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Abstract—It is well known that for ergodic channel processes
the Generalized Max-Weight Matching (GMWM) scheduling
policy stabilizes the network for any supportable arrival rate
vector within the network capacity region. This policy, however,
often requires the solution of an NP-hard optimization problem.
This has motivated many researchers to develop sub-optimal
algorithms that approximate the GMWM policy in selecting
schedule vectors. One implicit assumption commonly sharedin
this context is that during the algorithm runtime, the channel
states remain effectively unchanged. This assumption may not
hold as the time needed to select near-optimal schedule vectors
usually increases quickly with the network size. In this paper, we
incorporate channel variations and the time-efficiency of sub-
optimal algorithms into the scheduler design, to dynamically
tune the algorithm runtime considering the tradeoff between
algorithm efficiency and its robustness to changing channel
states. Specifically, we propose a Dynamic Control Policy (DCP)
that operates on top of a given sub-optimal algorithm, and
dynamically but in a large time-scale adjusts the time givento the
algorithm according to queue backlog and channel correlations.
This policy does not require knowledge of the structure of the
given sub-optimal algorithm, and with low overhead can be
implemented in a distributed manner. Using a novel Lyapunov
analysis, we characterize the throughput stability regioninduced
by DCP and show that our characterization can be tight. We
also show that the throughput stability region of DCP is at least
as large as that of any other static policy. Finally, we provide
two case studies to gain further intuition into the performance
of DCP.

Index Terms—Throughput stability region, dynamic tuning,
channel variation, approximate GMWM time-efficiency

I. I NTRODUCTION

The problem of scheduling of wireless networks has been
extensively investigated in the literature. A milestone inthis
context is the seminal work by Tassiulas and Ephremides [2],
where the authors characterized thenetwork-layer capacity
region of constrained queueing systems, including wireless
networks, and designed athroughput-optimalscheduling pol-
icy, commonly referred to as the GMWM scheduling. In this
context, capacity region by definition is the largest region
that can be stably supported using any policy, including those
with the knowledge of future arrivals and channel states. A
throughout-optimal policy is a policy that stabilizes the net-
work for any input rate that is within the capacity region and,
thus, has the largest stable throughput region. In general [3][4],
the GMWM scheduling should maximize the sum of backlog-
rate products at each timeslot given channel states, which
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can be considered as a GMWM problem. This problem has
been shown to be, in general, complex and NP-hard [5][4][6].
Even in those cases where the optimization problem can be
solved polynomially, distributed implementation becomesa
major obstacle. These issues, naturally, motivated researchers
to study and develop suboptimal centralized or distributed
algorithms that can stabilize a fraction of the network-layer
capacity region [7][5][6][8][9].

One implicit but major assumption in this context is that
the time required to find an appropriate scheduling vector,
search-time, is negligible compared to the length of a timeslot,
or otherwise, during this search-time, channel states remain
effectively unchanged. Since many algorithms take polynomial
time with the number of users to output a solution [5][6][9],we
see that this assumption may not hold in practice for networks
with large number of users. In particular, it is possible that
once an optimal solution corresponding to a particular channel
state is found, due to channel variations, it becomes outdated
to the point of being intolerably far away from optimality.

Intuitively, for many suboptimal algorithms, the solution
found becomes a better and moreefficient estimate of the
optimal solution as the number of iterations increases or more
time is given to the algorithm, e.g., see PTAS in [6]. This
inspires us to consider thistime-efficiencycorrespondence as
a classifying tool for sub-optimal algorithms. As mentioned
earlier, however, the solution found might become outdated
due to channel variations. This poses a challenging problem
as how the search-time given to sub-optimal algorithms should
be adjusted to ensure an efficient scheduling with a large stable
throughput region when channels states are time-varying.

Our work in this paper addresses the above challenge by
joint consideration of channel correlation and time-efficiency
of sub-optimal algorithms. In particular, we propose a dynamic
control policy (DCP) that operates on top of a given sub-
optimal algorithmA, where the algorithm is assumed to
provide an approximate solution to the GMWM problem. Our
proposed policy dynamically tunes the length of scheduling
frames as the search-time given to the algorithmA so as to
maximize the time average of backlog-rate product, improving
the throughput stability region. This policy does not require the
knowledge of input rates or the structure of the algorithmA,
works with a general class of sub-optimal algorithms, and with
low-overhead can be implemented in a distributed manner. We
analyze the performance of DCP in terms of its associated
throughput stability region, and prove that this policy enables
the network to support all input rates that are withinθ∞-scaled
version of the capacity region. The scaling factorθ∞ is a
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function of the interference model, algorithmA, and channel
correlation, and we prove that in general this factor can be
tight. We also show that the throughput stability region of
DCP is at least as large as the one for any other static scheme
that uses a fixed frame-length, or search-time, for scheduling.

As far as we are aware, our study is the first that jointly
incorporates the time-efficiency of sub-optimal algorithms and
channel variations into the scheduler design and stability
region analysis. One distinguishing feature of our work, apart
form its practical implications, is the use of a Lyapunov
drift analysis that is based on arandom number of steps.
Therefore, to establish stability results, we use a method
recently developed for Markov chains [10], and modify it such
that it is also applicable to our network model.

The rest of this paper is organized as follows. We re-
view the related work in the next section. Network model
including details of arrival and channel processes is presented
in Section III. Structures of the sub-optimal algorithms and
DCP policy are discussed in Section IV. We then provide
performance analysis and the related discussion in SectionV,
followed by two case studies in Section VI. Finally, we
conclude the paper in Section VII.

II. RELATED WORK

Previous work on throughput-optimal scheduling includes
the studies in [2][11][3][12]. In particular, in [2], Tassiulas
and Ephremides characterized the throughput capacity region
for multi-hop wireless networks, and developed the GMWM
scheduling as a throughput-optimal scheduling policy. This
result has been further extended to general network mod-
els with ergodic channel and arrival processes [3]. Due to
its applicability to general multi-hop networks, the GMWM
scheduling has been employed, either directly or in a modified
form, as a key component in different setups and many cross-
layer designs. Examples include control of cooperative relay
networks [12], rate control [13], energy efficiency [14][15],
and congestion control [16][17]. This scheduling policy has
also inspired pricing strategies maximizing social welfare [18],
and fair resource allocation [16].

Another example of the throughput optimal control is the
exponential rule proposed in [11]. In addition to the exponen-
tial rule scheduling, there are other approaches that use queue
backlog, either explicitly or implicitly, for scheduling [19]
[20][21]. For instance, in [19], active queue management is
used that implements CSMA protocol with backlog dependent
transmission probabilities. It is shown that such an approach
can implement a distributed fair buffer. In one other work [20],
an adaptive CSMA algorithm is proposed that iteratively adjust
nodes’ aggressiveness based on nodes’ (simulated) queue
backlog.

The GMWM scheduling despite its optimality, in every
timeslot, requires the solution of the GMWM problem, which
can be, in general, NP-hard and Non-Approximable [6]. Thus,
many studies has focused on developing sub-optimal constant
factor approximations to the GMWM scheduling. One interest-
ing study addressing the complexity issue is the work in [22],
where sub-optimal algorithms are modeled as randomized
algorithms, and it is shown that throughput-optimality can

be achieved with linear complexity. In a more recent work
[23], the authors propose distributed schemes to implementa
randomized policy similar to the one in [22] that can stabilize
the entire capacity region. These results, however, assume
non-time-varying channels. Other recent studies in [4][24]
generalize the approach in [22] to time-varying networks, and
prove its throughput-optimality. This optimality, as expected,
comes at the price of requiring excessively large amount of
other valuable resources in the network, which in this case
is memory storage. Specifically, the memory requirement in
[4][24] increases exponentially with the number of users,
making the generalized approach hardly amenable to practical
implementation in large networks.

Another example of sub-optimal approximation is the work
in [5], where the authors assume that the controller can
use only an imperfect scheduling component, and as an
example they use maximal matching to design a distributed
scheduling that is within a constant factor of optimality. This
scheduling algorithm under the name ofMaximal Matching
(MM) scheduling and its variants have been widely studied
in the literature [7][6][25][9][26][27]. In [7][5], it is shown
that under simple interference models, MM scheduling can
achieve a throughput (or stability region) that is at least
half of the throughput achievable by a throughput-optimal
algorithm (or the capacity region). Extended versions of these
results for more general interference models are presented
in [6][9], where in [9] randomized distributed algorithms are
proposed for implementing MM scheduling, being a constant
factor away from the optimality. This result has been further
strengthened recently [28] stating that the worst-case efficiency
ratio of Greedy Maximal Matching scheduling in geometric
network graphs under theκ-hop interference model is between
1/6 and1/3. All of the mentioned proposals so far either do
not consider channel variations, or assume the search-timeis
relatively small compared to the length of a timeslot.

The closest work to ours in this paper is [8], where based on
the linear-complexity algorithm in [22], the impact of channel
memory on the stability region of a general class of sub-
optimal algorithms is studied. Despite its consideration for
channel variations, this work still does not model the search-
time, and implicitly assumes it is negligible.

In this paper, we consider the problem of scheduling from
a new perspective. We assume a sub-optimal algorithmA is
given that can approximate the solution of the GMWM prob-
lem, and whose efficiency naturally improves as the search-
time increases. We then devise a dynamic control policy which
tunes the search-time, as the length of scheduling frames,
according to queue backlog levels in the network, and also
based on channel correlations. As far as we are aware, our
study is the first that explicitly models the time-efficiency
of sub-optimal approaches, and uses this concept along with
channel correlation in the scheduler design.

III. N ETWORK MODEL

We consider a wireless network withN one-hop source-
destination pairs, where each pair represents a data flow1.

1 Extension to multi-hop flows is possible using the methods in[2][3].
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Associated with each data flow, we consider a separate queue,
maintained at the source of the flow, that holds packets to
be transmitted over a wireless link. Examples of this type of
network include downlink or uplink of a cellular or a mesh
network.

A. Queueing

We assume the system is time-slotted, and channels hold
their state during a timeslot but may change from one timeslot
to another. Lets(t) be the matrix of all channels states from
any given nodei to any other nodej in the network at time
t. For instance, when the network is the downlink or uplink
of a cellular network,s(t) will reduce to the vector of user-
base-station channel states, i.e.,s(t) = (s1(t), . . . , sN (t)),
wheresi(t) is the state of theith link (corresponding to the
ith data flow) at timet. Throughout the chapter, we use bold
face to denote vectors or matrices. LetS represent the set of
all possible channel state matrices with finite cardinality|S|.
Let Di(t) denote the rate over theith link corresponding to
the ith data flow at timet, and D(t) be the corresponding
vector of rates, i.e.,D(t) = (D1(t), . . . , DN(t)). In addition,
let Ii(t) represent the amount of resource used by theith
link at time t, and I(t) be the corresponding vector, i.e.,
I(t) = (I1(t), · · · , IN (t)). The vector I(t) contains both
scheduling and resource usage information, and hereafter,we
refer to it simply as the schedule vector. LetI denote the set
containing all possible schedule vectors, with finite cardinality
|I|.

Note that the exact specification of the scheduling vector
I(t) is system dependent. For instance, in CDMA systems,
it may represent the vector of power levels associated with
wireless links; in OFDMA systems, it may represent the
number of sub-channels allocated to each physical link; and
when interference is modeled as the K-hop interference model
[6], the vector can be a link activation vector representinga
sub-graph in the network. Assuming that transmission rates
are completely characterized given channel states, the schedule
vector, and the interference model, we have

D(t) = D(s(t), I(t)).

We assume that transmission rates are bounded, i.e., for all
s ∈ S andI ∈ I,

Di(s, I) < Dmax, 1 ≤ i ≤ N,

for some largeDmax > 0.
Let Ai(t) be the number of packets arriving in timeslot

t associated with theith link (or data flow), andA(t) be
the vector of arrivals, i.e.,A(t) = (A1(t), · · · , AN (t)). We
assume arrivals are i.i.d.2 with mean vector

E[A(t)] = a = (a1, . . . , aN ),

and bounded above:

Ai(t) < Amax, 1 ≤ i ≤ N,

for some largeAmax.

2This assumption is made to simplify the analysis, and our results can be
extended to non i.i.d arrivals.

Finally, let X(t) = (X1(t), . . . , XN (t)) be the vector of
queue lengths, whereXi(t) is the queue length associated with
the ith link (or data flow). Using the preceding definitions, we
see thatX(t) evolves according to the following equation

X(t+ 1) = X(t) +A(t)−D(t) +U(t),

whereU(t) represents the wasted service vector with non-
negative elements; the service is wasted when in a queue the
number of packets waiting for transmission is less than the
number that can be transmitted, i.e., whenXi(t) < Di(t).

B. Channel State Process

We assume the channel state process is stationary and
ergodic. In particular, for alls ∈ S, ask → ∞, we have

1

k

k−1
∑

i=0

1s(t+i)=s → π(s), a.s.,

where 1(·) denotes the indicator function associated with a
given event, andπ(s) is the steady-state probability of states.
Let Pt represent the past history of the channel process and be
defined byPt = {s(i); 0 ≤ i ≤ t}. The above almost surely
convergence implies that for anyǫ > 0 and ζ > 0, we can
find a sufficiently largeKǫ,ζ,t > 0 such that [29]

P
(

sup
k>Kǫ,ζ,t

∣

∣

1

k

k−1
∑

i=0

1s(t+i)=s − π(s)
∣

∣ > ǫ
∣

∣Pt

)

< ζ. (1)

We assume that the almost surely convergence isunform in
the past history andt in the sense that regardless ofPt andt,
there exists aKǫ,ζ such that (1) holds withKǫ,ζ,t = Kǫ,ζ

3.

C. Capacity Region

In our context, capacity region, denoted byΓ, is defined
as the closure of the set of all input rates that can be
stably supported by the network using any scheduling policy
including those that use the knowledge of future arrivals and
channel states. In [2][30] and recently under general conditions
in [3], it has been shown that the capacity regionΓ is given
by

Γ =
∑

s∈S
π(s) Convex-Hull{D(s, I)|I ∈ I}.

IV. DYNAMIC CONTROL POLICY

As mentioned in the introduction, DCP controls and tunes
the search-time given to a sub-optimal algorithm to improve
the stability region. The considered sub-optimal algorithms
are assumed to provide a sub-optimal solution to the GMWM
problem. In the following, we first elaborate on the structure
of the sub-optimal algorithms, and then, describe the operation
of DCP.

3Examples of this channel model include but are not limited toMarkov
chains.
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A. Sub-optimal Algorithms Approximating GMWM Problem

It is well known that the GMWM scheduling is throughput-
optimal in that it stabilizes the network for all input rates
interior to capacity regionΓ. This policy in each timeslot
uses the schedule vectorI∗(t) that is argmax to the following
GMWM problem:

max
N
∑

l=1

Xl(t)Dl(s(t), I), subject toI ∈ I. (2)

However, as mentioned in Section I, this optimization problem
can be in general NP-hard. We therefore assume that there
exists an algorithmA that can provide suboptimal solutions
to the max-weight problem given in (2). To characterize the
structure of algorithmA, let I∗(X, s) be the argmax to (2) by
settingX(t) = X ands(t) = s. Thus,

I
∗(X, s) = argmax

I∈I
XD(s, I),

whereXD(s, I) is the scalar product of the two vectors, and
for ease of notation, we have dropped the transpose symbol
required forD(s, I). In the rest of this paper, we use the same
method to show the scalar products. Associated withI

∗(X, s),
let D∗(X, s) be defined as

D
∗(X, s) = D(s, I∗(X, s)). (3)

Thus,D∗(X, s) is the optimal rate, in the sense of (2), when
the backlog vector isX and the channel state iss.

Let I(n) be theoutputschedule vector of algorithmA when
it is given an amount of time equal ton timeslots,X(t) = X,
and s(t) = s. We therefore assume that the time given to
algorithmA can be programmed or tuned as desired, or simply,
the algorithm can continue or iterate towards finding better
solutions over time. We assume thatI

(n) is in general a random
vector with distributionµ(n)

X,s. Since the objective function in
(2) is a continuous function ofX(t), we naturally assume that
algorithmA characterized by the distribution ofI(n), for all
n ≥ 1, and all values ofX ands, has the following property:

Assumption 1:For all I ∈ I, s ∈ S, andn, we have that

|µ(n)
X1,s

(I(n) = I)− µ
(n)
X2,s

(I(n) = I)| → 0,

asX1 → X2. In addition, assuming and keeping‖X1−X2‖ <
C for a givenC > 0, the above convergence also holds when
‖X1‖ → ∞. Moreover, the convergence becomes equality if
X1 = βX2, for someβ > 0.

In the following, we discuss concrete models that provide
further details on the structure of algorithmA. Note that these
models serve only as examples, and our results do not depend
on any of these models; what required is only Assumption 1.

The first model arises from the intuition that the distribution
µ
(n)
X,s should improve asn increases. More precisely, we

can define the sequence{µ(n)
X,s, n = 1, 2, 3, · · · } to be an

improvingsequence if for alln > 1,

E[XD(s, I(n))] ≥ E[XD(s, I(n−1))] ≥ · · · ≥ E[XD(s, I(1))].

The first model uses the above and defines anatural algorithm
to be the one for which the above inequalities hold for all
values ofX ands.

Fig. 1. Illustration of scheduling rounds, test intervals,update intervals, and
frames.

As for the second model, we may have thatI
(n) is such

that

XD(s, I(n)) ≥ g(n)XD(s, I∗(X, s)), (4)

where the functiong(n) is a non-decreasing function ofn,
and less than or equal to one. For instance, if the optimization
problem can be approximated to a convex problem [31], then
g(n) = ξ(1 − ζn), where0 < ξ ≤ 1 and0 ≤ ζ < 1. Another
possible form forg(n) is

(

1− β
lnN

lnn

)

,

whereβ is a positive constant. This form ofg(n) may stem
from cases where the optimization problem associated with
(2) admits Polynomial-Time Approximation Scheme (PTAS)
[6].

The last model that we consider is a generalization of the
previous model, where we assume that (4) holds with probabil-
ity h(n) as a non-decreasing function ofn. This specification
can model algorithms that use randomized methods to solve
(2), and without its consideration for the improvement overn,
is similar to the ones developed in [22][8].

B. Dynamic Control Policy and Scheduling

The dynamic control policy in this paper interacts with
scheduling component, and through some measures, which
will be defined later, dynamically tunes the time spent by the
scheduler, or more precisely algorithmA, to find a schedule
vector. In what follows, we describe the joint operation of
DCP and the scheduler.

As DCP operates, the time axis becomes partitioned to
a sequence ofscheduling rounds, where each round might
consist of a different number of timeslots. An illustrative
example is provided in Fig. 1. Let̂tk denote the start time of
thekth round. Each round begins with atest intervalfollowed
by an update interval. In the beginning of the test interval
of each round, acandidatevalue for the number of timeslots
given to the algorithmA to solve (2) is selected by DCP.
Let N r

1 (t̂k) denote this candidate value for thekth round, and
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assumeN r
1 (t̂k) ∈ N1, whereN1 has a finite cardinality. In

the rest, we useN r
1 instead ofN r

1 (t̂k) where appropriate.
The algorithm that chooses the candidate value might be in
general a randomized algorithm. Thus, we use the superscript
r to make this point clear. We assumeN r

1 takes an optimal
value with probabilityδ > 0, where optimality will be defined
later by (7) and its following discussion.

We set the length of the test interval to be

N r
1N

r
2 = Nc = const.,

a multiple ofN r
1 , whereN r

2 is adjusted accordingly so that the
test interval has a fixed lengthNc. Therefore, givenN r

1 , the
test interval becomes partitioned intoN r

2 consecutive frames
of N r

1 timeslots. In the beginning of each frame, e.g., at time
t, the current backlog vectorX(t) and channel states(t)
are provided to the algorithmA. The algorithm then spends
N r

1 timeslots to find a schedule vector. Depending on the
properties of a particular instance of algorithmA, this vector
is used by the scheduler to update scheduling decisions in the
next frame in a variety of methods.

In the first method, the schedule vector found afterN r
1

timeslots in the frame starting at timet is used throughout
the next frame ofN r

1 timeslots starting at timet+N r
1 . Thus,

the schedule vector used in any frame is obtained by using
backlog and channel state information at the beginning of its
previous frame. This method is general and can be applied to
all types of algorithmA.

We can apply a second method where algorithmA is
capable of outputting schedule vectors in intermediate steps,
and not only after the plannedN r

1 timeslots. Consider theith
timeslot of a given frame ofN r

1 timeslots started at timet,
wherei ≤ N r

1 . SupposeIct+i is the intermediate solution found
by the algorithmA after i timeslots in the considered frame,
and Ip is the vector found at the end of its previous frame.
Then, we may assume that with some probability,I

c
t+i is used

if

X(t+ i)D(s(t+ i), Ict+i) > X(t+ i)D(s(t+ i), Ip),

otherwiseIp is used in the timeslot following theith timeslot.
The update rule in [8] provides an example where two schedule
vectors are compared, and the best is selected with a well-
defined probability.

As for the third method, we may assume algorithmA
can accept an initial schedule vector. In this case, we can
assume that the algorithmA at a given frame accepts the
schedule vector found in the previous frame as the initial point
to the optimization problem of (2). Note that many graph-
inspired algorithms do not start from a given initial vector
(as a sub-graph), but instead, gradually progress towards a
particular solution. These algorithms4, therefore, do not belong
to the class of algorithms considered for this method. A forth
method can also be considered by mixing the second and the
third method if algorithmA has the corresponding required
properties. Our results in this paper extend to these methods
as long as Property 1 and Property 2 in Section V-B hold.

4Adaption of these algorithm to time-varying networks is an interesting
problem, and is left for the future research.

Given N r
1 , and a method to use the output of algorithm

A, DCP evaluates scheduling performance resulting from the
value for N r

1 . The performance criterion is the normalized
time-average of the backlog-rate (scalar) product. To define
the criterion precisely, letϕ(·, ·, ·) be defined as

ϕ(t, n1, n2) =

n2−1
∑

j=0

n1−1
∑

i=0

Xt+jn1+iDt+jn1+i

n1n2‖Xt‖
.

If ‖Xt‖ = 0, we setϕ(t, n1, n2) = 0. Based on the above
definition, the criterion associated with the test intervalof the
kth scheduling round, which is computed by DCP, is denoted
by ϕr(t̂k), where

ϕr(t̂k) = ϕ(t̂k, N
r
1 (t̂k), N

r
2 (t̂k)).

This quantity is then used to determine the length of frames
in the update interval of thekth round.

Update intervals are similar to the test intervals in that they
are consisted of a multiple number of fixed-length frames.
More precisely, we assume that the update interval in the
kth round becomes partitioned intoN2(t̂k)N3(t̂k) consecutive
frames ofN1(t̂k) timeslots. IntegersN1(t̂k) andN2(t̂k) are
such that

N1(t̂k)N2(t̂k) = Nc. (5)

Therefore, the length of thekth update interval isN3(t̂k) times
the length of a test interval. Moreover, we see thatN1(t̂k) in
the kth update interval takes the role ofN r

1 (t̂k) in the kth

test interval. Assuming the same method is applied to all test
and update intervals to use the output of algorithmA, we can
properly defineϕ(t̂k) as

ϕ(t̂k) = ϕ(t̂k +Nc, N1(t̂k), N2(t̂k)N3(t̂k)).

The quantityϕ(t̂k) is similar to ϕr(t̂k), and measures the
normalized time-average of backlog-rate product in thekth

update interval.
DCP , on top of algorithmA, usesϕ(t̂k−1) andϕr(t̂k) to

dynamically control the value ofN1(t̂k) andN3(t̂k) over time.
Specifically, in thekth round, at theend of the test interval,
the policy chooses either theN1 used in the previous update
interval, N1(t̂k−1), or the newly chosen value ofN1 in the
current test interval,N r

1 (t̂k), according to the following update
rule:

N1(t̂k) =

{

N r
1 (t̂k) if ϕr(t̂k) > ϕ(t̂k−1) + α

N1(t̂k−1) otherwise
,

whereα is a suitably small but otherwise anarbitrary positive
constant. At the same time, the value ofN3(t̂k), is updated
according to the following:

N3(t̂k) =

{

max(1, N3(t̂k−1)
2 ) if ϕr(t̂k) > ϕ(t̂k−1) + α

min(L1, 2N3(t̂k−1)) otherwise,

whereL1 is a suitably large but otherwise anarbitrary positive
constant. Note thatN2(t̂k) becomes updated such that (5)
holds. Once the values ofN1, N2, and N3 are updated, in
the rest of the scheduling round, which by definition is the
update interval, the policy proceeds with computing the time
averageϕ(t̂k). When thekth round finishes, thek+1th round
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starts with a test interval, and DCP proceeds with selecting
N r(t̂k+1), and applying the update rule at the end of thek+1th

test interval. This completes the description of joint operation
of DCP and the scheduling component.

Considering the above description, we see that DCP keeps
trying new values forN1. Once a good candidate is found
for N1, the update rule with high probability uses this value
for longer periods of time by doubling the length of update
intervals. In case the performance in terms of the backlog-rate
product degrades, the length of update intervals are halved
to expedite trying new values forN1. Note thatα can be
arbitrarily small, but should be a positive number. This avoids
fluctuations between different values ofN1 performing closely,
thus preventing short update intervals. In addition, it limits
incorrect favoring towards new values ofN1 in the test
intervals, where due to atypical channel conditions, the nor-
malized backlog-rate product deviates from and goes beyond
its expected value. Finally, note thatL1 can be arbitrarily
large, but should be a finite integer. This assumption is mainly
analysis-inspired but is also motivated by the fact that a larger
L1 can lead to a larger delay.

V. PERFORMANCEANALYSIS

In this section, we evaluate the performance of DCP in terms
of its associated stability region. We first introduce several key
definitions and functions, and then state the main theorem of
the paper.

A. Definitions

Since the backlog vector is non-Markovian, we consider the
following definition for the stability of a process.

1) Stability: Suppose there are a bounded closed regionC
around the origin, and a real-valued functionF (·) ≥ 0 such
the following holds: For anyt, andσC defined by

σC = inf{i ≥ 0 : Xt+i ∈ C},
we have

E[σC ] ≤ F (X(t))1X(t)/∈C .

Then, the system is said to be stable.
This definition implies that whenX(t) /∈ C, e.g., when

‖X(t)‖ is larger than a threshold, the conditional expectation
of the time required to return toC, e.g., so that‖X(t)‖
becomes less than or equal to the threshold, is bounded by
a function of onlyX(t), uniformly in the past history and
t. This definition further implies that if the sequenceX(t) is
stable, then [32]

lim
k→∞

sup
t

P (|X(t)| > k) = 0.

2) θ-scaled Region and Maximal Stability:Suppose0 ≤
θ ≤ 1. A region is calledθ-scaled of the regionΓ, and denoted
by θΓ, if it contains all rates that areθ-scaled of the rates in
Γ, i.e.,

θΓ = {a1 : a1 = θa2, for somea2 ∈ Γ}.
Further, theθ-scaled region is calledmaximallystable if for all
arrival rate vectors interior toθΓ, the system can be stabilized,
and for allǫ > 0 there exists at least one rate vector interior to

(θ+ ǫ)Γ that makes the system unstable, both under the same
given policy. Thus, maximal stability determines the largest
scaledversion ofΓ that can be stably supported under a given
policy.

B. Auxiliary Functions and Their Properties

To define the first function, hypothetically suppose for allt,
X(t) = X for a givenX, X 6= 0, and thus,X(t) does not get
updated. In addition, assume thatN1 has a fixed value over
time. Considering these assumptions and an update intervalof
infinite number of frames5, each consisting ofN1 timeslots,
we can see that in thesteady state, the expected normalized
backlog-rate product, averaged over one frame, is equal to

φ(X, N1) = Es,A
(
∑N1

i=1 XDi)

N1‖X‖ , (6)

where Di is the rate vector in theith timeslot of a given
frame in the steady state. This expectation is over the steady-
state distribution of channel process, and possibly over the
randomness introduced by the algorithmA.

Intuitively, φ(X, N1) states how well a particular choice for
N1 performs, in terms of backlog-rate product, when queue-
length changes are ignored. This is exactly what we need to
study since the stability region often depends on the behavior
of scheduling at large queue-lengths, where in a finite window
of time the queue-lengths do not change significantly.

To simplify notation, where appropriate, we uset as the
first argument ofφ(·, ·); by that we mean6

φ(t, N1) = φ(X(t), N1).

Having definedφ(X, N1), we defineÑ1(X) and φ̃(t) by

Ñ1(X) = argmax
N1∈N1

φ(X, N1), (7)

and

φ̃(t) = φ̃(X(t)) = φ
(

X(t), Ñ1

(

X(t)
)

)

.

Finally, for a givenX with ‖X‖ 6= 0, we define

χ(X) = Es

[

XD
∗(X, s)

‖X‖
]

,

whereD∗(X, s) is defined in (3), and the expectation is over
the steady-statedistribution of the channel process.

According to the above definitions, we see that when
variations in the backlog vector are ignored after timet, and
N1 is confined to have a fixed value,̃N1(X(t)) becomes the
optimal value forN1 in terms of the normalized backlog-rate
product, and̃φ(t) represents the corresponding expected value.
In particular, note that̃N1(X) is a function ofX and may take
different values for differentX’s. The quantityχ(X), on the
other hand, is the expected normalized backlog-rate product
if for all states we could find the optimal schedule vector.
This quantity, therefore, can serve as a benchmark to measure
performance of sub-optimal approaches.

5Here, we assume the channel evolves, and that the algorithmA is used
in the same manner as it is used in an ordinary update intervalwith a finite
Nc, as discussed in Section IV-B.

6By definition ofφ(·, ·), here we hypothetically assume the backlog vector
X(t1) for all times t1 is equal toX(t).
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Note thatχ(X) is continuous function ofX and does not
depend on‖X‖. Similarly, by Assumption 1,φ(X, N1) does
not depend on‖X‖, and is expected to have the following
property.

Property 1: Suppose‖X1 −X2‖ < C for a givenC > 0.
For any givenǫ > 0, there exists a sufficiently largeM > 0
such that if‖X1‖ > M , then for allN1 ∈ N1

|φ(X1, N1)− φ(X2, N1)| < ǫ.

If the first or the second method in Section IV-B is used, this
property holds since by Assumption 1, algorithmA statisti-
cally finds similar schedule vectors when two backlog vectors
are close and large. In case the third or the forth method
is used, it is possible to consider explicit restrictions for
algorithmA such thatφ(X, N1) is well-defined and Property 1
holds. However, in this paper, we simply assume that algorithm
A is well-structured, in terms of the distribution ofI(n), so
that by the ergodicity of the channel process this property
also holds for these methods.

Recall that ϕr(t̂k) is the normalized time-average of
backlog-rate product over thekth test interval. If we assume
that the backlog vector is kept fixed atX(t̂k), by ergodicity
of the channel process as explained in Section III-B, we
expectϕr(t̂k) to converge toφ(t̂k, N r

1 (t̂k)). Hence, when the
number of frames is large, which is the case whenNc is large,
ϕr(t̂k) should be close toφ(t̂k, N r

1 (t̂k)) with high probability.
However, the backlog vector is not fixed and changes over
time. But by Assumption 1, algorithmA statistically responds
similarly to different backlog vectors if they are close and
sufficiently large. This can be exactly our case since arrivals
and departures are limited, and thus, for a fixedNc, the
changes in the norm of backlog vector are bounded over
one test interval. Therefore, by Assumption 1, if‖X(t̂k)‖ is
sufficiently large, the changes in the backlog have little impact
on the distribution ofϕr(t̂k). Applying a similar discussion
to ϕ(t̂k) while noting that the length of update intervals is
bounded byL1Nc, we expect the following property.

Property 2: There exist̺ ϕ > 0 and θϕ > 0 such that for
any givenǫ > 0, there existsM > 0 such that if‖Xt̂k

‖ > M ,
then regardless ofk and the past history, up to and including
time t̂k, with probability at least(1− ̺ϕ)

∣

∣ϕr(t̂k)− φ(t̂k, N
r
1 (t̂k))

∣

∣ < θϕ + ǫ.

Similarly, regardless ofk and the past history, up to and
including time t̂k +Nc, with probability at least(1 − ̺ϕ)

∣

∣ϕ(t̂k)− φ(t̂k +Nc, N1(t̂k))
∣

∣ < θϕ + ǫ.

Moreover,

lim
Nc→∞

̺ϕ = lim
Nc→∞

θϕ = 0.

According to the preceding discussion, we can see thatθϕ
and̺ϕ mainly measure how fast the time-averages converge to
their expected value, andǫ models the error due to variations
in the backlog vectorXt̂k+i. Thus, as stated above,̺ϕ andθϕ
can be made arbitrarily small by assuming a sufficiently large
value forNc. In a practical implementation, however,Nc is
a limited integer, and therefore,θϕ > 0 and ̺ϕ > 0. Note

that when the first or the second method in Section IV-B is
used, Property 2 holds as a result of its preceding discussion,
uniform convergence of the channel process, and finiteness
of |I|. Similar to Property 1, in the case of the third or the
forth method, we assume this property results from the well-
structuredness of algorithmA.

As the final step towards the main theorem, we define
several random variables that are indirectly used in the theorem
statement. Specifically, letiδ be a geometric random variable
with success probabilityδ

′

, where

δ
′

= (1− ̺ϕ)
2δ,

whereδ is defined in Section IV-B. In addition, letiϕ be a
r.v. with the following distribution.

P (iϕ = 0) = ̺ϕ,

and

P (iϕ = k) = (1− ̺ϕ)
2k−1(1− (1− ̺ϕ)

2), k ≥ 1.

We also define the random sequence{N ′

3(i), i ≥ 1} as7

N
′

3(i) =







































L1 (1 ≤ i ≤ iδ) ∨
(i = iδ + iϕ + 1)

1 (i = iδ + 1) ∧ (iϕ = 1)
2 (i = iδ + 1) ∧ (iϕ > 1)

min( 2i

2iδ+2 , L1) (iδ + 2 ≤ i ≤ iδ + iϕ)∧
(iϕ > 1)

0 i > iδ + iϕ + 1

.

Using the above sequence, we defineR∞ as

R∞ =
E
[
∑iδ+iϕ

i=iδ+1 N
′

3(i)
]

E
[
∑iδ+iϕ+1

i=1 (1 +N
′

3(i))]
, (8)

which plays a key role in theorem statement and its proof.
Note that for a fixedδ > 0, we have

lim
̺ϕ→0

R∞ =
L1

1 + L1
.

As mentioned earlier, we can make̺ϕ andθϕ arbitrarily small
by choosing a sufficiently large value forNc. We are now
ready to state the theorem.

C. Main Theorem on Stability of DCP

We have the following theorem:
Theorem 1:Consider a network as described in Section III.

For this network, letθ be a constant defined by

θ = R∞ inf
‖X‖=1

(φ̃(X)− α− 3θϕ)

χ(X)
.

In addition, letθ∞ be

θ∞ = inf
‖X‖=1

φ̃(X)

χ(X)
.

(a) If 6θϕ < α and2α ≤ inf‖X‖=1 φ̃(X), then the network
is stable under DCP if the mean arrival rate vector,a,
lies strictly inside the regionθΓ.

7Here,∧ and∨ are theand andor operators, respectively.
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(b) For any input rate strictly insideθ∞Γ, there exist a
sufficiently small value forα, and sufficiently large values
for L1 andNc such that the network becomes stabilized
under DCP. In other words, we can expand the sufficient
stability regionθΓ arbitrarily close toθ∞Γ by choosing
appropriate values for forα, L1, andNc.

(c) There exist instances of networks, as described in Sec-
tion III, for which their associated regionθ∞Γ is maxi-
mally stable under DCP.

Proof: The proof is provided in the Appendix.

D. Discussion

1) Intuitive Explanation ofθ: Theorem 1 states that all
input rates interior toθΓ can be stably supported under DCP.
In particular, it implicitly quantifiesθ as a function of the
sub-optimality of algorithmA and channel state correlation.
Clearly, the value ofθ is not fixed, and can vary from a
particular network setup to another. As expected, for a fixedX,
as algorithmA finds better schedule vectors in shorter times,
and as the channel states become more correlated,φ̃(X) gets
closer toχ(X), andθ gets closer to one, expanding the region
θΓ to the capacity regionC.

In addition, Theorem 1 shows how the stability region is di-
rectly affected by the choices forα andL1, and the values for
θϕ and̺ϕ. The impact ofα on θ could be predicted by noting
that the update rule usesN r

1 in an update interval only when
the normalized average backlog-rate product increases at least
byα. Thus, we expect to see a decrease of the typeα

χ(X) in the
stability region scaling. The effect ofθϕ and̺ϕ is less obvious,
but can be roughly explained as follows. Suppose at thekth

round the optimalN1 is selected, i.e.,N r
1 (t̂k) = Ñ1(t̂k). In

this case, to have a proper comparison,ϕr(t̂k) andϕ(t̂k−1)
should satisfy their corresponding inequalities in Property 2.
Moreover, to make sure thatN r

1 (t̂k) or a near optimalN1 is
used in thelth round after thekth, we at least requireϕr(t̂l)
satisfy its corresponding inequality in Property 2. Therefore,
there are at least three inequalities of the form in Property2
that should be satisfied, which results in the term3θϕ in the
expression forθ.

The factorR∞ in a sense measures the least fraction of time
in update intervals wherenear optimal values forN1 is used.
To better understandR∞, suppose̺ ϕ is small, and the backlog
vector is large. Once the optimal value forN1 is found in a
round, as long as the inequalities in Property 2 hold for the
subsequent rounds,N1 gets updated for only a few times. By
the update rule, this means thatN3 gets doubled in most of the
rounds, and is likely equal toL1. Thus, the update intervals
constitute L1

1+L1
fraction of time. At the same time, in these

intervals, near optimal values forN1 are being used. Thus, we
expect to see L1

1+L1
as a multiplicative factor inθ.

The above discussion and Theorem 1 also state that DCP
successfully adaptsN1 in order to keepϕ(t̂k + Nc, N1(t̂k))
close to φ̃(X(t̂k + Nc))

8. Note that for a givenX find-
ing Ñ1(X), or equivalently,φ̃(X), in general, is a difficult
problem. Specifically, it requires the exact knowledge of the
channel state and arrival process statistics, and the structure

8This statement is in fact a direct result of Lemma 4.

of algorithm A. Even when this knowledge is available, as
the number of users increases, finding̃N1(X) demands com-
putation over a larger number of dimensions, which becomes
exponentially complex. Hence, we see that DCP dynamically
solves a difficult optimization problem, without requiringthe
knowledge of input rates or the structure of algorithmA9.

2) Comparison with Static Policies, Minmax v.s. Maxmin:
Part (b) of the theorem gives the regionθ∞Γ as the fundamen-
tal lower-bound on the limiting performance of DCP. It also
implicitly states that this lower-bound depends on the solution
to a minmax problem. To see this, recall that by definition
φ̃(X) is the maximum ofφ(X, N1) over all choices forN1.
Thus, we have that

θ∞ = inf
‖X‖=1

max
N1∈N1

φ(X, N1)

χ(X)
.

Now, consider astatic policy that assumes a fixed value for
N1. This policy partitions the time axis into a set of frames
each consisting ofN1 timeslots, with theith frame starting at
time (i − 1)N1. The static policy, in the beginning of each
frame, e.g., theith frame, provides algorithmA with vectors
X((i−1)N1) ands((i−1)N1). AlgorithmA uses these vectors
as input, and after spendingN1 timeslots, returns a schedule
vector as the output. This output vector is then used to schedule
users in the next following frame.

It is not difficult to show that the above static policy
stabilizes the network for all rates interior toθsN1

Γ, where

θsN1
= inf

‖X‖=1

φ(X, N1)

χ(X)
.

Thus, the best static policy, in terms of the regionθsN1
Γ, is

the one that maximizesθsN1
. Let θso be the maximum value.

We have that

θso = max
N1∈N1

inf
‖X‖=1

φ(X, N1)

χ(X)
.

Therefore, the best static policy corresponds to a maxmin
problem. Considering the definition ofθ∞ and θso, and that
the minmax of a function is always larger than or equal to
the maxmin, we have thatθsoΓ ⊆ θ∞Γ. More generally, using
the above definitions and a simple drift analysis, we can show
that the stability region of static policies is not larger than the
limiting stability region of DCP.

3) Tightness ofθ∞ and θso: Note that parts (a) and (b)
of the theorem do not exclude the possibility of networks
being stable under DCP for rates outside ofθΓ or θ∞Γ. Part
(c) of the theorem, on the other hand, compliments parts (a)
and (b), and shows that for some networks the regionθ∞Γ
is indeed the largestscaledversion ofΓ that can be stably
supported under DCP. This for instance may happen when the
channel state is statistically symmetric with respect to users
as the ones in Section VI. Proof of part (c) of the theorem
provides conditions for cases that lead to the maximal stability
of the regionθ∞Γ, and in particular, shows that the symmetric
examples in Section VI meet such conditions. Note that the

9DCP also does not require the exact knowledge of channel state statistics.
However, a practical implementation of DCP requiresNc to be related to the
convergence-rate of channel process to its steady state.
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same discussion also applies toθsN1
and the stability region

of static policies. We therefore haveθ∞ andθso both as tight
measures, stating that for some networks, including the ones
in the next section, DCP can increase throughput efficiency of
static policies by a factor ofθ∞−θs

o

θs
o

.
4) Delay: Note that getting close to the boundary ofθ∞Γ

increases delay. This follows from part (b) of the theorem
stating that for input rates close to the boundary,L1 andNc

should be large. These choices, as expected, increase the length
of test and update intervals, which can potentially be large
intervals of sub-optimal transmissions in terms of the value
used forN1. This in turn makes data wait in queues before
transmission, thus increasing the delay.

5) Distributed Implementation:Assuming algorithmA is
decentralized [7][5][6][9], DCP can be implemented in a
distributed manner with low overhead. This is possible since
consistent implementation of DCP in all nodes requires up-
dates of only queue backlog and nodes’ time-average of
backlog-rate product, and such updates are needed only over
long time intervals.

More specifically, two conditions are required to be met
for distributed implementation. First, nodes should generate
the same sequence of random candidates forN1 over time,
which can be met by assuming the same number generator
is employed by all nodes. Second, nodes should have the
knowledge of backlog-rate product in the test and its preceding
update interval in order to individually and consistently apply
the update rule.

The second condition can also be met, for instance, by
requiring each source node perform the following. Every node,
e.g., theith node, records its own backlog,Xi(t), only at
the beginning of the test and update intervals. During these
intervals, theith node also computes its ownindividual time-
average of backlog-rate productXiDi. Here, we assume the
time-averages in the test intervals are computed up to the
last Nd timeslots, whereNd ≪ Nc. Then, once an update
interval ends, theith node has all the duration of a test interval,
consisting ofNc timeslots, to send all the other nodesXi and
time-average ofXiDi for that update interval. Similarly, when
the lastNd timeslots in a test interval are reached, theith
node starts sending all the other nodesXi and time-average
of XiDi of that test interval, hence, havingNd timeslots for
communication. Since for each interval, data of each node,
backlog in the beginning of the associated interval and the
time-average, consists of at most a few bytes, we see that the
overhead can be made arbitrarily small by choosingNc andNd

large. At the same time, we can make the ratioNd

Nc
sufficiently

small, by choosingNc large, to ensure that not consideration
of the lastNd timeslots in the test intervals has little impact
on the stability region.

VI. CASE STUDIES

In this section, we present two examples that provide further
insight into our analytical results and the performance of DCP.
To be able to compare the simulation results with analytical
ones, we consider a small network consisting of two data flows
in the downlink of a wireless LAN or a cellular network. In
this case,s(t) is the vector of channel gains, and we assume

the schedule vector is the power allocation vector, i.e.,I =
P = (p1, p2), with constraint

p1 + p2 = Pt,

where Pt is total power budget. Assuming super-position
coding is used in the downlink, ifs1(t) < s2(t), then [33]

D1(s(t),P) = log
(

1 +
p1|s1|2

p2|s1|2 + n0

)

,

and

D2(s(t),P) = log
(

1 +
p2|s2|2
n0

)

.

If s1(t) ≥ s2(t), we obtain similar expressions for user rates
by swapping the role of one user for another.

For illustration purposes, we assume that algorithmA in
every step, i.e., during each timeslot, reduces the gap to the
optimal backlog-rate product. Specifically, if the initialgap
corresponding to the initial power vectorI(0), assumed to be
chosen randomly, is∆0, then afteri steps the gap is decreased
to ∆i, where

∆i = XD
∗(X, s)−XD(s, I(n))

=
1

βi

(

XD
∗(X, s)−XD(s, I(0))

)

=
∆0

βi
,

whereβ > 1. This case corresponds tog(n) = (1 − ζi) with
ζ = 1

β , whereg(n) is introduced in Section IV-A.
Having specified rates and algorithmA, as the first example,

we assume that the channel state is Markovian with two
possible state vectors, namely,s1 = (1, 5) and s2 = (5, 1),
where the channel vector in each transition takes a different
state with probabilitypt = 0.3. For this case, we setα = 0.06,
Nc = 12000, L1 = 32, β = 1.7, N1 = {N1 : 1 ≤ N1 ≤ 6},
n0 = 10, and pt = 50. To study the stability region, we
consider the rate vectora = (2.4181, 2.4181) which belongs
to the boundary ofΓ corresponding to this example. We then
assume the arrival vector isγa, whereγ is the load factor,
and varies from0.84 to 0.92. Fig. 2 depicts the resulting
average queue sizes. For loads larger than0.93, the queue sizes
increase with time implying network instability. The range
selected forγ is motivated by noting thatθ∞ = 0.9447, which
is computed numerically. Considering the growth of average
queue sizes in Fig. 2, we therefore see that for this example
θ∞ is indeed an upper bound for capacity region scaling. In
fact, part (c) of Theorem 1 applies to this example, and any
rate of the form(θ∞+ǫ)a, ǫ > 0, makes the network unstable.

As for the second example, we increase the number of states
to six corresponding to the following state vectors:

s1 = (1, 5), s2 = (5, 1),

s3 = (1, 2), s4 = (2, 1),

s5 = (2, 5), s6 = (5, 2),

and having the following symmetric transition matrix:

Tm =











0.3 0.1 0.2 0.1 0.2 0.1
0.1 0.3 0.1 0.2 0.1 0.2
...

...
...

...
.. .

0.1 0.2 0.1 0.2 0.1 0.3











. (9)
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Fig. 2. Average queue size as a function of load factor.
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Fig. 3. Comparison of capacity region scaling for DCP and static policies.

For this case, we keep the sameNc, L1, andN1, but assume
α = 0.02, β = 1.5, n0 = 50, and pt = 10. Similar to
the previous example, to vary arrival rate vector, we consider
the rate vectora = (0.6952, 0.6952) which belongs to the
boundary ofΓ associated with this example. Then, the arrival
vector is assumed to beγa, where the load factorγ varies from
0.67 to 0.76. The resulting average queue sizes are also shown
in Fig. 2. In this case, for load factors larger than0.76, the
queue sizes increase with time, suggesting network instability.
This result is consistent with our analytical results sincethe
numerically computed value ofθ∞ is 0.7762. Note that part (c)
of Theorem 1 also applies to this example, and any rate of the
form (θ∞ + ǫ)a, ǫ > 0, makes the network unstable.

Finally, in Fig. 3, for the two examples, we have shown
θsN1

as a function ofN1, and also shown the value ofθ∞
for DCP. As expected and the figure suggests, since DCP
adaptsN1 according to queue backlog, it outperforms the
best static policy. We also see that the optimal stationary
policy for the first example is the one withN1 = 3 and
θso = 0.9122, and for the second example is the one with
N1 = 2 andθso = 0.7511. Note that characterization of the best
static policy requires computation of̃φ(X), which, as briefly
discussed in Section V-D1, can be computationally intensive.
From the figure, we also observe that the performance of a
suboptimal static policy can be substantially less than DCPif
the static policy does not assume a proper value forN1.

VII. C ONCLUSION

In this paper, to improve the stable throughput region in
practical network setups, we have considered the problem of
scheduling in time-varying networks from a new perspective.
Specifically, in contrast to previous research which assumes
the search-time to find schedule vectors is negligible, we

have considered this time, based on which we modeled the
time-efficiency of sub-optimal algorithms. Inspired by this
modeling, we have proposed a dynamic control policy that
dynamically but in a large time-scale tunes the time given to
an available sub-optimal algorithm according to queue backlog
and channel correlation. Remarkably, this policy does not
require knowledge of input rates or the structure of available
sub-optimal algorithms, nor it requires exact statistics of the
channel process. We have shown that this policy can be
implemented in a distributed manner with low overhead. In
addition, we have analyzed the throughput stability region
of the proposed policy and shown that its throughput region
is at least as large as the one for any other, including the
optimal, static policy. We believe that study and design of
similar policies opens a new dimension in the design of
scheduling policies, and in parallel to the efforts to improve
the performance of sub-optimal algorithms, can help boost the
throughput performance to the capacity limit.

APPENDIX

PROOF OFTHEOREM 1

Proof of part (a):
The proof of part (a) consists of two main parts. First, using

several lemmas, we obtain a negative drift with a random
number of steps. In the second part, we use the negative drift
analysis to show that the return time to a bounded region
has a finite expected value, and conforms to the properties
required for network stability, according to the definitiongiven
in Section V-A1.

We start by noting thatθ ≤ 1, and sincea is strictly inside
θΓ, there must be some non-negative constantsβs,I with the
property that for alls ∈ S

∑

I∈I
βs,I < θ ≤ 1, (10)

such that

a =
∑

s∈S
π(s)

∑

I∈I
βs,IDs,I. (11)

Considering (10), we can define positiveξ′ as

ξ′ = θ −max
s∈S

∑

I∈I
βs,I.

Sinceξ′ > 0, by the definition ofθ, for ‖Xt‖ 6= 0, we have
that

R∞(φ̃(t)− α− 3θϕ)

χ(Xt)
−max

s∈S

∑

I∈I
βs,I > ξ′ > 0. (12)

To proceed with the proof, associated with a given timet,
we define a sequence of random variables{τi}∞i=−1, where
τ−1 andτ0 denote the number of timeslots to the last timeslot
of the previous and the current scheduling round, respectively,
andτi, i ≥ 1, is the number of timeslots to the last timeslot of
the ith subsequent scheduling round. LetHt denote the past
history of the system up to and including timet. Thus, given
Ht, the value ofXt is known. Letf(·) be defined as

f(X) = ‖X‖2,
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Considering aτK + 1-step drift with functionf(·), we can
write

∆(τK + 1) = E[f(Xt+τK+1)− f(Xt)|Ht]

= E[

τK
∑

k=0

f(Xt+k+1)− f(Xt+k)|Ht]

= E[

τK
∑

k=0

(Xt+k+1 +Xt+k)(Xt+k+1 −Xt+k)|Ht].

Using the fact that arrivals and departures are bounded, after
performing some preliminary steps, we can show that

∆(τK + 1)

≤ E

[

(τK + 1)C1 + (τK + 1)2C2

+ 2

τK
∑

k=0

(XtAt+k −Xt+kDt+k)
∣

∣Ht

]

,

for appropriate constantsC1 andC2. SinceXt+kDt+k ≥ 0,
we have

∆(τK + 1) ≤ E

[

(τK + 1)C1 + (τK + 1)2C2

+ 2

τK
∑

k=0

(XtAt+k −Xta)

+ 2

τK
∑

k=0

(Xta−Xt+kD
∗
t+k)

+ 2

τK
∑

k=0

Xt+kD
∗
t+k

− 2

τK
∑

k=τ0+1

Xt+kDt+k

∣

∣Ht

]

,

whereD∗
t+k = D

∗(X(t + k), s(t+ k)). In the following, we
derive an upper bound for∆(τK + 1).

As mentioned in Section III-A, arrivals are i.i.d with mean
vector a. We can therefore apply the same method used to
prove Lemma 1 to obtain

E
[

‖
τK
∑

k=0

At+k − (τK + 1)a‖
∣

∣Ht

]

≤ ǫE
[

(τK + 1)|Ht

]

,

whereǫ > 0, and can be made arbitrarily small by choosing
a sufficiently largeK.

Using the above inequality, Lemma 2, Lemma 3, and
Lemma 4, all with the same choice forǫ, we can show that

∆(τK + 1) ≤ E

[

(τK + 1)‖Xt‖χ(Xt)

(

ǫ1 + 2
(

max
s∈S

∑

I∈I
βs,I −

R∞(φ̃(t)− α− 3θϕ)

χ(Xt)

)

)

∣

∣Ht

]

,

(13)

where

ǫ1 =
1

χ(Xt)

( C1

‖Xt‖
+

C2(τK + 1)

‖Xt‖
+ 8ǫ

)

. (14)

Note that according to the lemmas,ǫ can take any given
positive real number ifK and‖Xt‖ are sufficiently large.

Similarly, ǫ1 can assume any given positive value. To see
this, first note that sincea ∈ θΓ, we havea ∈ Γ. Thus, for
any user, e.g. theith user, for whichai > 0, there has to be a
states and a scheduleI satisfying

π(s)D(s, I)i > 0,

whereD(s, I)i is theith element of vectorD(s, I). Otherwise,
ai should be zero, contradicting the assumption. Therefore,
assuminga 6= 0, we can define positiveυ as

υ = min
i∈N

max
s,I

π(s)D(s, I)i > 0.

Thus,

E[XtD
∗(Xt, s)] ≥ υmax

i∈N
X(t)i ≥

υ√
N

‖Xt‖. (15)

This implies that for all nonzeroX ∈ R
N

χ(X) ≥ υ√
N

. (16)

On the other hand, since departure rates are bounded above
by Dmax, we have

χ(X) ≤
√
NDmax. (17)

Now consider any positiveǫ2, and supposeK is sufficiently
large such that for large‖Xt‖ we have

8ǫ

χ(Xt)
≤ 8

√
Nǫ

υ
<

ǫ2
3
,

where the first inequality follows from (16). This upper-bounds
the third term inǫ1. Since for anyK, and in particular, the
chosen one, we haveτK + 1 ≤ (K + 1)(1 + L1)Nc, we see
that if ‖Xt‖ is appropriately large, the first and second terms
in ǫ1 can also be less thanǫ23 . Thus, for any given positiveǫ2,
we can find an appropriately largeK such that for sufficiently
large‖Xt‖, (13) holds withǫ1 < ǫ2.

SupposeK is sufficiently large, and‖Xt‖ > MK for
appropriately largeMK such thatǫ1 < ξ′. We can use (13)
and (12) to show that

∆(τK + 1) < −E

[

ξ′‖Xt‖(τK + 1)χ(Xt)
∣

∣Ht

]

.

This inequality and (16) further imply that

∆(τK + 1) < −E

[

ξ(τK + 1)‖Xt‖
∣

∣Ht

]

, (18)

where ξ = υ√
N
ξ′ > 0. We, therefore, have obtained the

negative drift expression, completing the first part of the proof.
Note that in aboveτK is a random variable, and in fact, is

a stopping time with respect to the filtrationH = {Ht}∞t=0.
This means that we have obtained a drift expression that is
based on a random number of steps. Proofs of stability in the
literature, however, are often based on a negative drift with a
fixed number of steps. This contrast has motivated us to adopt
an interesting method recently developed in [10]. This method
is general since it can be applied in both cases, and also
leads to an intuitive notation of stability. However, it hasbeen
originally developed for Markov chains. Therefore, as well
as using less technical notations, in what follows, we apply
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minor modifications to the method so that it is appropriate in
our context.

We now, in the second part of the proof, use the negative
drift, and prove that the expected value of the return time to
some bounded region is finite in a manner that renders network
stable. LetC denote the bounded region, and be defined as

C = {X ∈ R
N , ‖X‖ ≤ MK}.

Associated withC, we defineσC to be the number timeslots
after which the process{Xt+i}∞i=0 entersC, i.e.,

σC = inf{i ≥ 0 : Xt+i ∈ C}.
Similarly, we letτC be

τC = inf{i ≥ 1 : Xt+i ∈ C}.
Therefore,τC , in contrastσC , characterizes the first time that
the process{Xt+i}∞i=1 returns to C.

Back to the drift expression in (18), letη be a random
variable defined by

η = ξ(τK + 1)‖Xt‖.
We obtain, forK sufficiently large,

E[f(Xt+τK+1) + η|Ht] ≤ f(Xt), (19)

provided that‖Xt‖ > MK . Let η0 = η, and τK,0 = τK ,
whereη andτK are random variables defined by considering
time t. We now consider timet(1)K = t + τK,0 + 1. For this
particular time, we can define another pairτK,1 and η1 and
such that if‖X

t
(1)
K

‖ > MK , then

E[f(X
t
(1)
K +τK,1+1

) + η1|Ht
(1)
K

] ≤ f(X
t
(1)
K

),

whereτK,1 is the number of timeslots from timet(1)K to the
last timeslot of theKth subsequent scheduling round, and

η1 = ξ(τK,1 + 1)‖X
t
(1)
K

‖.

Note that the definition ofτK,1 and η1 is independent of
whether the previous inequality holds.

We can continue this process by considering the drift criteria
for time t

(i)
K = t

(i−1)
K + τK,i−1 + 1, and defining random

variablesτK,i andηi. The random variablesτK,i andηi have
a similar definition asτK,1 and η1, respectively, except that
they are associated with timet(i)K . Using these definitions, we
can definet(i)K more precisely by

t
(0)
K = t,

t
(i)
K = t

(i−1)
K + (τK,i−1 + 1) = t+

i−1
∑

j=0

(τK,j + 1).

Note thatt(i)K is a stopping time with respect toH. Using t(i)K ,
we set

X̄i = X
t
(i)
K

, i ≥ 0, (20)

and defineHτ as the filtration given byHτ = {H
t
(i)
K

}∞i=0. In
addition, associated withηi, which is given by

ηi = ξ(τK,i + 1)‖X
t
(i)
K

‖,

we defineη(i) as

η(0) = 0, η(i) =

i−1
∑

j=0

ηj . (21)

We also defineν as

ν = inf{i ≥ 0 : t
(i)
K ≥ t+ σC}, (22)

which is a stopping time with respect toHτ . Intuitively,
ν marks the first timet(i)K at or before which the process
{Xt+i}∞i=0 entersC. We finish the chain of definitions by
introducing the sequence{Zi}∞i=0, where

Zi = f(X̄i) + η(i). (23)

For i < ν, using (21), we have

E[Zi+1|Ht
(i)
K

] = E
[

f(X̄i+1) + ηi|Ht
(i)
K

]

+ η(i)

≤ f(X̄i) + η(i) = Zi, (24)

where the first equality follows from the fact thatη(i) is
completely determined givenH

t
(i)
K

, and the inequality is
simply an immediate result of (19) and the assumptioni < ν.
To simplify the notation, letν ∧ i denote

ν ∧ i = min(ν, i).

It now follows directly from (24) that the sequence{Zν∧i}∞i=0

is anHτ -supermartingale. Sincef(·) is non-negative, we have

E[η(ν∧i)|Ht] ≤ E[Zν∧i|Ht].

But Ht = H
t
(0)
K

, and{Zν∧i}∞i=0 is a supermartingale. Hence,

E[Zν∧i|Ht] = E[Zν∧i|Ht
(0)
K

]

≤ Z0 = f(Xt).

Considering the last two inequalities, we obtain

E[η(ν∧i)|Ht] ≤ f(Xt). (25)

In addition, using the definition ofη(i) andηj while assuming
MK > 1, it is easy to see that

η(ν∧i) =
i−1
∑

j=0

ηj1(j<ν) ≥ ξ
i−1
∑

j=0

(τK,j + 1)1(j<ν)

= ξ(t
(ν∧i)
K − t). (26)

Applying the monotone convergence theorem [29], we can
take the limit in (25) and (26) asi → ∞ yielding

E[t
(ν)
K − t|Ht] ≤ ξ−1f(Xt).

But by definition in (22),σC ≤ t
(ν)
K − t. Thus, forXt /∈ C

E[σC |Ht] ≤ ξ−1f(Xt).

If Xt ∈ C, we haveσC = 0. Hence, we have that

E[σC |Ht] ≤ ξ−1f(Xt)1Xt /∈C ,

showing that the expectedσC is bounded by a function ofXt

uniformly in the past history andt, as required. This completes
the proof of part (a) of the theorem.
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Proof of part (b): Part (b) follows directly from part (a)
of the theorem as a corollary by noting thatθϕ and̺ϕ can be
made arbitrarily small by assuming a sufficiently largeNc, as
stated in Property 2. This allows us to select arbitrarily small
values forα. In addition, we can chose a sufficiently large
value forL1 such that for sufficiently small values forθϕ and
̺ϕ, R∞ is arbitrarily close to one. Considering these choices,
we see that we can makeθ arbitrarily close toθ∞, as required.

Proof of part (c): Since part (c) of the theorem only
concerns existence of such networks for which the regionθ∞Γ
is maximally stable under DCP, for simplicity of exposition,
we consider a network consisting of two users, i.e., two data
flows. Note that our approach can be extended to more general
networks withN data flows. Here, we adopt a direct method
and show that with positive probability norm of the backlog
vector approaches infinity. Therefore, the expected value of the
return time to any bounded region becomes infinity, implying
network instability. We start by introducing several definitions
followed by four conditions sufficient for network instability.

Let D̄ andD̄∗ be defined by

D̄(X) = E

[

lim
n→∞

1

n

n−1
∑

i=0

(Dt+i −Ut+i)
∣

∣Xt+i = X, i ≥ 0
]

,

and

D̄
∗(X) = Es

[

D
∗(X, s)

]

,

whereD∗(X, s) is defined in (3). In addition, letXmin be10

Xmin = arginf
‖X‖=1

φ̃(X)

χ(X)
.

Note that in the definition of̄D, we hypothetically assume that
the backlog vector after timet is fixed and does not change.
This is similar to the method used to defineφ(X, N1) except
that here we do not assume a fixed value forN1, and instead,
assume DCP adaptsN1 as if the backlog vector was changing.
In addition, note that by the ergodicity of the channel process
D̄ does not depend ont, and moreover, by Property 1,̄D does
not depend on‖X‖. To simplify the subsequent analysis, we
also consider the following definitions:

Definition 1: For a givenX and a givenǫ > 0, the ǫ-
neighborhod ofX is defined by

N (X, ǫ) = {X1 : ‖X1 −X‖ < ǫ}.
Definition 2: For a givenX with ‖X‖ = 1, and a given

ǫ > 0, the normalizingregionR(X, ǫ) is defined by

R(X, ǫ) = {X1 : ‖X1‖ 6= 0,
∥

∥

∥

X1

‖X1‖
−X

∥

∥

∥ < ǫ} ∪ {X1 = 0}.

Definition 3: Consider a regionR and a vectorX insideR.
We defineξ(X,R) as thesupremumof the angular deviation
of the vectors inR from X, i.e.,

ξ(X,R) = sup
Y∈R

arccos
(

XY

‖X‖ ‖Y‖
)

.

10Note that here infimum can be achieved since the functionsφ̃(X) and
χ(X) are continuous functions ofX, and the infimum is taken over a closed
interval.

Now suppose the following conditions hold:

C1) Xmin = γ1D̄(Xmin) = γ2D̄
∗(Xmin), for some

γ1, γ2 > 0.
C2) For anyN1,1 ∈ N1 andN1,2 ∈ N1 with N1,1 6= N1,2,

we haveφ(Xmin, N1,1) 6= φ(Xmin, N1,2).
C3) For anyβ1 > 0 andβ2 > 0, there exists a sufficiently

small ǫ > 0 such that ifX ∈ R(Xmin, ǫ), then

D̄(X)− D̄(Xmin) = λ1D̄(Xmin) + λ2(
X

‖X‖ −Xmin),

for someλ1 andλ2 satisfying|λ1| < β1 and0 < λ2 <
β2.

C4) For anyX ∈ N
N , for somet

P (Xt = X) > 0.

Condition C1 may be met by assuming a statistically sym-
metric channel states as the ones in Section VI. Condition C2
simply requires the functionφ(Xmin, N1) to be a one-to-one
function of N1 at Xmin. Condition C3 intuitively states that
the average departure rates should be acontinuousfunction11

of X aroundXmin, and in particular, whenX deviates from
Xmin, these rates should deviate from̄D(Xmin) in a similar
manner. This is in fact expected as increasing the backlog
vector in one dimension should increase the expected departure
rate in that dimension, which can be considered as a result of
the approximation to the GMWM problem through the use of
algorithmA. Note that in C3 where appropriate the vectorX is
normalized by its norm sincēD(X) does not depend on‖X‖.
Finally, C4 simply requires the process{Xt} to be able to
reach all vectors inNN , although what we need for the proof
is a relaxed version of this assumption. Using the numerical
results forφ(Xmin, N1) and D̄

∗(Xmin), and the symmetry
of channel states, it is easy to verify that the conditions C2-
C4 also hold for the examples in Section VI. Therefore, there
are examples for which the conditions C1-C4 hold. Next, we
show that these conditions are sufficient for network instability,
completing the proof of part (c).

First, note thatD̄∗(Xmin) ∈ Γ, which directly follows
from the definition ofD̄∗(Xmin) and Γ. Second, the rate
D̄

∗(Xmin) belongs to the boundary ofΓ, otherwise we
could find another vectorD inside Γ and within a small
neighborhood of̄D∗(Xmin) with larger backlog-rate product,
in contradiction with the definition of̄D∗(Xmin). Hence, we
see that the rateθ∞D̄

∗(Xmin) belongs to the boundary of
θ∞Γ. Third, we can see that by the definition ofθ∞ andXmin

θ∞ =
φ̃(Xmin)

χ(Xmin)
≥ XminD̄(Xmin)

χ(Xmin)
.

This is because DCP may use sub-optimal values forN1,
which by C2 makeXminD̄ less thanφ̃(Xmin) whenNc is
large. Using C1 and the above inequality, we have

θ∞ ≥ ‖D̄(Xmin)‖
‖D̄∗(Xmin)‖

,

11As opposed to traditional definitions which usually useN (X, ǫ) to define
continuity, here, the regionR(X, ǫ) is used to characterize continuity.
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Fig. 4. Illustration of regionsR(Xmin, ǫ), R1, andR2.

which implies that

D̄(Xmin) ≤ θ∞ D̄
∗(X),

where the inequality is component-wise. Without of loss of
generality, we assume that

D̄(Xmin) = θ∞ D̄
∗(X). (27)

Let the input rate be

a = (θ∞ + ς)D̄∗(X), (28)

for someς > 0, which is clearly outside of the regionθ∞Γ.
Let ∆t,n be the drift vector defined by

∆t,n =
1

n

n−1
∑

i=0

At+i −
1

n

n−1
∑

i=0

(Dt+i −Ut+i).

In addition, let

∆̄X = a− D̄(X).

Note that∆̄X does not depend on‖X‖ sinceD̄(X) has the
same property as pointed out earlier. Suppose for a given
ǫ1, the values forβ1 and β2 are chosen such that by C3
if Xt ∈ R(Xmin, ǫ), for appropriately smallǫ, then the
following holds

‖∆̄Xt
− ∆̄Xmin

‖ < ǫ1.

Using Assumption 1, condition C2, channel ergodicity as
stated in Section III-B, and that arrivals are i.i.d, it is not
hard to see that12 whenǫ is sufficiently small, for any positive
ǫ2 and 0 < ζ ≤ 1, we can first chosen large and thenMǫ2

sufficiently large, and define the regionR1 as

R1 = {X : ‖X‖ ≥ Mǫ2,X ∈ R(Xmin, ǫ)}
such that

P
(

‖∆t,n − ∆̄Xt
‖ < ǫ2|Ht,Xt ∈ R1

)

> (1 − ζ), (29)

where in above

∆̄Xt
=

(ς − λ1θ∞)

θ∞ + ς
a− λ2

( Xt

‖Xt‖
−Xmin

)

. (30)

12A similar discussion similar to the one for Property 2 applies here.

Fig. 5. Examples whereXt+ni ∈ R2 explaining cases whereAt+ni,n = 0
as in the pointsX, X1, andX2, and the cases whereAt+ni,n = 1 as in
the pointX3. In this figure, the regionR2 is rotated clockwise.

The above equality is obtained by using condition C3, equality
(27), and considering that the input rate is given by (28). In
particular, we have that

∆̄Xmin
=

ς

θ∞ + ς
a.

Sinceǫ2 can be made arbitrarily small by choosing sufficiently
largen andMǫ2 , we assume that for allX ∈ R1

ξ(∆̄X,N (∆̄X, ǫ2)) <
ξ(Xmin,R(Xmin, ǫ))

2
. (31)

Hence, according to (29) and (31), forXt ∈ R1, with proba-
bility larger than(1 − ζ) the drift ∆t,n is close to∆̄Xt

with
a supremum angular deviation that is half of the supremum
angular deviation ofX’s in R(Xmin, ǫ) from Xmin.

To continue, let the regionR2 be defined as

R2 = {X : X−MXmin ∈ R(Xmin, ǫ)}, (32)

for some M ≥ Mǫ2. This region is a shifted version of
R(Xmin, ǫ) with the origin shifted toMXmin, and therefore,
R2 ⊂ R1. Fig. 4 provides a graphical demonstration of regions
R(Xmin, ǫ), R1, andR2. In the figure, the vectorXmin is
shown by a unit arrow-vector. Now we are in a position to
show that starting atXt = MXmin, for some appropriately
chosenM , with positive probability{Xt+i, i ≥ 0} stays in
R2 with ever growing norm.

Consider the sequence{Xt+ni}∞i=0 with Xt = MXmin.
Recall thatn is chosen sufficiently large according to the value
of ǫ2. Let At+ni,n be a r.v. defined by

At+ni,n =

{

1 if ‖∆t+ni,n − ∆̄Xt+ni
‖ ≤ ǫ2,

0 otherwise

Provided thatXt+ni ∈ R2, whereR2 ⊂ R1, and assuming
a small ǫ1 and a sufficiently largeM , it is not hard to see
that if At+ni,n = 1, then the following hold as a result of
(30) and (31). First,Xt+n(i+1) ∈ R2. Second, the distance of
the vectorXt+n(i+1) from the boundary ofR2 becomes the
distance ofXt+ni plus at leastnδA. Third,

‖Xt+n(i+1)‖ ≥ ‖Xt+ni‖+ nδA,

whereδA is an appropriately small positive constant. Fig. 5
shows the regionR2 rotated clockwise, and provides examples
for the case whereAt+ni,n = 1. Specifically, whenXt+ni

equals one of the pointsX, X1, andX2, the figure assumes the



15

drift vector∆t+ni,n is within theǫ2-neighborhood of̄∆Xt+ni
.

For pointsX1 andX2, the figure also shows the increases in
their distance from the boundary ofR2, and denotes them by
d1 and d2, respectively. These values, as mentioned above,
are lower-bounded bynδA as a result of (30) and (31). To
see this note that, as shown in the figure and suggested by
(30), whenXt+ni deviation fromXmin, i.e., when it deviates
from the central line in the figure, the vector̄∆Xt+ni

gets a
component towards the central line. This and the assumption
that the angular deviations in theǫ2-neighborhoods are less
than half of the one defining regionR2, as assumed in (31),
ensure that aftern steps the backlog vector remains inR2,
and that the distance from the boundary ofR2 increases when
At+ni,n = 1. Using a similar argument, it is easy to see that
whenǫ1 is small, an event of the typeAt+ni,n = 1 increases
the norm of backlog vector more thannδA. On the other hand,
if At+ni,n = 0 with at most probabilityζ, both the distance
of Xt+n(i+1) from R2 and ‖Xt+n(i+1)‖, compared to the
distance ofXt+ni and‖Xt+ni‖, respectively, decrease at most
by n

√
2(Amax+Dmax). In Fig. 5, the pointX3 is an example

of this case, where the vector∆t+ni,n can be anywhere inside
the outer circle, centered atX3, but outside the inner circle
defining theǫ2-neighborhood of the vectorX3 + n∆̄X3 .

In the rest of the proof, as the worst case, we assume that
for Xt+ni ∈ R2, i ≥ 0, the event{At+ni,n = 1} occurs with
probability (1 − ζ). Note thatR2 ⊂ R1, and whenXt+ni ∈
R2, the inequality (29) holds regardless of the past history
Ht+ni. Let the event thatAt+ni,n = 1 be a success. Based
on the previous assumption, forXt+ni ∈ R2, this success
event occurs with probability(1 − ζ) regardless of the past.
Now consider the sequence{Xt+ni}, 0 ≤ i ≤ m− 1, and let
m(1−ζ) be the number successes of the type{At+ni,n = 1}
out of them associated trials. The above observations imply
that if Xt+ni ∈ R2, for 0 ≤ i ≤ m− 1, and if

(m−m(1−ζ))
√
2(Amax +Dmax) < m(1−ζ)δA,

thenXt+nm ∈ R2, and

‖Xt+nm‖ ≥ ‖Xt‖+m(1−ζ)nδA

− (m−m(1−ζ))n
√
2(Amax +Dmax).

Using the above, we see that a sufficient condition for the
sequence{Xt+nm,m ≥ 1} to stay withinR2, and

‖Xt+nm‖ ≥ ‖Xt‖+ n m ǫ3(δA +
√
2(Amax +Dmax)),

(33)

for someǫ3 with

ǫ3 <
δA√

2(Amax +Dmax) + δA

is that for allm ≥ 1,

rm , 1− m(1−ζ)

m

<
δA√

2(Amax +Dmax) + δA
− ǫ3. (34)

In what follows, we show that with positive probability the
above inequality holds for allm ≥ 1.

Starting atMXmin, let τR2 be the first time that the ratio
rm does not satisfy (34). Consider the sequence

{At+nm,n, 0 ≤ m ≤ τR2 − 2}. (35)

For 0 ≤ m ≤ τR2 − 1, the discussion leading to (33) and
(34) implies thatXt+nm ∈ R2. Furthermore, this discussion
shows that the sequence can be considered as a truncated
Bernoulli process with success probability(1−ζ). An intuitive
yet important observation is that for an infinite sequence of
Bernoulli trials{Bi, i ≥ 0} with success probability(1 − ζ),
for any given ǫ4 > 0, with positive probability the ratio
of failures never reachesζ + ǫ4. This is the key to prove
τR2 = ∞, or equivalently, (34) holds for allm ≥ 1, with
positive probability. Let the notationrm be re-used as the
failure ratio for the infinite Bernoulli process, i.e.,

rm = 1− 1

m

m
∑

i=1

Bi.

Using large deviation results [34], we have

P (rm − ζ > ǫ4) < ρm, (36)

where

ρ = inf
s>0

MZζ
(s) < 1,

whereZζ = 1−B1− ζ− ǫ4, andMZζ
(s) is the characteristic

function of Zζ . The above inequality indicates that with
probability at least(1 − ρm), the ratio of failures afterm
trials is less than or equal toζ + ǫ4.

To further studyrm, we consider the infinite Bernoulli
process in a sequence of stages. In the first and second stages,
we considerm Bernoulli trials. However, after the second
stage, for theith stage, we consider the next subsequent2i−2m
trials. Since trials are independent, with probability(1− ζ)m,
we can have only successes for the firstm trials, and thus, the
ratio rm never goes beyond zero, i.e.,

rj = 0, 1 ≤ j ≤ m.

For the second stage with the nextm trials, using (36), we
see that with probability at least(1− ζ)m(1− ρm)

max
0≤j≤2m

rj ≤
0 +m(ζ + ǫ4)

m+m(ζ + ǫ4)
< 2(ζ + ǫ4),

where the first inequality refers to the worst case where in the
second stage ofm trials, the failures happen in the beginning
of the stage, i.e., when the(m+1)th, (m+2)th,..., and(m+
m(ζ + ǫ3))th trials are all failures. Inductively, considering
the (l + 2)th stage, we see that with probability at least(1 −
ζ)mΠl

p=0(1 − ρ2
pm)

max
1≤j≤2(l+1)m

rj ≤
(2l+1 − 1)m(ζ + ǫ4)

2lm+ 2lm(ζ + ǫ4)
< 2(ζ + ǫ4), (37)

where the numerator is the total number of failures up to the
end of(l+2)th stage, and the denominator corresponds to the
worst case where the failures in the(l+2)th stage all occur in
the beginning of the stage. Therefore, with probability at least

pζ = (1− ζ)mΠ∞
p=0(1 − ρ2

pm)
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the ratiorm, m ≥ 1, always stays below2(ζ + ǫ4). But

pζ > (1− ζ)mΠ∞
p=0(1 − (ρm)p+1).

This and Lemma 5 indicate that

pζ > 0.

The above discussion implies that with a positive probabil-
ity, not less thanpζ , the ratiorm associated with the sequence
in (35) stays below2(ζ + ǫ4). Hence, ifζ and ǫ4 are chosen
such that

ζ + ǫ4 <
1

2

( δA√
2(Amax +Dmax) + δA

− ǫ3

)

, (38)

then starting atXt = MXmin, the inequality in (34) holds for
all m ≥ 1 with positive probability. Since this latter statement
can be generalized to the case whereXt ∈ R2, we have that

P (∀m ≥ 0, Xt+nm ∈ R2 and (33) holds|Xt ∈ R2) > 0
(39)

if (38) holds. But (38) can be satisfied since the choice for a
positive ǫ4 is arbitrary, and as mentioned in the discussion
leading to (29),ζ can be chosen arbitrarily small. Hence,
for an appropriate choice of parameters, (39) holds, which
suggests that with positive probabilityXt+nm stays inR2,
and its norm increases (at least) linearly withm. Since by
C4 with positive probabilityXt ∈ R2 for some t, and
arrivals and departures are bounded implying for0 ≤ j ≤ n,
‖Xt+mn−j‖ ≥ ‖Xt+nm‖ − C, for someC > 0, we see that
(39) indicates that with positive probability

lim
i→∞

‖Xt+i‖ = ∞.

This shows that when the input rate is given by (28), and thus,
when it is outside the regionθ∞Γ, for any bounded regionC,
with positive probability the processXt+i never returns to
C, and hence,E[τC ] = ∞, implying network instability. This
completes the proof of part (c) of the theorem.

APPENDIX

LEMMAS

Lemma 1:For anyǫ > 0, regardless of the past historyHt,
there exists a sufficiently largeKǫ such that for alls ∈ S and
K > Kǫ

∣

∣

∣E
[

(τK + 1)π(s)−
τK
∑

k=0

1s(t+k)=s

∣

∣Ht

]

∣

∣

∣ < ǫE
[

(τK + 1)|Ht

]

.

Proof: Since τi+1 − τi > 2Nc, it is easy to verify
that τK → ∞, a.s., as K → ∞. This almost surely
convergence and the ergodicity of channel process, as stated
in Section III-B, imply that asK → ∞

1

τK + 1

τK
∑

k=0

1s(t+k)=s → π(s), a.s. (40)

Moreover, since the channel convergence in Section III-B is
uniform in the past history andt, and since the number of
channel states is finite, we see that the above convergence is
uniform in t, Ht, and s. Thus, for anyǫ

′

> 0 and ζ > 0,

we can find a sufficiently largeKǫ′ ,ζ independent of the past
historyHt ands such that [29]

P ( sup
K>K

ǫ
′
,δ

|π(s)− 1

τK + 1

τK
∑

k=0

1s(t+k)=s| > ǫ
′ |Ht) < ζ.

(41)

Given Ht, let AK
ǫ
′
,ζ
,ǫ′ denote the set of allω ∈ Ω with the

property that

sup
K>K

ǫ
′
,δ

|π(s) − 1

τK + 1

τK
∑

k=0

1s(t+k)=s| > ǫ
′

.

By (41), we have that

P (AK
ǫ
′
,ζ
,ǫ′ |Ht) < ζ. (42)

SupposeK > Kǫ′ ,ζ and let

∆ = E

[

(τK + 1)π(s)−
τK
∑

k=0

1s(t+k)=s

∣

∣Ht

]

.

Using conditional expectations and the definition ofAK
ǫ
′
,ζ
,ǫ′ ,

and considering the fact that0 ≤ π(s) ≤ 1 and τK ≥ 0, we
can show that

∆ ≤ P
(

ω /∈ AK
ǫ
′
,ζ
,ǫ′
)

E
[

ǫ
′

(τK + 1) |ω /∈ AK
ǫ
′
,ζ
,ǫ′ ,Ht

]

+ P
(

ω ∈ AK
ǫ
′
,ζ
,ǫ′
)

E
[

(τK + 1) |ω ∈ AK
ǫ
′
,ζ
,ǫ′ ,Ht

]

(43)

Similarly, we obtain

E
[

(τK + 1)|Ht

]

= P
(

ω /∈ AK
ǫ
′
,ζ
,ǫ′
)

E
[

(τK + 1) |ω /∈ AK
ǫ
′
,ζ
,ǫ′ ,Ht

]

+ P
(

ω ∈ AK
ǫ
′
,ζ
,ǫ′
)

E
[

(τK + 1) |ω ∈ AK
ǫ
′
,ζ
,ǫ′ ,Ht

]

.

SinceτK ≥ 0, the above implies that

P
(

ω /∈ AK
ǫ
′
,ζ
,ǫ′
)

E
[

(τK + 1) |ω /∈ AK
ǫ
′
,ζ
,ǫ′ ,Ht

]

≤ E
[

(τK + 1)|Ht

]

(44)

In addition, w.p.1,τK+1 ≤ (K+1)(1+L1)Nc. It thus follows
from (42), (43), and (44) that

∆ ≤ ǫ
′

E
[

(τK + 1)|Ht

]

+ ζ(K + 1)(1 + L1)Nc

Noting the fact thatτK ≥ 2KNc, we obtain

∆ ≤ E
[

(τK + 1)|Ht

]

(

ǫ
′

+ ζ
(K + 1)(1 + L1)Nc

E
[

(τK + 1)|Ht

]

)

< E
[

(τK + 1)|Ht

]

(

ǫ
′

+ ζ
(K + 1)(1 + L1)Nc

2KNc + 1

)

= ǫE
[

(τK + 1)|Ht

]

,

where

ǫ = ǫ
′

+ ζ
(K + 1)(1 + L1)Nc

2KNc + 1

can be made arbitrarily small by choosing sufficiently small
values forǫ

′

and ζ. A similar discussion holds for−∆ with
the sameǫ, completing the proof.



17

Lemma 2:For any givenǫ > 0, there exists a sufficiently
large constantKǫ > 0 such that for allK > Kǫ, we can find
a properMǫ,K such that if‖Xt‖ > Mǫ,K, the following holds

E[

τK
∑

k=0

Xta−Xt+kD
∗
t+k|Ht]

≤ E

[

(τK + 1)‖Xt‖
(

ǫ−
(

1−max
s∈S

∑

I∈I
βs,I

)

χ(Xt)
)

∣

∣Ht

]

Proof: To prove the lemma, we first note that by the
definition of D∗(Xt, s), and the assumption that departures
are bounded byDmax, we have

Xt+kD
∗
t+k = max

I∈I
Xt+kD(st+k, I)

≥ max
I∈I

XtD(st+k, I)−max
I∈I

(

k−1
∑

i=0

Dt+iD(st+k, I)
)

≥ max
I∈I

XtD(st+k, I)− kND2
max. (45)

Using (11), we also observe that

Xta− Es[XtD
∗(Xt, s)]

= Xt

∑

s∈S
π(s)

∑

I∈I
βs,ID(s, I)−

∑

s∈S
π(s)XtD

∗(Xt, s)

=
∑

s∈S
π(s)

(

∑

I∈I
βs,I

(

XtD(s, I)−XtD
∗(Xt, s)

)

−
(

(

1−
∑

I∈I
βs,I

)

XtD
∗(Xt, s)

)

)

. (46)

Since by definition for allI ∈ I

XtD
∗(Xt, s) ≥ XtD(s, I),

we have

Xta− Es[XtD
∗(Xt, s)]

≤ −
∑

s∈S
π(s)

(

1−
∑

I∈I
βs,I

)

XtD
∗(Xt, s)

≤ −
(

1−max
s∈S

∑

I∈I
βs,I

)

∑

s∈S
π(s)XtD

∗(Xt, s)

= −‖Xt‖
(

1−max
s∈S

∑

I∈I
βs,I

)

χ(Xt), (47)

where the last equality follows from the definition ofχ(Xt).
Back to the inequality in the lemma, using (45), we have

E
[

τK
∑

k=0

Xta−Xt+kD
∗
t+k|Ht

]

≤ E
[

(τK + 1)2ND2
max|Ht

]

+ E

[

τK
∑

k=0

(

Xta−Xt

∑

s∈S
1s(t+k)=sD

∗(Xt, s)
) ∣

∣Ht

]

= E
[

(τK + 1)2ND2
max|Ht

]

+ E

[

τK
∑

k=0

Xta−Xt

∑

s∈S
D

∗(Xt, s)

τK
∑

k=0

1s(t+k)=s

∣

∣Ht

]

.

Using Lemma 1, forǫ1 > 0 and sufficiently largeK1, we have
that forK > K1

E
[

τK
∑

k=0

Xta−Xt+kD
∗
t+k|Ht

]

≤ E
[

(τK + 1)2ND2
max|Ht

]

+ E

[

(τK + 1)Xta

− (τK + 1)Xt

∑

s∈S
D

∗(Xt, s)(π(s)− ǫ1)
∣

∣Ht

]

= E
[

(τK + 1)2ND2
max|Ht

]

+ ǫ1E
[

(τK + 1)‖Xt‖|S|
√
NDmax

∣

∣Ht

]

+ E

[

(τK + 1)
(

Xta− Es

[

XtD
∗(Xt, s)

]

)

∣

∣Ht

]

. (48)

Combining (47) and (48), we obtain the inequality in lemma
with

ǫ =
(τK + 1)ND2

max

‖Xt‖
+ ǫ1|S|

√
NDmax.

The choice for a positiveǫ is arbitrary since one can first select
Kǫ ≥ K1 such that for allK > Kǫ, ǫ1 is sufficiently small.
After selectingK, because w.p.1τK+1 ≤ (K+1)(1+L1)Nc,
one can choseMǫ,K such that for‖Xt‖ > Mǫ,K the first term
in ǫ is also sufficiently small, completing the proof.

Lemma 3:For any givenǫ > 0, there exists a sufficiently
large constantKǫ > 0 such that for allK > Kǫ, we can find
a properMǫ,K such that if‖Xt‖ > Mǫ,K , the following holds

E
[

τK
∑

i=0

Xt+iD
∗
t+i|Ht

]

≤ E

[

(τK + 1)‖Xt‖
(

χ(Xt) + ǫ
)∣

∣Ht

]

.

Proof: Using the definition ofD∗(X, s), for the LHS of
the inequality in the lemma we can show that

LHS = E

[

τK
∑

i=0

max
I∈I

(

(

Xt +

i−1
∑

j=0

(At+j −Dt+j +Ut+j)
)

D(st+i, I)
)

∣

∣Ht

]

.

Since arrivals and departures are bounded byAmax andDmax,
respectively, we have that

LHS ≤ E
[

τK
∑

i=0

XtD
∗(Xt, st+i) |Ht

]

+ E

[

τK
∑

i=0

iNAmaxDmax +

τK
∑

i=0

iND2
max

∣

∣Ht

]

. (49)

Let Σ be the first term of the RHS of the above inequality.
We have

Σ = E

[

τK
∑

i=0

∑

s∈S
XtD

∗(Xt, s)1s(t+i)=s

∣

∣Ht

]

= Xt

∑

s∈S
D

∗(Xt, s)E
[

τK
∑

i=0

1s(t+i)=s|Ht

]

.
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Using Lemma 1, for any positiveǫ1, we can find a sufficiently
largeK1 such that forK > K1

Σ ≤ Xt

∑

s∈S
D

∗(Xt, s)E
[

(τK + 1)
(

π(s) + ǫ1
) ∣

∣Ht

]

= E

[

(τK + 1)
∑

s∈S
π(s)XtD

∗(Xt, s)

+ ǫ1|S|
√
N‖Xt‖Dmax(τK + 1)

∣

∣Ht

]

= E

[

(τK + 1)‖Xt‖
(

χ(Xt) + ǫ1
√
N |S|Dmax

)

∣

∣Ht

]

,

(50)

where the last equality follows from the definition ofχ(Xt).
Considering inequalities (49) and (50), we obtain

LHS ≤ E

[

(τK + 1)‖Xt‖
(

χ(Xt) + ǫ2
)∣

∣Ht

]

, (51)

where

ǫ2 = ǫ1|S|
√
NDmax + (τK + 1)N

AmaxDmax +D2
max

‖Xt‖
.

To complete the proof, it remains to show thatǫ2 can be made
arbitrarily small. Consider any positiveǫ. We first chooseKǫ

such that forK > Kǫ the value ofǫ1 is sufficiently small
to make the first term inǫ2 less than ǫ

2 . Since τk + 1 ≤
(K +1)(1+L1)Nc, we see that for a givenK with K > Kǫ

if ‖Xt‖ > Mǫ,K for a sufficiently largeMǫ,K , then the second
term in ǫ2 can also be less thanǫ2 . Therefore, for any positive
ǫ, if K > Kǫ and ‖Xt‖ > Mǫ,K, for appropriate values of
Kǫ andMǫ,K , then the inequity (51) holds withǫ2 < ǫ. But
this means the inequality also holds forǫ, as required.

Lemma 4:Suppose6θϕ < α, and letǫ be a positive real
number. For any givenǫ, there exists a constantKǫ such that
if K > Kǫ, then for‖Xt‖ > Mǫ,K the following holds

E
[

τK
∑

i=τ0+1

Xt+iDt+i|Ht

]

≥ E

[

(τK + 1)‖Xt‖
(

R∞(φ̃(t)− α− 3θϕ)− ǫ
)∣

∣Ht

]

,

whereMǫ,K is a sufficiently large constant depending onǫ
andK, andR∞ is defined in (8).

Proof: The essence of the proof in this lemma is finding
a lower-bound for the percentage of time thatnear optimal
values forN1 are used by DCP. We prove that this percentage
is close to R∞. First, we place a requirement on‖Xt‖
for a givenK. Later in the proof, we find an appropriate
lower-boundKǫ for K according to the value ofǫ. Note
that w.p.1, for any givenK, τK ≤ (K + 1)(1 + L1)Nc.
Therefore, since departures and arrivals are bounded byDmax

andAmax, respectively, we can easily see that for0 ≤ i ≤ τK ,
‖Xt+i − Xt‖ < C

′

K , whereC
′

K is an appropriate constant
depending onK. Having this inequality, we can find an
appropriate constantM

′

K , depending onK, such that if

‖Xt‖ > M
′

K , (52)

then the following statements hold according to Property 1
and Property 2, respectively, withǫ1 < 1

2 (
α
6 − θϕ).

Statement 1:For t ≤ t1 ≤ t + τK , t ≤ t2 ≤ t + τK , and
anyN1 ∈ N1,

|φ(Xt1 , N1)− φ(Xt2 , N1)| < ǫ1. (53)

Statement 2:For anyτi, with 0 ≤ i ≤ K, and anyN1 ∈
N1, with probability(1−̺ϕ), and regardless ofi and the past
history at timet+ τi + 1, Ht+τi+1, we have

|ϕr(t+ τi + 1)−
φ(t + τi + 1, N r

1 (t+ τi + 1)| < θϕ + ǫ1. (54)

Similarly, with probability(1 − ̺ϕ), and regardless ofi and
the past history at timet+ τi+1+Nc, Ht+τi+1+Nc

, we have

|ϕ(t+ τi + 1)−
φ(t+ τi + 1 +Nc, N1(t+ τi + 1))| < θϕ + ǫ1. (55)

Remark 1:Property 2 states inequalities in Statement 2 may
hold in general withdifferent probabilities all not less than
(1 − ̺ϕ). However, to consider theworst caseanalysis, in
Statement 2, we have assumed these inequalities, with the
given conditions, hold with thesameprobability (1− ̺ϕ) for
all i, where0 ≤ i ≤ K.

Remark 2:Consider thei+1th and thej+1th rounds, where
0 ≤ i, j ≤ K and i 6= j. Since inequalities (54) and (55) in
Statement 2 may hold in thei + 1th round with probability
1 − ̺ϕ regardless ofHt+τi+1 andHt+τi+1+Nc

, respectively,
Statement 2 implies that the event that (54) or the one that (55)
holds in thei+1th round is independent of the inequality (54)
or (55) holding in thej+1th round. In addition, the event that
(54) holds in thei+1th round is independent of (55) holding
in the same round.

Before going to the main part of the proof, we first derive
two key inequalities. To obtain the first one, note that for any
two time instantst1 and t2, with t ≤ t1 ≤ t + τK and t ≤
t2 ≤ t+ τK , using (53), we have that

|φ(t1, Ñ1(Xt1))− φ(t2, Ñ1(Xt1))| < ǫ1, (56)

and

|φ(t1, Ñ1(Xt2))− φ(t2, Ñ1(Xt2))| < ǫ1.

By the definition ofÑ1(X) and the inequality in (56), we have

φ(t1, Ñ1(Xt1))− φ(t2, Ñ1(Xt2 ))

≤φ(t1, Ñ1(Xt1))− φ(t2, Ñ1(Xt1)) < ǫ1

We can obtain the other direction of the inequality similarly.
Thus,

|φ(t1, Ñ1(Xt1))− φ(t2, Ñ1(Xt2))| < ǫ1. (57)

This inequality shows that when backlog vector has a large
absolute value, the optimalφ does not vary significantly in
a limited time horizon. In particular, the variation approaches
zero when‖Xt‖ approaches∞.

To derive the second key inequality, first note that based
on the definition ofτi given in the proof of part(a) of the
theorem, thei+1th round after timet begins att+τi+1, and
the time interval betweent+ τ0 + 1 and t+ τK + 1 consists
of K scheduling rounds. To simplify the notation, let̃N1 be
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the optimal value ofN1 for the first round after timet, i.e.,
Ñ1 = Ñ1(Xt+τ0+1). In addition, letN r

1 (j) be the candidate
value forN1 in the j + 1th round, and letN1(j) be the value
of N1 used in the update interval of thej + 1th round, i.e.,
N r

1 (j) = N r
1 (t+ τj + 1), andN1(j) = N1(t+ τj + 1).

Now, consider thei+1th round,i ≥ 0, and suppose the op-
timal N1 is selected at this round, i.e.,N r

1 (i) = Ñ1(Xt+τi+1).
Let N̂1 = Ñ1(Xt+τi+1). Then the inequality in (54) and the
preceding inequality imply that with probability(1− ̺ϕ)

|ϕr(t+ τi + 1)− φ(t+ τ0 + 1, Ñ1)| < 2ǫ1 + θϕ. (58)

Let

ǫ′ = 2ǫ1 + θϕ. (59)

Based on the assumption6θϕ < α imposed by the Lemma
and thatǫ1 < 1

2 (
α
6 − θϕ), we have

0 < 6ǫ′ < 6
(

(
α

6
− θϕ) + θϕ

)

= α. (60)

The inequality (58) is the second key inequality required for
the rest of the proof.

We are now in a position to explain the essence of the proof,
where we find a lower-bound for the fraction of time in the
horizon ofK rounds in which near optimal values forN1 are
used. Towards this end, we first assume that the inequalitiesin
(54) and (55) hold with probability one for allK scheduling
rounds, thus assuming̺ϕ = 0 in Statement 2. We then extend
our discussion to realistic cases where̺ϕ > 0.

Discussion assuming ̺ϕ = 0 : Suppose at thei + 1th

round, i ≥ 1, the optimalN1 corresponding toXt+τi+1 is
selected, i.e.,N r

1 (i) = N̂1 = Ñ1(Xt+τi+1). Considering the
scheduling policy, with respect to the update ofN1 in i+ 1th

scheduling round, there are two possible cases:

Case 1:In this case, we assumeϕr(t+τi+1) > ϕ(t+τi−1+
1)+α. Thus, according to the update rule,N1 gets updated at
the i + 1th round, and takes the valueN1(i) = N r

1 (i) = N̂1.
However, it remains unchanged until the theK + 1th round.
We can prove this statement by induction. To see this, assume
that N1 remains fixed after thei + 1th but changes for the
first time in thejth + 1 round, wherej > i. Therefore, by the
update rule, we must have

ϕr(t+ τj + 1) > ϕ(t+ τj−1 + 1) + α. (61)

Since

|φ(t+ τj + 1, N r
1 (j))− φ(t + τ0 + 1, N r

1 (j))| < ǫ1,

and

|ϕr(t+ τj + 1)− φ(t+ τj + 1, N r
1 (j))| < θϕ + ǫ1,

which follow from (53) and (54), respectively, and the assump-
tion that̺ϕ = 0, we have

ϕr(t+ τj + 1) < φ(t+ τ0 + 1, N r
1 (j)) + 2ǫ1 + θϕ

≤ φ(t+ τ0 + 1, Ñ1) + ǫ′, (62)

where the last inequality follows from the definition of̃N1.

Similarly, since by assumptionN(j− 1) = N̂1, we can use
(53) and (55) to show that

|ϕ(t+ τj−1 + 1)− φ(t + τi + 1, N̂1)| < ǫ′.

Considering this inequality and (57), we obtain

ϕ(t+ τj−1 + 1) > φ(t + τ0 + 1, Ñ1)− ǫ′ − ǫ1. (63)

Finally, considering (61), (62), and (63), we obtain

φ(t+ τ0 + 1, Ñ1) + ǫ′ >

φ(t+ τ0 + 1, Ñ1)− ǫ′ − ǫ1 + α,

which implies that2ǫ′ + ǫ1 > α. This is in contradiction with
(60) stating that6ǫ′ < α. Therefore,N1(j) = N̂1 for i ≤ j ≤
K − 1, proving the claim.

A byproduct of the above discussion is that after theith
round,ϕ(t + τj + 1) stays close toφ(t + τ0 + 1, Ñ1). More
precisely, sinceN1(j) = N̂1 for i ≤ j ≤ K − 1, we have

|ϕ(t+ τj + 1)− φ(t+ τj + 1, N̂1))| < θϕ + ǫ1.

Moreover, from (53) we have

|φ(t+ τj + 1, N̂1)− φ(t+ τi + 1, N̂1)| < ǫ1.

Using the last two inequalities and (57) , fori ≤ j ≤ K − 1,
we obtain

|ϕ(t+ τj + 1)− φ(t+ τ0 + 1, Ñ1)| < ǫ′ + ǫ1, (64)

which shows how close isϕ(t+ τj +1) to φ(t+ τ0 +1, Ñ1).
Case 2: In this case, we assumeϕr(t + τi + 1) ≤ ϕ(t +

τi−1+1)+α. Taking similar steps as in Case 1, we can show
that

φ(t+ τ0 + 1, Ñ1)− ǫ′ ≤ ϕr(t+ τi + 1)

and

ϕ(t+ τi−1 + 1) ≤ φ(t+ τ0 + 1, N1(i− 1)) + ǫ′,

Hence, using the assumption, we obtain

φ(t+ τ0 + 1, Ñ1)− 2ǫ′ − α ≤ φ(t+ τ0 + 1, N1(i− 1)).
(65)

We next show thatN1 gets updated at most once in the rest of
K−(i+1) rounds. Let thej1+1th round, fori < j1 ≤ K−1,
be the first round after thei+1th round thatN1 gets updated.
Using similar arguments as the ones in Case 1, we have

ϕr(t+ τj1 + 1) < φ(t+ τ0 + 1, N r
1 (j1)) + ǫ′.

and

ϕ(t+ τj1−1 + 1) > φ(t+ τ0 + 1, N1(i− 1))− ǫ′,

where in the above we have used the assumption thatN1 does
not change before thej1+1 round, and thus have setN1(j1−
1) = N1(i − 1). SinceN1 gets updated at thej1 + 1th, we
haveN1(j) = N r

1 (j). Using this, the update rule, and the last
two inequalities, we have

φ(t+ τ0 + 1, N1(i − 1))− ǫ′ + α

< φ(t+ τ0 + 1, N1(j1)) + ǫ′
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This inequality and (65) yield

φ(t + τ0 + 1, Ñ1)− 4ǫ′ < φ(t+ τ0 + 1, N1(j1)). (66)

Similarly, if there existsj1 < j2 ≤ K−1, such that att+τj2+
1, N1 becomes updated for the second time, we can show that

φ(t + τ0 + 1, N1(j1))− ǫ′ + α

< φ(t+ τ0 + 1, N1(j2)) + ǫ′.

In other words,

φ(t+ τ0 + 1, N1(j1)) + α− 2ǫ′

< φ(t+ τ0 + 1, N1(j2)).

Therefore, every time thatN1 becomes updated, the algorithm
finds a better estimate forφ(t+τ0+1, Ñ1). More specifically,
after each update, the gap betweenφ(t+ τ0 + 1, N1(jk)) and
φ(t + τ0 + 1, Ñ1) is decreased by(α − 2ǫ′) > 2

3α. However,
(65) shows that the initial gap isα + 2ǫ′, which is less than
or equal to 4

3α. Therefore,N1 can be updated at most once
in the rest ofK − i− 1 scheduling rounds.

In this case, similar to what we observed in Case 1,ϕ(t+
τj + 1) stays close toφ(t+ τ0 +1, Ñ1). To see this, consider
a scheduling round, e.g.,j + 1th for i ≤ j ≤ K − 1 round,
whereN1(i− 1) is used. By (53) and (55), we have

|ϕ(t + τj + 1)− φ(t+ τ0 + 1, N1(i− 1))| < ǫ′.

Considering the above inequality and (65), we obtain

|ϕ(t+ τj + 1)− φ(t+ τ0 + 1, Ñ1)| < α+ 3ǫ′. (67)

In the same manner, if instead ofN1(i−1) an updated version
of N1 is used in an scheduling round, we can use the inequality
in (66) to show that the above inequality still holds. Hence,
the inequality in (67) holds for allj with i ≤ j ≤ K−1 since,
as proved earlier,N1 becomes updated at most once.

Combining the inequality (64) associated with Case 1
and the inequality (67) associated with Case 2, we see that
regardless of which case happens, the following holds for
i ≤ j ≤ K − 1:

|ϕ(t+ τj + 1)− φ(t+ τ0 + 1, Ñ1)| < γ, (68)

where

γ = α+ 3ǫ′. (69)

Inspired by the above inequality, we now define a new
random variableRK as the percentage of time that “near
optimal” solution is used in the time horizon consisting ofK
rounds. By near optimal in a scheduling round, e.g., thej+1th

round, we mean a choice ofN1 that ensuresϕ(t+ τj + 1) is
close toφ(t + τ0 + 1, Ñ1) in the sense of (68). Intuitively, a
largerRK results in a larger scaling factor, and thus, a better
throughput performance. In the following, using the preceding
discussions provided in Case 1 and Case 2, we find a lower
bound forRK .

As explained in Section IV-B, in the beginning of each
round, e.g., thej + 1th round, the optimalN1, correspond-
ing to Xt+τj+1, is chosen independently with probabilityδ.
Therefore, we see that with probability(1− δ)i−1δ, after the
first round, the optimal solution is selected for the first time in

the i+1th round,i ≥ 1. Suppose this event happens ati+1th

round, i ≥ 1. If Case 1 happens, we can partition the time
interval betweent+ τ0+1 andt+ τK +1 into three sets. The
first set consists of all test intervals. The second set consists
of the update intervals before thei + 1th round. Finally, the
third set consists of the update intervals after theith round.
Considering these sets in sequence, we can express the total
number of timeslots betweent+ τ0 + 1 and t+ τK + 1 by

KNc +

i−1
∑

j=0

NcN3(j)

+

K−i
∑

j=1

Nc min(max(1,
N3(i− 1)

2
)2j−1, L1), (70)

whereN3(j) = N3(t+τj+1). To obtain the above expression,
we have used the fact that when Case 1 happens, according
to the update rule, at thei + 1th roundN3(i) becomes half
of the previous value forN3, but keeps doubling for each
following round. Recalling that (68) holds after theith round,
andN3(j) ≤ L1, we can use (70) to show that forK > i+1,
w.p.1,

RK ≥
2 +

∑K−i−1
j=1 min(2j−1, L1)

K + iL1 + 2 +
∑K−i−1

j=1 min(2j−1, L1)
.. (71)

For a given fixedi, the above fraction approachesL1

1+L1

as K approaches∞. Therefore, for any given positiveǫ2,
we can chooseK sufficiently large such that for alli with
1 ≤ i ≤ imax, the above fraction is larger thanL1

1+L1
− ǫ2.

Applying a similar argument to the second case, we can find a
sufficiently largeK such that the fraction of time over which
the near optimal solution is used is larger thanL1

1+L1
− ǫ2. In

addition, we can selectimax such that for a given positiveζ1
imax
∑

i=1

(1 − δ)i−1δ > 1− ζ1.

Hence, ifK is sufficiently large, with probability larger than
1− ζ1, we have

RK ≥ (
L1

1 + L1
− ǫ2). (72)

This is an interesting observation. Since the choices forǫ2
andζ1 are arbitrary, this observation implies that in the limit of
large backlog vectors, the policy keeps the network operating
at near optimal points for at leastL1

1+L1
fraction of time. Hence,

in the limit, at most only the time for selecting new values for
N1 and observing their performance iswasted, which con-
stitues 1

1+L1
fraction of total time. Recall that near optimality

is defined in (68), andφ(t + τ0 + 1, Ñ1) = φ̃(Xt+τ0+1), we
therefore, as a result of the preceding inequality, expect the
limiting scaling factor of the capacity region to be a function
of φ̃(X), and be proportional to L1

1+L1
.

Note that to obtain the above results, in particular those
mentioned in Case 1 and Case 2, we assume that the inequal-
ities in (54) and (55) hold for allK scheduling rounds after
time t. Therefore, the above discussion forRK holds only for
the limiting case of̺ ϕ = 0. In the following, we extend the
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preceding discussions for a realistic situation where̺ϕ > 0,
and obtain a general lower bound forRK .

Discussion assuming ̺ϕ > 0 :We start by assuming that

‖Xt‖ > M ′′
K > M ′

K , (73)

for a sufficiently largeM ′′
K such that for a givenC, C ≫ 1,

Statement 1 holds for all timest1 andt2 greater thant−1 and
less thant+τ(K+2)C+1, and Statement 2 holds for alli with
0 ≤ i ≤ (K + 2)C. We partition the time betweent+ τ0 + 1
andt+ τ(K+2)C + 1 into a set ofperiods, where each period
consists of several scheduling rounds. For the simplicity of
discussion, we assume that the first period always starts at
t+ τ0 + 1.

Corresponding to each period, e.g. thejth period, we define
apositiver.v. iδ,j. This r.v. takes valuei, i > 0, if the following
conditions are met. First, in thei+1th round of thejth period,
for the first time in that period the optimal value forN1 is
selected. Second, the inequality (54) holds forϕr at thei+1th

round as well as (55) forϕ at the ith round, both in thejth

period. Third,i equalsC − 1 if the last two conditions do not
hold for any of the second to the(C − 2)th rounds in thejth

period. Recall that the optimalN1 is chosen independently in
each round with probabilityδ. Thus, using Remark 2 withK
replaced with(K+2)C, we see thatiδ,j becomes a truncated
geometric r.v. with success probability

δ′ = (1− ̺ϕ)
2δ, (74)

and with the property that

P (iδ,j = C − 1) = 1−
C−2
∑

i=1

δ′(1− δ′)i−1. (75)

Similarly, corresponding to thejth period, we define anon-
negativer.v. denoted byiϕ,j that is zero ifiδ,j = C − 1, and
otherwise, is the number of consecutive rounds immediately
following the iδ,j th round in thejth period for all of which the
inequalities in (54) and (55) hold. Similar toiδ,j, we limit iϕ,j

to be upper-bounded byC−1. We do so by lettingiϕ,j = C−1
if for all C−1 rounds after theiδ,j th round (54) and (55) hold.
Using this definition ofiϕ,j, and Remark 2 withK replaced
with (K + 2)C, it is easy to see that

P (iϕ,j = 0|iδ,j = C − 1) = 1, (76)

P (iϕ,j = 0|iδ,j 6= C − 1) = ̺ϕ (77)

and

P (iϕ,j = k|iδ,j 6= C − 1)

= (1− ̺ϕ)
2k−1(1− (1 − ̺ϕ)

2), 1 ≤ k ≤ C − 2,
(78)

and by the boundedness ofiϕ,j,

P (iϕ,j = C − 1|iδ,j 6= C − 1)

= 1−
C−2
∑

k=0

P (iϕ,j = k|iδ,j 6= C − 1)

= (1 − ̺ϕ)
2(C−1)−1. (79)

To complete the characterization of periods, we define the
last round in thejth period to be the one immediately following

the iδ,j + iϕ,j th round in thejth period. This indicates that the
jth period consists ofiδ,j + iϕ,j + 1 rounds, and thus by the
definition of iδ,j and iϕ,j, its length is always less than2C.

Having introduced periods, we now define the sequence
{pj}∞j=0, with p0 = 0, as a subset of indices such thatτpj

,
j ≥ 1, is the number of timeslots form timet to the last
timeslot in the jth period. By definition, therefore, thejth

period,j ≥ 1, starts att+ τpj−1 + 1 and ends att+ τpj
+ 1.

Let iK be number of periods that are completely contained in
theK rounds after timet, i.e.,

iK = max{j : pj < K, j ≥ 0}. (80)

By virtue of the definitions for a scheduling period,iδ,j, and
iϕ,j, we can see that for all rounds afteriδ,j th and before
the last round in thejth period, all conditions to apply the
discussions in Case 1 and Case 2 are met. Hence, considering
(68), for 1 ≤ j ≤ iK + 1 and iδ,j < i ≤ iδ,j + iϕ,j with
pj−1 + i− 1 < K we have that

|ϕ(t+ τpj−1+i−1 + 1)− φ̃(t+ τ0 + 1)| < γ. (81)

Note thatt+ τpj−1+i−1 + 1 is the start point of theith round
in the jth period, and we have set conditionpj−1+ i− 1 < K
to consider only the firstK rounds after timet.

We now focus on finding a lower bound forRK . Towards
that goal, we use r.v.’siδ,j and iδ,j to define a new sequence
of N3 denoted byN

′

3 according to the following:

N
′

3(k = pj−1 + i− 1) = N
′

3(j, i)

=























L1 (1 ≤ i ≤ iδ,j) ∨
(i = ij + 1)

1 (i = iδ,j + 1) ∧ (iϕ,j = 1)
2 (i = iδ,j + 1) ∧ (iϕ,j > 1)

min( 2i

2iδ,j+2 , L1) (iδ,j + 2 ≤ i ≤ ij) ∧ (iϕ,j > 1)

where

ij = iδ,j + iϕ,j.

Note that a round after timet can be specified uniquely either
as thekth round after timet, or as theith round in thejth

period. We thus in the above have definedN
′

3 as a function of
the round numberk after timet, and also as a function of the
pair (j, i). Similarly, N3 can be considered as a function of
eitherK or (j, i). In addition, note that the above definition
of N

′

3 is mainly motivated by the method used to obtain (71).
To simplify the analysis, we slightly modify the definition

of RK such that

RK =

∑iK
j=1

∑ij
i=iδ,j+1 NcN3(j, i)

τK − τ0
.

Hence,RK concerns only the rounds that are within the first
iK periods, and for which (81) holds. Considering the above
definition, we can use a simple inspection to show that the
above choices forN

′

3 ensure that w.p.1

RK ≥ R
′

K =

∑iK
j=1 λ

C
r (j)

∑iK+1
j=1 λC

t (j)
, (82)
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where

λC
t (j) =

ij+1
∑

i=1

(1 +N
′

3(j, i))

= ij + 1 + (iδ,j + 1)L1

+ 1(iϕ,j=1) + (2 +

iϕ,j−2
∑

i=0

min(2i, L1))1(iϕ,j>1), (83)

and

λC
r (j) =

ij
∑

i=i
δ
′
,j
+1

N
′

3(j, i)

= 1(iϕ,j=1) +
(

2 +

iϕ,j−2
∑

i=0

min(2i, L1)
)

1(iϕ,j>1).

(84)

As expected,λC
r (j) denotes the minimum contribution of the

jth period to the ratioRK . The termλC
t (j) is the total length

of thejth period that could potentially minimize the ratioRK .
In addition, note that the inequality (82) in general holds even
when Remark 1 does not hold, and thus, when the distribution
of iδ,j and iϕ,j is not given by (74)-(79). However, as stated
in Remark 1, we consider the worst case which enables us to
find a lower-bound forRK that holds with high probability.
We next show that the random variableR

′

K is a function of
i.i.d pairs, and in fact, is the average accumulated reward for
a renewal process.

First, note that by definitioniδ,j > 0, and hence, a
scheduling period, which consists ofiδ,j + iϕ,j +1 rounds, at
least contains of two rounds. This implies that theK rounds
under consideration consitute at most⌊K

2 ⌋ complete periods.
Consequently,R

′

K is a function of at mostKP = ⌊K
2 ⌋ + 1

periods, and thus, is completely characterized by
{

(iδ,j , iϕ,j), 1 ≤ j ≤ KP

}

. (85)

We know that by definition a period consists of at most2C−1
rounds. Therefore, considering Remark 2 withK replaced with
KP (2C − 1), we see that the above set is consisted of i.i.d
pairs, with distribution given by (74)-(79), if Statement 2holds
for all i with 0 ≤ i ≤ KP (2C − 1). Recall that we started
by assuming‖Xt‖ > M ′′

K such that Statement 2 holds for
0 ≤ i ≤ (K +2)C. But this means that Statement 2 holds for
all i with 0 ≤ i ≤ KP (2C−1) sinceKP (2C−1) < (K+2)C.
Therefore, we have that the pairs in (85) are i.i.d.13

Next, observe that since the pair(λC
t (j), λ

C
r (j)) depends

only on (iδ,j, iϕ,j), the sequence{(λC
t (j), λ

C
r (j)) : 1 ≤ j ≤

KP } also consists of i.i.d. pairs. This sequence is defined for
1 ≤ j ≤ KP , but can be defined forj > KP by defining
the pair (λC

t (j), λ
C
r (j)), for j > KP , as an i.i.d. version of

(λC
t (1), λ

C
r (1)). The resulting expanded sequence

{(λC
t (j), λ

C
r (j)) : j ≥ 1}

13Note that ifC = ∞, iδ,j or iϕ,j may take any finite value. Hence, a
proper definition ofiδ,j or iϕ,j with distributions given by (74)-(79) requires
Statement 2 hold for alli ≥ 0, which cannot be true by assuming‖Xt‖ >
M ′′

K , for any finite value ofM ′′

K .

defines a reward renewal process. For this renewal process,
λC
t (j) is the length of thejth inter-renewal interval,λC

r (j)
is the accumulated reward collected at the end ofjth renewal
interval, andR

′

K is the average accumulated reward prior to
end of iK + 1th inter-renewal interval.

Consider the extended sequence, and letR
′

k, for anyk > 0,
be defined similar toR

′

K . Applying the strong law for the
renewal process, and noting thatik → ∞, a.s., ask → ∞, we
obtain

RC
∞ , lim

k→∞
R

′

k =
E[λC

r (1)]

E[λC
t (1)]

, a.s.

Hence, by the almost surely convergence, for any givenǫR > 0
and̺R > 0, there exists a sufficiently largenC

ǫR,̺R
such that

[29]

P ( sup
k≥nC

ǫR,̺R

|R′

k −RC
∞| < ǫR

2
) > (1− ̺R). (86)

But since limC→∞ RC
∞ = R∞, we can chose a sufficiently

largeC such that

|RC
∞ −R∞| < ǫR

2
.

Considering (86) for this value ofC, we have that

P ( sup
k≥nC

ǫR,̺R

|R′

k −R∞| < ǫR) > (1− ̺R). (87)

The above inequality and (82) imply that there exists a
sufficiently largeKǫR,̺R

such that forK > KǫR,̺R
and

‖Xt‖ > M ′′
K

P (RK > R∞ − ǫR|Ht+τ0+1) > (1− ̺R). (88)

Here, we have stated the probability conditioned onHt+τ0+1

since all of the previous discussions are valid regardless of
Ht+τ0+1. The above inequality states that with probability
close to one,RK is close toR∞ in the sense thatRK >
R∞ − ǫR. This is a generalized version of the result obtained
in (72), as desired.

We are finally in a position to derive a lower bound for the
LHS of the inequality in the lemma, denoted byΣ. First, note
that

Σ = E
[

τK
∑

i=τ0+1

Xt+iDt+i|Ht

]

≥ E[

piK
∑

k=1

τK−τk−1−Nc
∑

i=1

Xt+τk−1+Nc+iDt+τk−1+Nc+i|Ht

]

,

(89)

where we have simply used the fact that the productXt+iDt+i

is positive, and neglected the contributions due to the test
intervals, and also the ones due to the rounds of the last
partially covered period.

To simplify the notation, lettj,i,l denote the start oflth
timeslot of theith round in thejth period, i.e.,

tj,i,l = t+ τpj−1+i−1 + l.

In addition, letδj,i denote the length of theith round in the
jth period, i.e.,

δj,i = τpj−1+i − τpj−1+i−1 = Nc(1 +N3(j, i)),
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where

N3(j, i) = N3(t+ τpj−1+i−1 + 1).

Considering the partition generated by the scheduling peri-
ods, and the above definitions, we can use (89) to show that

Σ ≥ E

[

iK
∑

j=1

ij
∑

i=iδ,j+1

δj,i−Nc
∑

l=1

Xtj,i,Nc+l
Dtj,i,Nc+l

|Ht

]

≥ E

[

iK
∑

j=1

ij
∑

i=iδ,j+1

δj,i−Nc
∑

l=1

‖Xt‖

‖Xtj,i,Nc+1‖
‖Xt‖

(φ̃(t+ τ0 + 1)− γ)|Ht

]

, (90)

where the last inequality follows from (81). Using (57) and
assuming

‖Xtj,i,Nc+1‖
‖Xt‖

> (1 − ǫ3),

we obtain

Σ ≥ E

[

iK
∑

j=1

ij
∑

i=iδ,j+1

δj,i−NC
∑

l=1

‖Xt‖(1− ǫ3)(φ̃(t)− ǫ1 − γ)|Ht

]

= E

[

‖Xt‖(φ̃(t)− ǫ1 − γ)

(1− ǫ3)

iK
∑

j=1

ij
∑

i=iδ,j+1

NcN3(j, i)|Ht

]

. (91)

But, by using (88) and adopting a method similar to the one
in Lemma 1, forK > KǫR,̺R

and‖Xt‖ > M ′′
K we can show

that

E

[

iK
∑

j=1

ij
∑

i=iδ,j+1

NcN3(j, i)|Ht+τ0+1

]

≥ (1− ǫ4)(R∞ − ǫR)E
[

(τK − τ0)
∣

∣Ht+τ0+1

]

, (92)

whereǫ4 → 0, asK → ∞.
Using (91) and (92), we obtain

Σ ≥ E

[

(τK − τ0)‖Xt‖(φ̃(t)− ǫ1 − γ)

(R∞ − ǫR)(1 − ǫ3)(1− ǫ4)|Ht

]

.

If we assume
τK − τ0
τK + 1

> 1− ǫ5,

then using the above inequality and the definition ofγ, given
in (69), we have that

Σ ≥ E

[

(τK + 1)‖Xt‖(R∞(φ̃(t)− α− 3θϕ)− ǫ)
∣

∣Ht

]

,

whereǫ > 0, and can be made arbitrarily small by choosing
sufficiently small values forǫ1, ǫ3, ǫ4, ǫ5, and ǫR. Note that
since ‖Xt − Xt+i‖ < C′

K , 0 ≤ i ≤ τK , as discussed in
the beginning of the proof of the lemma,ǫ3 can be assumed
arbitrarily small if ‖Xt‖ is sufficiently large. Moreover, since
τ0 ≤ (1 + L1)Nc and τK + 1 ≥ 2KNc, ǫ5 can be made
arbitrarily small by assuming a sufficiently largeK. Thus, by

considering the discussions forǫR andǫ4, we see that we can
makeǫR, ǫ4, andǫ5 all sufficiently small by choosingK > Kǫ,
for sufficiently largeKǫ. Having selectedK, we can find a
lower boundMǫ,K > M ′′

K > M ′
K for ‖Xt‖ such thatǫ1 and

ǫ3 are also sufficiently small. Hence,ǫ can be arbitrarily small,
completing the proof of the lemma.

Lemma 5:Let 0 ≤ δ < 1. We have
∞
∏

i=1

(1 − δi) > exp
(

− (
δ

(1 − δ)
+

δ2

(1− δ)2(1− δ2)
)
)

> 0.

Proof: First note that by Taylor’s theorem, we have

ln(1− δ) ≥ −
(

δ +
δ2

2(1− δ)2
)

.

Taking ln and thenexp of the product term in the lemma, and
using the above inequality, we can easily show that

∞
∏

i=1

(1− δi) ≥ exp
(

−
∞
∑

i=1

δi +

∞
∑

i=1

δ2i

(1 − δ)2
)

= exp
(

− (
δ

(1 − δ)
+

δ2

(1 − δ)2(1− δ2)
)
)

> 0,

proving the lemma.
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