverage is noticeably affected by the initial deployment of the
sensors. For uneven sensor distributions, the sensors in a sparse
area may have to stay active longer to ensure the coverage
quality. The batteries of these sensors will be depleted earlier

and thus making the area even sparser. In an extreme case,
an area will be uncovered by any sensor, leaving a hole in
the field. Unfortunately, such unfavorable sensor distributions
are inevitable in many applications where a well-controlled or
manual deployment is not practical.

Recent advances of embedded hardware and robot have
made mobile sensors possible. The mobile sensors have the
same sensing capability as static sensors, but are able to move
in a field, and their batteries are generally rechargeable. In
other words, their lifetime is not bounded by the limited
battery. While fully mobile sensor networks remain expensive
and are complicated by information exchange, we envision that
a hybrid network with both static and mobile nodes can be a
cost-effective tool for coverage with unevenly distributed sen-
sors. A related design was presented in [19], which suggested
a one-time reposition of the mobile sensors after the initial
deployment. This solution, however, proves inadequate for
balancing the sensor coverage and load in many applications.
Consider Fig. 1, where there are a number of static sensors and
three mobile sensors to cover a field. Each sensor can cover
its associated grid. If there are no mobile sensors, grid 6 will
never be covered. If only one-time repositioning for the mobile
sensors is employed, the coverage can be enhanced, but there
will still remain grids with permanently fewer sensors.

In this paper we propose a hybrid sensor network which
fully exploits the movement capability of the mobile sensors.
In our solution, the mobile sensors are always in motion to
assist the static sensors; the occurrence probability of the
mobile sensors in each grid, or their contribution for covering
the grid, is adaptively determined according to the network
configuration. From a statistical point of view, the overall
coverage is enhanced, and energy consumption of the static
sensors is more balanced.

The main challenges in designing such a hybrid network
are, first, to clarify the necessary coverage contributions from
the static and mobile sensors; and second, to find a mobility
model for the mobile sensors to achieve their desired coverage
contribution. In this paper, we for the first time offer an
analytical study on the above problems, and the results also
lead to a practical system design. Specifically, we present an
optimal algorithm for calculating the contributions, which fully
explores the potentials of the mobile sensors and maximizes
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Fig. 1. Field covered by a hybrid static and mobile sensor network, circles
representing static sensors and stars representing mobile sensors.

the network lifetime. We show that the contribution from
the static sensors can be achieved through a simple random
sleep/work scheduling. We then present a random walk model
for the mobile sensors that achieves the coverage contribution.

Our hybrid architecture is general enough and offers a
promising baseline for the demands from diverse applications.
Various enhancements can be integrated to improve system
performance. Indeed, we point out several interesting obser-
vations from this hybrid design. Particularly, a wall effect may
prevent mobile sensors from moving freely in a field. We ef-
fectively solve this problem through an optimal mobile sensor
allocation algorithm. We then outline a sensor collaboration
scheme which further enhances the system performance.

The rest of the paper is organized as follows. In section II,
we present the related work. We outline our hybrid network
architecture in section III. The respective contributions from
static and mobile sensors are derived in section IV. Section
V discusses the random walk based mobility model and
solutions for the wall effect. In section VI, we present an in-
network collaboration protocol to avoid redundant activation.
The performance of the hybrid sensor network is evaluated in
section VII. Finally, section VIII concludes the paper.

II. RELATED WORK

Wireless sensor networks have been widely studied in recent
years, focusing on those with static sensors; a survey can be
found in [1]. The effective coverage using static sensors is one
of the key problems in sensor network applications, and has
been examined in various aspects, such as field/path coverage
and determinstic/probabilistic coverage. Related work can be
found in [7][18][23] and the references therein. Many studies
propose grouping the sensors into grids [7][21][22], where all
sensors in a grid are equivalent in their functionality, such as
coverage capability. The surveillance systems in [7][23] further
suggest that the static sensors can be redundantly deployed
and work in turn to extend the lifetime of the system. Our
configurations for the static sensors are motivated by their
work, but emphasize on the interactions with mobile sensors.

The advances in embedded systems and hardware designs
have realized mobile sensors, such as Robomote [17] and
Khapera [14]. Unlike the static sensors, which are tightly

constrained by the energy supplies, their batteries are recharge-
able. Recent work also suggests that much longer working time
and shorter recharging time can soon be expected [10].

The mobility model of mobile nodes has long been a classic
problem in ad hoc and cellular wireless network research. The
random walk, random waypoint walk, random trip, and fluid
models have been widely used to capture the mobile behaviors.
A survey and comparison of these models can be found in [16].
However, most of them analyze the mobility behaviors, while
not for guiding the movement of the mobile nodes.

Using mobile sensors for coverage is recently considered
in [13][19]. Liu et al. [13] extend the definition of coverage,
which is originally given in static geographic sense, into
the time domain. Informally, the coverage is evaluated as
the fraction of the covered area at a point of time. They
conclude that, compared to using uniformly distributed static
sensors, it is more beneficial if all sensors are mobile and
are traveling in a random walk fashion. A more recent study
on the velocity and motion strategies for all mobile sensor
networks to improve coverage can be found in [3]. While this
theoretical result is elegant and exciting, the mobile sensors
remain expensive nowadays; it is unlikely a fully mobile sensor
network is practical in the near future. In addition, when all the
sensors are in random motion, packet routing and information
dissemination will be much more complicated.

We thus envision a hybrid sensor network consisting of both
static and mobile sensors. If the number of the mobile sensors
is small, the cost of building such a network remains accept-
able, and the performance could be significantly improved, as
shown in our study. A closely related idea is presented in [19],
which compensates poor initial sensor distributions by strate-
gically repositioning some mobile sensors. The key difference
here is that we consider continuous movement for the mobile
sensors, while they focus on one-time repositioning. Some
other one-time reposition schemes can be found in [8][9][25]
and a common drawback is that, after the mobile sensors
are reposited, the field coverage may still be unbalanced,
possibly leaving coverage holes. Our proposal can be viewed
as a generalization of the one-time repositioning, and we
demonstrated the potential benefit of continuous movement
through analytical and experimental results.

III. ARCHITECTURE OVERVIEW

A. Hybrid Network Model

The hybrid network in our study consists of both static and
mobile sensor nodes, which collectively monitor a field of
interest. As in previous studies [6][12][22], we assume that
the field is divided into n2 virtual grids, indexed from 0 to
n2−11. This virtual grid structure is not special, and we have
shown in [20] that our analysis and algorithms can be easily
extended to hexagon or other virtual structures. Through GPS
or available positioning services [2][4], the sensors are aware
of their location information and, hence, their associated grids.
The size of each grid is

√
2

2 R×
√

2
2 R, where R is the sensing

range of a static sensor. Thus, any active sensor in a grid can

1In this paper, we use the grids to denote a grid of n2 cells.
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Fig. 2. The movement of a mobile sensor. The probabilities for moving to
or staying in a grid are determined according to the network configuration.

cover the whole grid. The sensing range of a mobile sensor
can be smaller, e.g., R

2 , as it can reposit itself to the center of
its grid. An example of the grid structure is shown in Fig. 1.

When a sensor detects an abnormal event in its grid, it
should report the event to a predefined agent. The reporting
mechanism is out of the scope of our study, and existing virtual
grid based algorithms can be used [22].

Given that the static sensors in one grid are equivalent in
coverage, they do not have to be active simultaneously, so
as to save energy. The deployment of the static sensors is
often nonuniform; and even worse, holes (grids with no static
sensors) can exist, creating permanently uncovered regions2.
In our hybrid network the mobile sensors are always active,
and can stay in a grid or move to other grids, as shown in Fig.
2. This feature can help with the covering of the holes in the
field and reducing the load of the existing static sensors.

B. Performance Measurement

Since our main goal is covering related, we define a measure
of how well a location is covered. Similar measurement is also
used in [21].

Definition 1: A sensor field is said to be δ-covered if, at
any point in time, at least an expected δ ∈ (0, 1) fraction of
the whole area is covered by one or more active sensors3.

Assume that δ is the minimum coverage ratio required
by the user, our objective is to ensure this quality, while
maximizing the lifetime of the network.

It is worth noting that the battery of state-of-the-art mobile
sensors is rechargeable [10]; hence, the lifetime of the whole
network is bounded by that of the static sensors. We use
the lifetime of the first dying out sensor as a measure for
the system lifetime. This definition has been widely used
in existing studies [5][24], and essentially suggests a load-
balanced operation for the static sensors. The effectiveness of
this definition has been validated by our simulation results in
Section VII. From a functional point of view, once the first
static sensor dies, its grid needs additional assistance from the
mobile/static sensors, which in turn increases the workload of

2Even if the deployment is a globally uniform distribution, local fluctuations
still would occur, resulting in uneven numbers of sensors in different grids.

3Notice that in this definition, we are more restricted as we request in every
point of time, the expected coverage is above δ.

other static sensors, resulting in a domino effect that quickly
drains the power of the whole network. Thus, the death of the
first sensor serves as a good signal to the end of the steady-
state operation.

In summary, given a coverage requirement, the network
lifetime depends on the activation models of the static sensors,
which further depend on the sensor distribution and the
potential contributions from the mobile sensors.

C. Working and Moving Models

Given the system model and the performance measures, a
natural question is what kind of working and moving models
of the sensors can achieve the coverage objective. In our
basic framework, we adopt a random activation scheduling for
the static sensors, and a random walk model for the mobile
sensors. More specifically, our hybrid sensor network goes
through the following stages:

1) Parameter Initialization: After deployment, one or more
mobile sensors travel around the field and collect the distribu-
tion information of the static senors in all grids. The mobile
sensors determine the movements of themselves as well as the
activation probability of the static sensors. The mobile sensors
then notify the static sensors of their activation probability.

2) Field Monitoring: Consider the time slots are discrete.
In each time slot, a static sensor independently activates itself
with the activation probability obtained in the initialization
stage and then monitors its grid. Each mobile sensor indepen-
dently decides to move into one neighboring grid or to stay in
the current grid, and then monitors the grid where it resides.

The advantages of using a probabilistic operation over a
deterministic one are many. First, our technique is easier
to implement because it involves simple optimization in the
initial stage for the sensors. Second, the behavior of each
type of the sensors are statistically identical. This is useful
especially for recharging or replacement of mobile sensors.
The substitute mobile sensor can easily follow the mobility
model and continue to monitor the sensor field, regardless
of the current state of other sensors; whereas a deterministic
scheme may involve re-optimization. Third, a probabilistic
coverage is generally more resistent to intruders that try to
learn the sensor behavior.

Our hybrid architecture offers achievable and reasonably
good solutions to the problem of the uneven distribution of
static sensors. It is, however, worth emphasizing that the above
framework provides only a flexible baseline for further design
of hybrid systems. Many practical enhancements could be
added, and we will discuss some of them as well.

IV. COVERAGE CONTRIBUTIONS FROM STATIC AND
MOBILE SENSORS

In our hybrid network, the coverage of a grid is achieved
by the combined efforts of static and mobile sensors. A grid
is said to be covered at time t if either a static sensor in
this grid is active or a mobile sensor resides in the grid at
time t. To balance the workload, it is desirable to assign the
static sensors with an identical activation probability p. An
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Fig. 3. Coverage contributions from static and mobile sensors. Coverage
ratio δ = 0.8, and activation probability of static sensors p = 0.5.

illustrative example of coverage is shown in Fig. 3 (refer to
Fig. 1 for the distribution of the sensors in this example).

We now identify the necessary long-term coverage contri-
butions from the two types of sensors. Clearly, for grid i,
i = 0, 1, . . . , n2 − 1, the contribution from a mobile sensor
depends on the fraction of time that the mobile sensor will
be present in this grid; in other words, the probability that
it travels to the grid. We denote this probability by πi for
all mobile sensors. The contribution from a static sensor in
the grid is equal to its activation probability: the higher this
probability, the better the coverage will be.

We now focus on the optimal values of p and π =
[π0, π1, . . . , πn2−1]. In the next section, we will present a
random walk model that achieves π.

To facilitate our discussion, we use d(i) to represent the
density of grid i, i.e., the number of static sensors in this
grid. Let M be the number of mobile sensors in the network.
Given coverage requirement ratio δ, the following formulation
maximizes the network lifetime:

minimize p

s.t. π0 + π1 + . . . + πn2−1 ≤ 1 (1)

(1− p)d(0) × (1− π0)M ≤ 1− δ (2)

(1− p)d(1) × (1− π1)M ≤ 1− δ (3)

...

(1− p)d(n2−1) × (1− πn2−1)M ≤ 1− δ (4)

where Eq. (1) gives the contribution constraint of each mobile
sensor, and Eqs. (2) - (4) ensure the coverage ratio of the
grids, i.e., if Eqs. (2) - (4) are satisfied, the overall expected
coverage ratio is greater than δ.

We present algorithm CalcContribution() that solves this
optimization problem (see Fig. 4). In CalcContribution(), we

Algorithm CalcContribution()
1 SortGrid();

2 for (K = 0; K < n2; K++)
/ ∗ (1− p)d(lK) ≤ 1− δ ∗ /

3 p = 1− d(lK)
√

1− δ;
4 for (i = 0; i < K; i++)

/ ∗ (1− p)d(li) × (1− πli)
M ≤ 1− δ ∗ /

5 πli = 1− M

√
1−δ

(1−p)d(li)
;

6 if (
∑n2−1

i=0 πli > 1)
7 break;

8 AdaptP();

Fig. 4. Algorithm CalcContribution()

first invoke subroutine SortGrid() to sort the grids in ascending
order of their densities. Let li represent the index of the grid
with rank i after sorting, i.e., d(l0) ≤ d(l1) ≤ . . . ≤ d(ln2−1).
We then search for K, the rank after which the grids are dense
enough to be covered by the static sensors only. We start
searching for K from 0, and evaluate the p for the current
setting of K. If we can find a valid p and πli , then we increase
K, until

∑n2−1
i=0 πli > 1 (intuitively, this says that the potential

of the mobile sensors is fully exploited) or K reaches n2. In
this process, p is decreasing because additional assistance from
the mobile sensors is introduced after each iteration (See line
3, K increases every iteration).

Note that p is a real number but K is discrete. Hence,
after the above process terminates, we in fact have an upper-
bound on p corresponding to K − 1, and a lower-bound on
p corresponding K. To find the optimal and practical p, we
invoke a subroutine AdaptP(), which performs a binary search
for the p and adjusts πli accordingly. The termination of this
subroutine depends on the precision of p, which is usually a
predefined value. In our experiments, the depth of the binary
search is always smaller than a constant factor of four.

We see that p decreases the algorithm has exhausted all
possible p, i.e., if there is a better p than the outcome of Calc-
Contribution(), then this p must have been searched. Therefore,
this algorithm provide an optimal allocation between the static
sensors and mobile sensors. The complexity of this algorithm
is N2 where N represents the total number of grids; and it
does not depend on the number of sensors. In practice, if the
field is very large and there are too many grids, it may take
a long time for a single mobile sensor to collect all the field
information. In this case, we can first do a simple uniform
partition of the field according to the number of mobile sensors
and let each mobile sensor be responsible for the information
collection in a subfield. As such, the initialization phase can
be remarkably shortened.

V. A RANDOM WALK MODEL FOR MOBILE SENSORS

In the previous section, we obtained π, the long-term
coverage contribution by the mobile sensors to the grids. It
remains to show a concrete mobility model that can achieve
this distribution. To this end, we demonstrate a viable and yet
simple random walk model in this section.



5

4


30%


5


7


5%


3


1


30%


5%


30%


0


6


.


.


.


.


.


.


.


.


2


8


.


.


.


.


.  .  .  .


.  .  .  .


.  .  .  .


Fig. 5. Markov chain for the random walk model.

A. A Random Walk Model

In the random walk model, a mobile sensor will either stay
in a grid, or move into an adjacent grid along four directions,4

as shown in Fig. 2. We consider decisions depending only on
the current grid where a mobile sensor resides. This results
in a Markov chain where each grid is a state. We use Pij

to denote the transition probability from grid i to grid j. See
Fig. 5 for an illustration. Given the long-run distribution π,
this Markov chain obeys the following balance equations,

πj =
n2−1∑

k=0

πkPkj , j = 0, 1, . . . , n2 − 1 (5)

n2−1∑

k=0

πk = 1 (6)

n2−1∑

j=0

Pkj = 1, ∀k ∈ [0, n2 − 1] (7)

0 ≤ Pij ≤ 1, ∀i, j (8)

Pij = 0, ∀i, j, grids i, j not adjacent (9)

where the first four equations are standard steady-state con-
straints for Markov chains [11], and Eq. (9) suggests that no
transition is possible for two non-adjacent grids.

Our problem now is to determine the transition probabilities
Pij in this system of equations to reach the stationary distribu-
tion π. This is the inverse of the “given transition probability,
find stationary distribution” problem in a Markov chain.

First of all, we need to ensure that the Pij obtained can
guarantee a limiting distribution π. By ergodic theorem [15],
a Markov chain that is aperiodic, irreducible and positive
recurrent has a limiting distribution5. Since there are only a
finite number of states in our system, if our Markov chain is

4In a boundary grid, a mobile sensor only have 3 or 2 directions to move.
5Aperiodic means that Pii > 0. Irreducible means that all states are

reachable from all other states. Positive recurrent means that the sensor will
return to a state within finite time.

irreducible, it is positive recurrent. As such, if we ensure that
the Markov chain is aperiodic and irreducible, it is sufficient to
guarantee this π exists. For ease of discussion, we now assume
that πk > 0 for k = 0, 1, . . . , n2 − 1. We will generalize the
solution later.

To ensure aperiodicity, we can set all the Pii to be strictly
positive. To ensure irreducibility, the mobile sensors cannot
be trapped in a grid or a group of grids; hence, we have an
additional set of constraints:

∀i, 0 < Pii < 1, (10)

which indicates that whenever a mobile sensor moves into a
grid, the probability that it will stay in this grid should be
strictly less than 1. A stronger condition is

Pij > 0, ∀i, j, grids i, j are adjacent, (11)

which ensures that the mobile sensor always has chance to
move into a neighboring grid. Eq. (8) can then be replaced by

0 < Pij < 1, ∀i, j that are adjacent (12)

It is not difficult to see that the above set of equations have
multiple solutions. We now illustrate one solution set. Our
strategy is to first find a set of solution to Eq. (5) and Eq. (6)
and then try to satisfy all others. Notice that if πkPkj = πjPjk,
Eq. (5) can be satisfied. We set Pkj = πj and Pjk = πk for all
Pjk 6= 0 and Pkj 6= 0. This can always be achieved because
either Pkj and Pjk are both strictly positive, or Pkj = Pjk =
0. We then set Pii = 1−∑n2−1

j=0 Pij , and it is easy to verify
that Pii > 0. Therefore, Eqs. (5), (6) and (7), (9) are satisfied.
Since πk, πj 6= 0, 1 we have Pjk, Pkj 6= 0, 1, and Eqs. (10),
(12) are satisfied.

In summary, the solution set is

Pjk =
{

πk ∀j 6= k and j, k are adjacent;
0 ∀j 6= k and j, k are not adjacent; (13)

Pjj = 1−
n2−1∑

k=0

Pjk ∀j 6= k (14)

Here we emphasize again that we assume πk > 0 for
k = 0, 1, . . . , n2 − 1. In section V.C, we will investigate an
interesting impact of πk = 0, i.e., that certain grids do not
need assistance from the mobile sensors.

B. Boosting Movement

It is worth noting that the definition of coverage quality
(Definition 1 in Section III.B) does not account for the moving
frequency of the mobile sensors, nor the convergence time of
the system. A lazy movement, where there is a high probability
for the mobile sensors to stay in a grid, would achieve the same
coverage ratio. An extreme example is one-time repositioning
of the mobile sensors: a higher fraction of the sensor field can
be covered, but the coverage could still be unbalanced or even
with holes if the number of mobile sensors is not enough.
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Fig. 6. Wall effect. Darker grids have denser static sensors.

Our random walk model can effectively solve this problem
by adaptively setting the transition probabilities, allowing a
wide range of movement frequencies. The strategy is to adjust
the existing solution within the constraints to obtain another
viable solution set. Specifically, to satisfy Eq. (5), we only
need to have πkPkj = πjPjk; thus setting Pkj = απj and
Pjk = απk also works given α > 0. Let αl, αu, αr, αd denote
the adjustment factors for the four directions. To achieve a
higher moving frequency, we can increase αl, αu, αr, αd, and
the constraints will still be satisfied as long as the sum of
the outgoing probabilities in a grid is less than 1. In our
experiments, we set a threshold for Pii: if a Pii is greater
than the threshold, we increase the α’s until all Pii’s are less
than the threshold, or there is no possible further reduction.
We call the scheme after this adjustment aggressive movement.

C. The Wall Effect and Solutions

We have assumed that πi is non-zero in the previous
Markov chain calculation. In practice, πi can be zero for
dense grids, i.e., those ranked higher than K in algorithm
CalcContribution(). These grids will not get assistance from
the mobile sensors and can simply be ignored in forming the
Markov chain, if they are sparsely distributed. However, if a
collection of such grids are connected, a wall can be formed,
which partitions the field into two or more disjoint subfields.
Given the presence of a wall (or multiple walls), a mobile
sensor can not move freely in the whole field, and the expected
distribution is no longer achievable. An example of this wall
effect is shown in Fig. 6 where grids 3, 6, 9, 13 have dense
static sensors and thus form a wall, splitting the fields into
two subfields. Grid 0 and 4 also have dense static sensors,
whereas they still need some assist from mobile sensors. We
call them semi-walls as these grids make traveling in subfield
(0, 1, 2, 4, 5, 8, 12) difficult, i.e., it may take a long time for the
mobile sensors in grids 1, 2, 5 to reach grid 8, 12. As such, the
coverage of the non-wall grids strongly depends on the initial
placement of the mobile sensors, and a strategic allocation of
the mobile sensors to the subfields is thus necessary.

1) Mobile Sensor Allocation for Subfields: Assume that,
after invoking algorithm CalcContribution in the initial stage,
the sensor field is divided into C subfields by walls. It is
easy to see that the number of mobile sensors needed in each
sub-field (excluding the wall grids) is independent of other

subfields. We thus focus on a particular subfield, e.g., the kth
one. Assume this subfield includes Ck grids, and similar to
the notations used previously, let grid lki be the ith rank in this
subfield after sorting in ascending order of the densities, i.e.,
d(lk0) ≤ d(lk1) ≤ . . . ≤ d(lkCk−1). Let Mk be the number of
mobile sensors to be assigned to this subfield. Our objective
is to find the minimum Mk that provides the desired coverage
for this subfield. This problem can be formulated as follows:

minimize Mk

s.t. πlk0
+ πlk1

+ . . . + πlk
Ck−1

≤ 1 (15)

(1− pmin)d(lk0 ) × (1− πlk0
)Mk ≤ 1− δ (16)

(1− pmin)d(lk1 ) × (1− πlk1
)Mk ≤ 1− δ (17)

...

(1−pmin)d(lk
Ck−1

)×(1−πlk
Ck−1

)Mk ≤ 1−δ (18)

where pmin is the optimal value of p obtained in CalcContri-
bution. To maximize the expected network lifetime, this value
should still be identical for all the static sensors, even in the
presence of subfields.

We can iteratively reduce Mk starting from M−∑k−1
j=0 M j .

We allocate mobile sensors to each subfield one by one and,
for the kth subfield, we start with the remaining mobile sensors
after assigning all k − 1 subfields. We then calculate the
corresponding πlk

i
in each iteration. We stop until Eq. (15)

is violated, (intuitively, this means that fewer sensors cannot
provide necessary coverage). We thus obtain optimal Mk and
πlk

i
. Since the grids within the subfield all have πlk

i
> 0, we

can set the transition probabilities as before. The transition
probabilities also guarantee that a mobile sensor will remain
in its subfield during the random walk.

It is worth noting that after we calculate each Mk indi-
vidually, it is possible that

∑C
k=0 Mk > M . This is because

a sensor cannot be allocated fractionally. Given this negative
impact of the walls, we need to increase pmin by decreasing
K; the contribution from the static sensors is thus increased.
We continue until a K is found such that

∑C
k=0 Mk ≤ M .

2) Subfield Partitioning: Besides the wall grids, other dense
grids may have a very small πi, implying that the mobile
sensors should seldom visit them. Two examples are the grids
0 and 4 in Fig. 6. These two grids make a smooth walking
in subfield (0, 1, 2, 4, 5, 8, 12) difficult and will significantly
increase the convergence time of the system.

In the presence of semi-walls, we can further partition the
subfields to balance the movement of the mobile sensors.
Again, since the mobile sensors cannot be allocated frac-
tionally, we have to strike a balance between the coverage
and convergency. In our experiment, we set a threshold for
the grids of semi-walls and show that the convergence time
improves noticeably.
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VI. SENSOR COLLABORATIONS

So far we have established the respective contributions from
static and mobile sensors, and the activation and movement
strategies for them. This framework is easy to implement as
it involves node interactions in the initial period only, and all
the remaining operations are randomly and independently per-
formed in a distributed fashion. Within this basic framework,
various node interactions/collaborations could be introduced
to further enhance the system performance. To show this, we
now outline a simple yet effective node collaboration scheme.

The key observation is that by using a pure probabilistic
model, there may be overlapping coverage of a grid by differ-
ent sensors. To this end, we introduce a sensor collaboration
protocol with two contention phases. We assume that time is
partitioned into slots [0, T1], [T1, T2], . . ., [Ti, Ti+1], . . ., with
slot length T = Ti+1 − Ti. Without loss of generality, we
consider the time slot starting at Ti. We have a contention
interval [Ti − t, Ti + t]; where t is a fixed parameter such
that t ¿ T . The first phase [Ti − t, Ti] is used for contention
between mobile sensors to enter one certain grid. The second
phase [Ti, Ti + t] is used for suppressing multiple activation
of the static sensors.

In [Ti − t, Ti], mobile sensor mj first decides which grid it
will enter in the next time slot. Then, mj randomly generates a
number tj ∈ [0, t] and, at time Ti− tj , sends a probe message
to the sensors in the selected grid. If the grid has a mobile
sensor or an active static sensor, it will allow mj to enter in the
next slot only if mj is the first one sending the probe message.
In [Ti, Ti + t], each static sensor also generates tj ∈ [0, t],
and, at time Ti + tj , activates itself with probability p and
broadcasts a probe message to its neighbors in the same grid.
If a neighbor is a mobile or an already activated static sensor,
it will reply by a reject message. The newly activated sensor
thus has to deactivate itself to save energy.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the hybrid
sensor network in field coverage through simulations. We
focus on the following typical measures: coverage quality,
network lifetime, and convergence time.

In our simulation, we deploy 1000 static sensors in a field
of 140m × 140m and the sensor field is partitioned into 100
virtual grids. The battery power for each sensor is 10000mAh,
and can last for one day with persistent activation. We neglect
the energy cost during dormant states.

We have examined the energy consumption status of the
static sensors in our system. Fig. 7 shows the cumulative
distribution curve of the residual energy after the death of the
first sensor. We can see that at this time more than 70% of the
sensors has residual energy less than 1000mAh (10% of the
total energy reserve). It implies that the remaining operation
time of the system is limited, and the lifetime of the first dead
sensor serves as a legible measure for the system lifetime.

Unless otherwise specified, the following default parameters
are used: The expected coverage quality is δ = 0.85, and the
length of each time slot is 1 minutes. Each point in our figures
is the average of 100 independent experiments.

A. Contribution of Mobile Sensors

In first set of experiments, we deployed different number of
mobile sensors in the field to observe their effectiveness. In
Fig. 8, we show the network lifetime as a function of the
number of mobile sensors. The number of mobile sensors
varies from 20 to 60, which accounts for only a small portion
of all the sensors. For comparison, we also plot the result
with static sensors only; to ensure fairness, in this case, we
deployed additional static sensors (the same amount as mobile
sensors), which are equipped with extra-batteries to remain
active throughout the experiments. In our figures, we use w/
MS, w/o MS to denote the experiments with or without mobile
sensors; w/ C, w/o C to denote the experiments with or without
using the sensor collaboration protocol.

We observe that the use of mobile sensors substantially
increases the network lifetime. For example, consider the case
where there are 50 mobile sensors, the lifetime (w/ MS, w/o
C) is three times longer than without mobile sensors (w/o
MS, w/o C). In addition, we see that the lifetime improves
steadily when more mobile sensors are deployed. On the
contrary, by adding a few static sensors only, there is no clear
improvement of the system lifetime. Node collaboration also
improves the life time for both cases, but more substantially
if mobile sensors are used. The improvement percentage is
plotted in Fig. 9. We can see that without mobile sensor (w/o
MS, w/ C), there is a 10% to 20% lifetime improvement
with sensor collaboration compared to without collaboration. If
mobile sensors are used, this effect is much pronounced. This
is because without mobile sensors, the lifetime is constrained
by the grids with fewer sensors, resulting in smaller chance
of suppressing redundant activations. Since node collaboration
substantially improves the system performance, for the rest
of our experiments, we will focus on the performance of the
system with collaboration only.

We next consider the effect of two different distributions
of the static sensors. First, we deployed the static sensors
randomly and uniformly. Second, we added some bias on the
distribution, where the right side of the sensor field was two
times denser than the left side of the sensor field. Fig. 10
shows the comparison results. Not surprisingly, the lifetime
has reduced in biased distribution as the system is more
stressed. With assistance from mobile sensors, however, the
situation improves fast; for example, with 20 mobile sensors,
the lifetime is only marginally better than with no mobile
sensors, whereas with 60 mobile sensors, the lifetime is less
significantly affected by the biased distribution. This clearly
shows the inherent adjustment capability of mobile sensors.

B. Convergence Time

We now consider the convergence time of the network,
in particular, the effect of moving speed of the mobile sen-
sors. We simulated 50 mobile sensors in the sensor field.
In initialization, the whole sensor field was partitioned into
subfields by walls. All mobile sensors belonging to the same
subfield were dispatched to the grid with the highest index
in this subfield. Fig. 11 shows the coverage quality over
time for both aggressive and lazy movements. We see that if
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Fig. 7. Residual energy after the death of the
first sensor.
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Fig. 14. Abnormal event detection. SS: Detected by static sensors only; MS: Detected by mobile
sensors only; Both: Detected by both. (a) Mobile sensors with lazy movement. (b) Mobile sensors
with aggressive movement.

there are high transition probabilities between adjacent grids,
the convergence time is much smaller. For example, with
aggressive movement, the system reaches 85% coverage after
200 minutes, while lazy movement has yet to reach this ratio
after 1000 minutes. We can also see from Fig. 11, that the
coverage ratio with static sensors only is only around 70%.

We consider the effect of finer partitioning of the subfields.
From Fig. 12, we see that finer partition improves the conver-
gence time with both aggressive and lazy movements.

These experiments clearly show that the walls and semi-
walls in the field would remarkably affect the convergence
of the system, and our allocation algorithms for the mobile
sensors can effectively solve this problem.

C. Aggressive Movement in Event Detection

While finer partitioning makes the convergence time of lazy
movement close to that of aggressive movement, we argue that
aggressive movement can be much more effective than lazy
movement in abnormal event detection.

We randomly generated abnormal events in the sensor field.
In Fig. 13, we show the time needed to detect all these
events for three strategies, namely, aggressive movement, lazy
movement and without mobile sensors. Not surprisingly, the
more abnormal events there are, the longer it takes to find all
of them. We see that with aggressive movement, the detection
time is not only shorter than the other two, but also increases
more slowly when the number of abnormal events increases.
The gain obtained from aggressive movement compared to
lazy movement is around 5% to 15%. Notice that this is
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achieved neither by increasing the number of the mobile
sensors nor by increasing their physical speeds, but simply
by improving the transition probabilities between the grids.
Finally, note that the detection time of using static sensors
only is remarkably longer than the other two. In fact, in some
tests, the events can never be fully detected if the grids has
no any static sensor; we set an expiration time of 20 in such
cases, which explains the high average detection time.

To further understand the contributions from static and
mobile sensors, we show in Fig. 14 the ratio of the abnormal
events detected by different types of sensors, namely, static,
mobile, or both. We see that the static sensors are still the main
source in coverage, detecting 55% to 60% of the abnormal
events alone. This is not surprising consider the sheer number
of the static sensors. The mobile sensors detect around 20%
and for the other 20% cases, static and mobile sensors observe
the abnormal events simultaneously. Again, this shows that
a small number of mobile sensors can serve as an effective
methods for field coverage. Fig. 14 (a) and (b) demonstrate
the scenario where the mobile sensors adopt lazy movement
and aggressive movement strategies. We can also see that, if
aggressive movement is adopted, the mobile sensors become
more effective in detecting abnormal events.

VIII. CONCLUSION

In this paper, we proposed a hybrid sensor network archi-
tecture, which consists of both static and mobile sensors for
field coverage. We offered an optimal algorithm for calculating
the coverage contributions, which fully explores the potentials
of the mobile sensors and maximize the network lifetime. We
further presented a random walk model for the mobile sensors.
The model is low-overhead and fully distributed. Its param-
eters can be fine-tuned with different moving frequencies.
As such, our model is general enough to match the moving
capability of various mobile sensors and the demands from a
broad spectrum of applications. We studied various extensions
under this framework, such as the wall effect and in-network
collaborations to further improves system performance.
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