
Efficient Algorithms For Optimizing
Policy-Constrained Routing

Andrew R. Curtis
curtisa@cs.colostate.edu

Ross M. McConnell
rmm@cs.colostate.edu

Dan Massey
massey@cs.colostate.edu

Abstract— Routing policies play an essential role in how
traffic is forwarded across the Internet. The network would
not be commercially viable without these routing policies, but
policies also introduce inefficiencies and fail to fully exploit
the underlying network topology. Our work assumes routes are
selected according to some policy such as a valley-free routing
policy. However, we apply policy at an aggregate traffic level
and don’t require individual packets to follow paths that match
the policy. Our approach never reduces, and usually increases,
the connectivity and capacity of the network, and does not
infringe on the underlying motivations that led to the routing
policy. By adopting this approach, we also provide polynomial
algorithms for otherwise NP-hard problems, including finding
maximum policy-observing routing capacity between two sets of
AS’s, minimumizing cuts separating all policy-observing paths
between two sets of AS’s, and maximumizing sets of edge- or
vertex-disjoint policy-observing paths.

I. INTRODUCTION

In today’s Internet, routes are selected based on a combina-
tion of network topology and routing policies. The network
topology is a function of the physical connections and a
number of studies have attempted to provide accurate models
or estimations of the Internet topology. Given the network
topology, one can answer basic graph theoretic problems such
as what is the shortest path between a source and destination
or how many disjoint paths exist between a given source
and destination. But the topology is only part of the story.
The set of possible paths between a source and destination
depends on both the network topology and the routing polices
at nodes along these paths. Some paths that exists in the
topology may be disallowed due to routing polices. To identify
the potential routes between a given source and destination,
one must consider both the network topology and the routing
policies used in the network.

As a simple example of routing policy, suppose Colorado
State University has purchased Internet service from AT&T
and Sprint. In the resulting network topology, there is a link
connecting Colorado State to AT&T and a link connecting
to Colorado State to Sprint. The path (AT&T, Colorado State,
Sprint) exists in the topology and could theoretically be used to
forward a packet from an AT&T customer to a Sprint customer.
However, routing policy prevents an AT&T customer from
using Colorado State’s network to reach a Sprint customer.
Even if the Colorado State network had sufficient resources to
serve as an intermediate link between AT&T and Sprint, there
is no economic incentive for Colorado State to provide this
service. In fact, Colorado State purchased connectivity from

AT&T and Sprint. AT&T cannot use its customer Colorado
State as a transit network for other traffic. This simple ex-
ample illustrates how policies can impact route selection. A
comprehensive examination of Internet routing policies can be
found in [Gao00]

Routing policies are an essential component of the Internet,
but routing policies can also lead to both practical and theo-
retical limitations. In this paper, we develop new theoretical
results about the impacts of policy on the vulnerability of a
network to failure, the capacity and efficiency of a network,
the efficiency of optimal routing algorithms. We extend the
discouraging results of [EHPV05] to a broader class of opti-
mization problems. Moreover, we show that the introduction
of policy can lead to solutions that fail to be pareto-optimal,
which is considered highly undesirable in economic theory, as
it means that the costs for some actors can be reduced without
increasing the cost for any of the actors, reflecting a needless
expenditure of resources that is devoid of benefit for anyone.
These results are not encouraging and would seem to suggest
that routing polices have considerable practical and theoretical
drawbacks.

However, our main result is to show that if a trivial change
is made not to the policies themselves, but in minor details
about the way they are executed, these negative impacts can
be made to vanish. The key change is to enforce policies at
an aggregate level rather than on a individual packet basis.
Our work suggests that individual packets should be allowed
to deviate from the routing policy. By allowing a packet
to deviate from the routing policy, an individual node may
be required to perform processing that would not have been
necessary under the routing policy and a link may carry traffic
that would not have been allowed under the routing policy. But
the node or link is compensated for this cost by having some
other packet deviate from the routing policy. Overall, no node
or link is worse off than it would have been under the policy,
but some nodes and links gain and the network as a whole is
better off.

Our primary result is to demonstrate the power of such
an approach and motivate work on routing protocols that
follow what we call a currency-level approach to routing
policies. Section II begin by formally introducing the concepts
of routing policies and policy constrained network routing.
Section III then shows the limitations of enforcing routing
policies on a packet level basis. Section IV then introduces
our currency-level approach to enforcing routing policies and



shows the how the limitations of packet-level approaches are
reduced.

II. POLICY CONSTRAINED NETWORK ROUTING

We begin this section by formally defining what is meant by
a routing policy and then formally define a network routing.
Our work is motivated by routing policies that are used in
today’s Internet, but we also seek a model that is general
enough to include a wide variety of routing policies. In
particular, future Internet designs or other large-scale networks
may devise policies unlike those in the current network and
we would like our results to hold under a very broad class of
potential routing policies. Toward this end, we first introduce
the abstract notion of a routing policy and then show how
this definition can be used to capture current Internet routing
policy models and then formally define a network routing

A. Routing Policies

Let G = (V,E) denote a network topology where V
represents the nodes and E represents links between the
nodes. For example, the nodes in V may represent routers or
may represent larger entities such as an Internet Autonomous
System. It does not matter how the topology was derived and
we do not assume that any node or any central authority knows
the full topology. The routing policy at node x ∈ V is defined
as follows:

Definition 1: A routing policy at node x is a set of pairs
{(E1, E

′
1), (E2, E

′
2), . . . , (Ek, E′

k)}, where {E1, E2, ..., Ek}
is a partition of incoming edges into x, and where a packet
coming into x on an edge Ei can be forwarded through any
edge in E′

i. The sets {E′
1, E

′
2, ..., E

′
k} are distinct but need not

be disjoint, and some E′
i can be empty, meaning that x cannot

forward packets coming in on an edge in Ei.
This general model is intended to cover a wide variety

of potential polices and explictly allows different policies at
different nodes. For example, node x may represents an AS
and our model allows each AS to independently selects its own
routing policy. To see how this model applies in the Internet,
we show how the model can be used to create a valley-free
routing policy.

In the Internet, routing policies often reflect customer-
provider relationships between Autonomous Systems. That is,
given two ASes which are connected by a link, one AS is a
customer of the other AS which must be the provider. In the
valley-free model, a packet can never go from a provider to a
customer and then back to a provider again. Such a “dip” in the
path is called a valley. Erlebach et al. [EHPV05] formalize this
customer-provider relationship by modeling the AS graph as a
directed graph where edges “point upwards” from customers
to providers, that is, if (x, y) is an edge in the graph G, then x
is a customer of y, and we do not allow the anti-parrallel edge
(y, x) to also be an edge in G. A path in this model is said to
be valley free if it leads up from customers to providers and
then decreases from providers to customers.

To capture this in our model, each vertex has two policies:
one for packets coming from customers and siblings, and one

for packets coming from providers and peers. More formally,
the two policies at each node are (E1, E

′
1), and (E2, E

′
2),

where E1 is the set of edges coming from providers and E′
1 is

the set of edges that can be used to forward packets that arrived
from a provider. Similarly, E2 is the set of edges coming from
customers, and E′

2 is the set of edges that can be used to
forward packets that arrived from customers. Enforcing these
constraints results in a valley-free model, where we can view
the restrictions placed on the packets flowing to each outgoing
edge of a node as policy.

B. Network Routings

In this section, we formally define the concept of policy
constrained network routing and routing policies.

Definition 2: Let us initially define a the parameters to a
policy-constrained routing problem, as follows. The inputs
are the following:

1) A network, which is an undirected graph representing
the communication links;

2) A destination vertex t, a set s1, s2, ..., sp of source
vertices generating packets destined for t, and integer
rates i1, i2, ..., ip reflecting the rates at which these
packets are generated;

3) A (possibly unbounded) capacity on each edge, indicat-
ing the maximum rate at which packets can be routed
through the edge or the vertex (useful for solving edge-
disjoint path problems);

4) A cost per packet on each vertex, reflecting the cost of
routing a packet through that vertex;

5) A set of policies at each vertex v, subject to the condition
that no two policies at v share an incoming edge.

And finally, the following gives the definition of the problem
we would like to solve on policy-constrained routings.

Definition 3: The following are defined in terms of the
inputs to the policy-constrained routing problem.

• A packet routing is the set of paths, each from some
source si, to t, where the path is labeled with the rate at
which packets follow that path. There can be more than
one path from a single path si to t. The sum of rate labels
of the paths is the rate of flow from {s1, s2, ..., sp} to t
(no packets are unaccounted for).

• A routing path is feasible if it violates no edge capacity
and no packet’s path violates a policy at any node that it
traverses.

III. LIMITATIONS PACKET-LEVEL ROUTING POLICIES

In the above model, the path taken by a packet to does
not violate the routing policy at any node. We will refer
to this conventional enforcement of policies as packet-level
enforcement. In this section we show that requiring every
packet to obey the policy results in a number of negative
consequences. Section III-A shows that current routings in the
Internet are not optimal when viewed under economic theory
and Section III-B then explores the computational properties
of optimization problems. The packet level constraints result
in both practical and theoretical limitations.



b
a

d

t
c

s'

s

b
a

d

t
c

s'
a b

s

2 2

Fig. 1. In both figures, lower-level nodes are customers of higher-level nodes,
ie. s is a customer of b and c. And, all edges have capacity 1 except for ac
which has capacity 2. The first figure (a) depicts a valley-free flow from
sources s and s′ to a destination node t. (An edge that goes from a lower to
a higher node in the figure represents an edge from a customer to a provider.)
The second figure (b) illustrates an improvement obtainable if a and c are
allowed to trade identities of packets that they handle through swapping of
packet “envelopes.”

A. Policy Constrained Routings are Not Pareto-Optimal

Routing policies are typically motivated by economic con-
cerns, but the results often fail to be pareto-optimal. A
set of transactions among a set of actors that satisfies a
set of economic constraints is pareto-optimal if every other
feasible transaction that is preferred by any actor is strictly
less preferable to at least one other actor. In other words, the
transactions are pareto optimal if no actor can be made better
off without making some other actor worse off. Transactions
that are not pareto-optimal are considered highly undesirable
in economic theory: they can be modified to increase the total
benefit of the transaction to the actors at no additional cost to
any of them, and therefore waste resources.

Theorem 1: It can be the case that no feasible packet
routing is pareto-optimal.

Proof: An example for the case when the policy is the
valley-free constraint at all nodes is depicted in Figure 1.
Suppose one packet per time unit must be routed from s and
s′ to t and all edges have a capacity of one, except for ac,
which has a capacity of two. All solutions that enforce the
policy at the individual packet level must route one unit of
flow through each of b and d and two units through each of a
and c. The solution depicted in the (b), which routes one unit
of flow through each of these four nodes without increasing
the flow through any node, is pareto-optimal however.

Our next result shows that pareto-optimal routing can be
found in polynomial time. Despite this, the packet constraints
prevent such a routing from being valid. In Section IV, we
show how to gain pareto-optimal routings by relaxing the
constraint that policy be enforced on each individual packet.

Theorem 2: Given any set of policies and any feasible
routing, a pareto-optimization that minimizes the sum of flow
costs at the vertices can be found in polynomial time.

Proof: The proof is by reduction to the min-cost flow
problem [Chv83], where each node v is replaced by two nodes,
v′, which takes becomes the head of the edges into v, v′′,
which becomes the tail of all edges out of v, and an edge
(v′, v′′). The capacity of edge (v′, v′′) is the flow through v
given by the routing, and the capacity of each edge is the
flow through the edge given by the routing. This construction
is shown in Figure 2. The cost of edge (v′, v′′) is set to the

v

a

b

c

d

x

y

z

v'

a

b

c

d

x

y

z

v''

a b

Fig. 2. The construction of Theorem 2. Figure (a) shows the original node
v, and (b) shows v split into two nodes so that we can constrain the amount
of flow through it. The edge (v′, v′′) would be labeled with the amount of
flow through v.

per-unit cost of flow through v, and the capacities and costs
of edges of the form (v′′, w′) (edges in the original graph)
are set to infinity and 0, respectively. The capacity constraint
on edge (v′, v′′) ensures that no more flow is routed through
a node v than in the original solution. The fact that the sum
of costs of flows through the nodes is minimized means that
no flow can be reduced through any node without violating a
capacity constraint, that is, the constraint that more flow be
routed through some node than in the original routing.

The limitations of applying policy on a packet level basis
creates suboptimal scenarios such as the ones described above.
In the next section, we consider how the packet level policies
impact theoretical results and optimization problems.

B. Optimization Problems and Policy

Two paths in a graph are edge-disjoint if they have no edges
in common, and vertex-disjoint if they have no vertices, except
their endpoints, in common. Vertex-disjoint paths are edge-
disjoint, but the converse is not necessarily true. The rate at
which packets from a source node to a destination node flow
on different links is known as a flow. The capacity of a link
or node is the maximum rate at which it can route packets. If
s and t are nodes of a network, an s-t cut is a partition of
the nodes into a set S containing s and a set T containing t.
The capacity of the cut is the sum of capacities of the edges
from S to T .

A common measure of the robustness of communication
from s to t in a networks is a minimum-cardinality edge
cut, that is, a minimum-sized set of edges that must fail (or
be sabotaged) in order to disconnect all paths from s to t. What
is of interest in studying routing and robustness and routing
topology of the Internet, however, is the number of edges that
must be removed in order to cut all policy-satisfying paths
from s to t, since the policies at the nodes dictate that this
will render t inaccessible from s.

A related problem, which occurs in many applications is one
where a high premium is placed on the timely arrival at t of a
message from s. The strategy of s is to decide in advance on a
set of edge disjoint paths to use in sending messages from s to
t. The paths are chosen to be edge-disjoint so that no one edge
failure can disrupt any two paths; s seeks a maximum set of
such paths. In the absence of policy constraints, a maximum



set of edge-disjoint paths from s to t can be found efficiently
using network flow algorithms.

Clearly, the number of paths in a maximum set P of edge-
disjoint paths from s to t is a lower bound on the size of a
minimum cut, since a minimum requirement of any s-t cut,
which must cut all paths from s to t, is that it must cut every
path in P . Since the paths in P are edge-disjoint, an s-t cut
must contain at least one edge from each member of P .

A famous theorem in graph theory, known as Menger’s
theorem [Wes01] is that the number of edge in a min s-t
cut is equal to the maximum number of edge-disjoint paths
from s to t. According to this theorem, if there are no policy
constraints, s may commit to a set of stable edge-disjoint paths
in advance, and an intruder who knows these paths is not
helped by this knowledge in deciding on a set of links to
undermine in order to halt communication from s to t; whether
or not s is committed to a particular maximum set of edge-
disjoint paths, the intruder must undermine a set of edges that
cuts all s-t paths in order to cut this set of paths.

Erlebach et al. investigate several of the these classic
problems in the valley-free path model, and find they are
no longer valid in the valley-free model. Their results show
that valley-free policy has a striking effect on the robustness
and connectivity of the internet and are summarized as the
following [EHPV05]:

1) Menger’s theorems no longer apply when policy con-
straints are introduced. In particular, under the valley-
free model, the maximum number of edge or (vertex)
disjoint paths from s to t can be as small as half the
minimum number of edges (vertices) whose removal
disconnects all feasible s-t paths.

2) Finding the minimum number of edges (vertices) whose
removal disconnects all feasible paths from s to t is
NP-hard, as is finding the maximum number of edge-
(vertex-) disjoint paths from s to t.

3) There exists an efficient approximation algorithm that
finds a set of edge disjoint feasible paths whose number
is at least half the maximum number, and an approxima-
tion algorithm that finds a set of edges whose removal
disconnects all feasible paths that is at most twice as
large as the minimum number required.

4) Unless P = NP, no better worst-case approximation can
be found in polynomial time.

While Erlebach et al. showed that the robustness and
connectivity of the internet is negatively impacted by policy,
they did not show that policy impairs the network’s ability to
find flows that maximize the utilization of the links between
s and t. We will now extend their results to network flows.

Let a maximum feasible policy s-t flow be a maximum
flow from s to t that respects the network’s packet constraints,
ie. in a valley-free flow all paths in the flow can never contain
a valley. In a network setting, the maximum feasible policy s-
t flow is an upper bound on the amount of traffic that can
flow from s to t if policy is respected. In classical graph
theory, it’s well known that the minimum edge cut is equal

to the maximum flow. This is the celebrated min-cut, max-
flow theorem [Chv83]. We show that the min-cut, max-flow
theorem no longer holds when policy is enforced at the packet
level in Theorem 4. Before showing this, however, we show
that the addition of policy makes it intractable to compute the
maximum feasible policy flow between two nodes, assuming
P 6= NP.

Theorem 3: It is NP-hard to find a maximum feasible policy
s-t flow under the packet model, and this is true in the special
case of valley-free flows.

Proof: Erelebach, et. al. show that it is NP-hard to
find a maximum set of edge-disjoint valley-free paths from
a vertex s to a vertex t in a graph where the customer-
provider and peer-to-peer relationships are marked on the
edges. Therefore, the question of whether there exists a set
of k edge-disjoint valley-free valley free paths on such a
graph is NP-complete. However, this question can be solved
in polynomial time if there exists a polynomial-time algorithm
for the path-constrained routing problem, as follows. Give each
node two policies reflecting the valley-free constraints (one for
customers and siblings and one for providers and peers), assign
a capacity of one to each edge, let s be the only source vertex
and t be the destination vertex, and assign s an output rate of
k. This policy-constrained routing problem is feasible if and
only if the given problem has k edge-disjoint valley-free paths.

The following shows that policy can lower the overall
throughput of a network.

Theorem 4: Given a network with arbitrary edge capacities
and policies at the nodes, the maximum feasible policy s-t
flow under the packet constraints can be strictly smaller than
the minimum-capacity policy cut, and this is true in the special
case of valley-free flows.

Proof: (Sketch) Erelebach, et. al. show that the number of
paths in a maximum set of edge-disjoint paths can be as small
as half the number of edges in a minimum policy edge cut. The
reduction similar to that of Theorem 3: for a network where
the minimum cardinality edge cut is 2k and the maximum
number of disjoint paths is k. Establish a corresponding flow
problem where the edges all have capacity equal to one. A
maximum set consisting of k edge-disjoint paths constitutes a
maximum packet-constrained flow of size k, and a minimum
policy cut constitutes a policy cut of minimum total capacity,
which is 2k.

While our theorem is a theoretical result, we claim that it is
applicable to the real-world Internet. For instance in [GW02],
the degree to which the lengths of routing paths are increased
due to policies, called path inflation, is studied and evidence
is provided that it is significant.

Thus far, we have pointed the finger at policy for all of
our negative results; however, the negative computational and
economic effects we have shown do not arise as a result of
policy. Instead, these effects arise as a result of enforcing
policy at the packet level.

We next propose a new method of policy enforcement that
allows ASes to keep the ability to specify arbitrary policy, but



does not have any of the negative effects we have shown here
that arise when policy is enforced at the packet-level.

IV. CURRENCY-ENFORCEMENT OF POLICY

By packet constraints, we mean the constraints that an
individual packet must obey on a valid path. This definition,
which matches the way policy is currently enforced on the
Internet, implies that each packet has an individual identity. To
alleviate the negative effects of packet-level enforcement, we
remove this notion of packet identity. That is, by the currency
constraints, let us denote the constraints that must be obeyed
when one is allowed to find a solution that obeys the packet
constraints, and then reduce the flow through some nodes
without increasing the flow through any node by ignoring the
identities of individual packets.

As an example of the currency constraints, consider the two
flows shown in Figure 1. Assume that both flows are equal in
size. In Figure 1(a), the nodes a and c route packets between
each other because their policies dictate how each packet from
the previous hop must be routed, ie. in the case of c, its policy
dictates that any packet arriving from s′ must be routed to a if
ct is saturated. Let’s consider what happens under the currency
constraints. Nodes a and c notice1 that they can “cancel” out
flow between them by violating the packet constraints. Both
nodes reduce the flow through them by enforcing policy at a
currency-level rather than at the packet-level. In Figure 1(b),
no node has an increased amount of flow going through it,
but nodes a and c are better off since they each have less flow
going through them.

We can now achieve routings that are pareto-optimal with
respect to the costs are each node. Once again, consider
the example given in Figure 1. It’s clear that the flows in
Figure 1(a) create costs that are not pareto-optimal; however,
under the packet constraints, there is no other way the packets
can be routed (recall that edge ct has capacity 1). As just
discussed, with the currency constraints the flow shown in
Figure 1(b) is now valid. Thus, the currency constraints
allow the routing to become pareto-optimal. Furthermore, this
pareto-optimization was done with only an agreement between
a and c. We claim that, in general, pareto-optimizations under
the currency constraints can be found with only pairwise
agreements between nodes.

In order to prove routing results about the currency con-
straint model, we need to construct a graph that captures
all policy information of the network we are given, the next
section gives this construction.

A. Policy Constraint Graph

For a policy-constrained routing problem, we say its policy
constraint graph is a directed graph where each directed path
in the policy constraint graph is a valid path in the policy-
constrained routing. We’ll now give constructions of the policy
constraint graph in the cases where the edges have unbounded

1For now, we assume that the nodes have a mechanism to detect this
optimization. We discuss this further in Section VI

b1
a1

d1

t1
c1

s'1

s1

b2
a2

d2

t2
c2

s'2

s2

Fig. 3. The unbounded policy constraint graph of the network shown in
Figure 2.

capacities and then for the slightly trickier case when the edges
have bounded capacity.

For now, let’s assume that all edges in the given net-
work have unbounded capacity. Let the policies at x
be {(E1, E

′
1), . . . , (Ekx

, E′
kx
}. Then, in the unbounded

policy-constraint graph, x is split into kx vertices, say
x1, x2, . . . , xkx . Vertex xi then has incoming edges Ei and
outgoing edges E′

i.

As a simple example, Figure 3 shows the unbounded policy
constraint graph of the example network in Figure 1 where
the network follows the valley-free policy model. In Figure 3,
it’s clear that once a path has a provider to customer edge, it
can never go back “up” to a provider.

In order to construct the more general bounded policy
constraint graph, let the capacity of an edge xy be c(xy).
As before, let the policies at x be {(E1, E

′
1), . . . , (Ekx

, E′
kx
},

and let x1, x2, . . . , xkx
be the vertices representing each policy

of x. For each edge xiyj in the unbounded policy constraint
graph, where 1 ≤ i ≤ kx and j is fixed, we need to insert
a “dummy” node that allows us to bound to overall flow
from all xi’s to yj . So, we redirect the edges from each
xi to yj so that they all point to a new node dxy , and we
give them an unbounded capacity. Then, in order to retain
the capacity of xy in the original network, we add the edge
dxyyj with capacity c(dxyyj) = c(xy). This edges limits the
amount of flow that can travel from any xi to yj but does
not specify how the flows should be distributed amongst the
various outgoing policies of x (hence it does away with the
notion of an individual packet identity which is precisely what
we defined the currency constraints as doing).

An example of a bounded constrain graph is shown in Fig-
ure 4. There, each vertex has three policies, so the constraint
graph has three versions of each vertex. Note how xzy is a
path in the original network on in (a), and it is still possible
to get from x to y in the constraint graph shown in (b), but
the path reflects the policies of each node.



x1

x2

x3

y1

y2

y3

z1

z2

z3

dzy

dyz

dxz

dzx
x

z

y

a b

3

5

3

3

5

5

Fig. 4. Incorporating edge capacity constraints into the unbounded policy
constraint graph. In figure (a) are two edges xz and yz of a network with
capacities 3 and 5 respectively. Each vertex has three policies: xz is an output
edge for x’s first two policies; zx is an output edge for z’s first policy; yz is an
output edge for y’s first and third policy; zy is an output edge for z’s second
and third policy. Figure (b) shows how these constraints are modeled in the
bounded constraint graph: Each dummy node duv has one outgoing directed
edge that enforces the capacity constraint of the edge uv in the network. The
directed edges from copies of a node u to a dummy node duv enforce the
policy constraints; there is no such edge from copy ui if uv is not an outgoing
edge for u’s ith policy.

B. Currency-Constrained Routing Results

The following theorems show that the discouraging compu-
tational results of Section III-B about policy disappear when
policy is enforced at the currency-level rather than the packet
level.

Theorem 5: Under the currency constraints, it takes poly-
nomial time to find an s-t flow that is as large as the minimum
s-t policy cut, and the algorithm can be implemented to run in
polynomial time on a distributed model, using only pairwise
agreements between adjacent nodes, where each of the two
parties benefits from the agreement.

Proof: Let a type 1 edge in the bounded policy constraint
construction be one that goes from a dummy vertex node to
a copy of a network node, ie. Figure 4 has four type 1 edges
dxzz2, dzxx3, dyzz2, and dzyy2. And let a type 2 edge be one
that goes from a copy of a network node to a dummy node.
The type 2 edges have unbounded capacities, so a minimum-
capacity cut consists exclusively of type 1 edges.

If a set of edges go from a set of copies x1, x2, ..., xk of a
node x to dummy vertex, let us denote the dummy vertex by
x′. Let the image of a type 1 edge (x′, yj) in the network be
the link xy that gave rise to it in the construction. Note that
(x′, yj) and (y′, xh) both map to the same image for some
1 ≤ h,≤ k, where k is the maximum number of policies.
Because j is the unique policy at y for packets coming into y
on xy and h is the unique policy at x for packets coming into
x on xy, these are the only two edges that are inverse images
of xy.

Let si denote the copy of s that corresponds to the policy
for packets originating at s in the network. A path from s to
t is a policy-respecting path if and only if it is the image of
type 1 edges on a path from si to a copy tj in the constraint

graph. By a min-capacity s-t path in the constraint graph we
denote a minimum edge cut that severs all such paths in the
constraint graph. Suppose that this has a total capacity of c.
The image of this cut in the constraint graph has capacity at
least c/2, since each edge of the image is the image of at most
two edges of the cut. This cuts the images of all paths from
si to t in the constraint graph, so it cuts all policy paths in
the network.

By the max-flow min-cut theorem, there is a flow from si

to copies of t of magnitude c. The image of this flow is a flow
in the network where a link xy of capacity ci can have a flow
of at most 2ci on it: at most ci units from x to y and at most
ci units from y to x. The currency model allows the minimum
of these two flows to be canceled by an equal portion of the
flow in the other direction, yielding a flow of at most c on
the edge. Since this resolution can be performed at all edges
of the network where the flow exceeds the capacity, the final
flow satisfies the capacity.

Each resolution of a capacity violation is an optimization
permitted under the currency model, but not under the packet
model. Moreover, each resolution requires an agreement be-
tween two adjacent nodes x and y, and the agreement reduces
the routing costs for both x and y.

Theorem 6: It takes polynomial time to find a set of edge
disjoint paths under the currency constraints that is as large as
the number of edges in a minimum policy edge cut, and the
algorithm can be implemented on a distributed model using
only pairwise agreements between adjacent nodes, where each
of the two parties benefits from the agreement.

Proof: (Sketch) The proof is by reduction to Theorem 5,
by assigning unit edge capacities to the links of the network.

V. NEW ALGORITHMS FOR PACKET-CONSTRAINED
OPTIMIZATION PROBLEMS

In this section, we once again consider optimization prob-
lems under the packet constraints. Now armed with our
powerful policy constraint graph construction, we are able to
find an efficient algorithm to find shortest policy-observing
paths in Theorem 7. And finally in Lemma 1, we use our
construction to find a k-approximation algorithm for the edge-
disjoint policy paths, where k is the number of policies at each
node.

Theorem 7: Given a network with n nodes and m links and
at most k arbitrary policies at each node of the form given in
Definition 2, point 5 at each node, it takes O(k(n + m)) time
to find the shortest policy-observing paths from every node to
a given destination node.

Proof: The construction of the unbounded constraint
graph creates at most k copies of each vertex, so the number
of vertices is at most kn. The key to bounding the number of
edges is the fact that the incoming edges for different policies
at a node v are disjoint. Thus, for any edge uv, there is at
most one copy vj of v that receives incoming directed edges
from copies of u. An edge uv of the network maps to at most



k edges of the form (ui, vj) and at most k edges of the form
(vh, ul), for a total of at most 2k edges.

Let si be the copy of s in the graph that corresponds to the
policy for packets originating at s. Let the image of an edge
(xi, yj) in the network be link xy. A path in the network is
a policy path if and only if it is the image of the sequence
of edges in a path from si to a copy of t. Run a breadth-first
search from si. For each node x, find the copy xi of x that has
a minimum distance label, and the parent yj of this node in
the breadth-first search tree; let the parent of x in the network
be node the node y that is the image of yj . The parent relation
is a tree rooted at s such that the unique tree path from s to
any node x is a shortest policy path.

A somewhat tighter bound is O(k1n+k2m), where k1 is the
sum, over all vertices of the number of policies at the vertex,
and k2 is the sum, over all edges, of the number of policies
at the endpoints of the edge.

Lemma 1: There is a k-approximation algorithm for finding
edge-disjoint policy paths under the packet constraints, given
a network with at most k policies at each node.

Proof: (Sketch) Let the image in the network of a vertex
xi in the unbounded policy graph be the node x that gave
rise to it in the construction. By an argument analogous to
the one in the proof of Theorem 7, a set of vertices is an s-t
policy cut in the network if it cuts all paths from the copy si

of s that handles packets originating at s from all copies of t.
The image such a set in the network is at least 1/k times as
large, since each node of the network is the image of at most
k vertices of the cut.

The result of Erlebach et. al. is therefore a special case of
our Lemma, reflecting the fact that valley-free consists of two
policies at each node, one for providers and peers, and one for
customers and siblings. Erlebach et. al. also show that, unless
P = NP, no better approximation bound is possible, but we do
not yet know whether this result generalizes to Lemma 1.

VI. DISCUSSION

The results presented here show we can gain a great deal
by enforcing policies on a currency-level rather than on a
packet level. This suggests a new direction in developing
routing algorithms. A traditional routing algorithm such as
BGP computes networks routes according some routing policy.
Once the routes have been computed, a second phase monitors
traffic and looks for optimizations where packets may be
forwarded on paths that do not comply with the policy. These
optimizations can be performed on a localized basis and need
not require cooperation of all nodes in the network. Nodes
which fail to cooperate continue to use the paths computed
by the traditional protocol such as BGP. Nodes which choose
to cooperate can gain by agreeing to diverting packets onto
non-policy compliment routes in return for similar actions by
other nodes in the network.

One possible protocol for taking advantage of the currency
relaxation involves advertising of paths. Senders send groups
of k packets accompanied by a small envelope that indicates
the paths that the packets are expected to follow. One may

set k to be large to make the cost of forwarding envelopes
trivial compared to the cost of forwarding packets. The actors
agree that packets cannot proceed without an accompanying
envelope, but that it is acceptable to swap the contents of
two envelopes that are bound for the same destination. One
consequence is that, after optimization, some envelopes may
travel empty for some portions of their path.

Work remains to explore practical implementations of these
protocols, as well as to find distributed algorithms that make
optimal use of them. One immediate concern is packet looping.
A traditional routing protocol such as BGP computes the pol-
icy compliant routes and prevents the formation of long lasting
routing loops. But our approach allows a packet to deviate
from the policy compliant route and thus loop freedom is no
longer guaranteed. We first argue that any loops will not cause
problems at the aggregate traffic level. Since the improvement
is an optimization of a flow that is indistinguishable from one
that observes the policy at the level of the packets, there is no
danger that cycling of packets will increase the traffic in the
network.

But this guarantee is of little comfort to a packet that may
become permanently stuck in loop. One approach under the
currency model is to take advantage of nondeterminism in
deciding which of two indistinguishable packets at a node to
route to two distinct next hops. This makes the probability of
a packet cycling k times vanish exponentially as k increases.
A second more deterministic approach is keep a count of how
many times a packet is diverted. The sender sets an initial value
in a DivertsLeft field and this field specifies how many times
the packet may be diverted from onto a non-policy compliant
route. DivertsLeft is decremented each time the packet is
forwarded out an interface that does not match the interface
of the policy compliant route. When DivertsLeft reaches
zero, the packet can no longer be diverted from the policy
compliant route. Since the policy compliant route is assumed
to be loop free, the packet is now forward along this loop free
path.

VII. CONCLUSIONS AND FUTURE WORK

This paper considered the impact of routing policy and
showed how enforcing routing policies on a packet level results
in several practical and theoretical limitations. The problem
however is not with the routing policies, but rather with the
policies are enforced. The problems occur when policies are
enforced on each packet. By instead taking a currency level
approach to enforcement, one can still meet the broad goals of
the routing and eliminate the problems. These results suggest
that future work on routing protocols should consider adopting
a currency approach where individual packets can violate the
routing policy as long as the overall system still meets the
policy.

REFERENCES

[Chv83] V. Chvatal. Linear Programming. W. H. Freeman, New York,
1983.



[EHPV05] T. Erlebach, A. Hall, A. Panconesi, and D. Vukadinovic. Cuts
and disjoint paths in the valley-free path model of internet bgp
routing. Lecture Notes in Computer Science, 3405:49–62, 2005.

[Gao00] L. Gao. On inferring autonomous system relationships in the
internet, 2000.

[GW02] L. Gao and F. Wang. The extent of as path inflation by routing
policies. IEEE Global Internet Symposium, 2002.

[Tar83] R. E. Tarjan. Data Structures and Network Algorithms. Society
for Industrial and Applied Math., Philadelphia, 1983.

[Wes01] D. B. West. Introduction to Graph Theory. Prentice Hall,
Englewood Cliffs, New Jersey, 2001.


