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Abstract—It is well known that for ergodic channel processes can be considered as a GMWM problem. This problem has
the Generalized Max-Weight Matching (GMWM) scheduling peen shown to be, in general, complex and NP-hardl[5][4][6].
policy stabilizes the network for any supportable arival rate  pyan i those cases where the optimization problem can be
vector within the network capacity region. This policy, however, ved | ially distributed impl tati b
often requires the solution of an NP-hard optimization prodem. SO Ye polynomiaily, '_S rbuted implemen a_ lon beconzes
This has motivated many researchers to develop sub-optimal Major obstacle. These issues, naturally, motivated resees
algorithms that approximate the GMWM policy in selecting to study and develop suboptimal centralized or distributed
schedule vectors. One implicit assumption commonly shareth  algorithms that can stabilize a fraction of the networkeiay
this context is that during the algorithm runtime, the channel capacity region[[7I[5I[BIBI9].

states remain effectively unchanged. This assumption mayon One implicit but ; tion in thi text is that
hold as the time needed to select near-optimal schedule vecs ne implicit but major assumption In this context Is tha

usually increases quickly with the network size. In this paer, we the time required to find an appropriate scheduling vector,
incorporate channel variations and the time-efficiency of sb- search-timeis negligible compared to the length of a timeslot,
optimal algorithms into the scheduler design, to dynamicdy or otherwise, during this search-time, channel states irema
tune the algorithm runtime considering the tradeoff betwe®  qffactively unchanged. Since many algorithms take polyiabm
algorithm efficiency and its robustness to changing channel .. ith th b f t tout lution 516

states. Specifically, we propose a Dynamic Control Policy (©P) time wit t.e num e”? users o outpu gso u '9“ [5][6]9E
that operates on top of a given sub-optimal algorithm, and See that this assumption may not hold in practice for neta/ork
dynamically but in a large time-scale adjusts the time giverto the  with large number of users. In particular, it is possiblettha
algorithm according to queue backlog and channel correlains.  once an optimal solution corresponding to a particular oean
This policy does not require knowledge of the structure of tle state is found, due to channel variations, it becomes cetdat

given sub-optimal algorithm, and with low overhead can be to th int of being intolerably f f timalit
implemented in a distributed manner. Using a novel Lyapunov 0 the point of being Intolerably far away from optimaity.

analysis, we characterize the throughput stability regioninduced Intuitively, for many suboptimal algorithms, the solution
by DCP and show that our characterization can be tight. We found becomes a better and moeéicient estimate of the
also show that the throughput stability region of DCP is at last  gptimal solution as the number of iterations increases aemo
as large as that of any other static policy. Finally, we prowle ime is given to the algorithm, e.g., see PTAS i [6]. This
two case studies to gain further intuition into the performance . . . . e
of DCP. inspires us to consider thime-efficiencycorrespondence as
a classifying tool for sub-optimal algorithms. As mentidne
earlier, however, the solution found might become outdated
due to channel variations. This poses a challenging problem

. INTRODUCTION as how the search-time given to sub-optimal algorithms lshou

The problem of scheduling of wireless networks has be®§ adjusted to ensure an efficient scheduling with a lardresta
extensively investigated in the literature. A milestonettiis  throughput region when channels states are time-varying.
context is the seminal work by Tassiulas and Ephremides [2],Our work in this paper addresses the above challenge by
where the authors characterized thetwork-layer capacity 10int consideration of channel correlation and time-edingy
region of constrained queueing systems, including wirele$¥ sub-optimal algorithms. In particular, we propose a dyita
networks, and designedtaroughput-optimascheduling pol- control policy (DCP) that operates on top of a given sub-
icy, commonly referred to as the GMWM scheduling. In thi@ptimal algorithm A, where the algorithm is assumed to
context, capacity region by definition is the largest regiddfovide an approximate solution to the GMWM problem. Our
that can be stably supported using any policy, includingehoProposed policy dynamically tunes the length of scheduling
with the knowledge of future arrivals and channel states. fiames as the search-time given to the algoritinso as to
throughout-optimal policy is a policy that stabilizes thet-n Maximize the time average of backlog-rate product, imprgvi
work for any input rate that is within the capacity region andhe throughput stability region. This policy does not requie
thus, has the largest stable throughput region. In gerigif@][ knowledge of input rates or the structure of the algoritdm
the GMWM scheduling should maximize the sum of backlogvorks with a general class of sub-optimal algorithms, artth wi

rate products at each timeslot given channel states, whiéi/-overhead can be implemented in a distributed manner. We
analyze the performance of DCP in terms of its associated

A short version of this submission is published lin [1]. _ throughput stability region, and prove that this policy lelea
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function of the interference model, algorithdy and channel be achieved with linear complexity. In a more recent work
correlation, and we prove that in general this factor can K23], the authors propose distributed schemes to implement
tight. We also show that the throughput stability region afindomized policy similar to the one in_[22] that can stakili
DCP is at least as large as the one for any other static schetime entire capacity region. These results, however, assume
that uses a fixed frame-length, or search-time, for scheguli non-time-varying channels. Other recent studies [in[ [4][24
As far as we are aware, our study is the first that jointlgeneralize the approach in_[22] to time-varying networks] a
incorporates the time-efficiency of sub-optimal algorithamd prove its throughput-optimality. This optimality, as exped,
channel variations into the scheduler design and stabilitpmes at the price of requiring excessively large amount of
region analysis. One distinguishing feature of our worlgrap other valuable resources in the network, which in this case
form its practical implications, is the use of a Lyapunois memory storage. Specifically, the memory requirement in
drift analysis that is based on mndom number of steps. [4][24] increases exponentially with the number of users,
Therefore, to establish stability results, we use a methathking the generalized approach hardly amenable to pactic
recently developed for Markov chairis [10], and modify itlsucimplementation in large networks.
that it is also applicable to our network model. Another example of sub-optimal approximation is the work
The rest of this paper is organized as follows. We réa [5], where the authors assume that the controller can
view the related work in the next section. Network modeise only animperfect scheduling component, and as an
including details of arrival and channel processes is pitese example they use maximal matching to design a distributed
in Sectionll. Structures of the sub-optimal algorithmsdanscheduling that is within a constant factor of optimalithi§
DCP policy are discussed in Sectiénl IV. We then providecheduling algorithm under the name Mfiximal Matching
performance analysis and the related discussion in Sédtion(MM) scheduling and its variants have been widely studied
followed by two case studies in Sectign]VI. Finally, wen the literature [[7][6][25][9][26](27]. In [7][5], it is siown
conclude the paper in Sectién VII. that under simple interference models, MM scheduling can
achieve a throughput (or stability region) that is at least
half of the throughput achievable by a throughput-optimal
Previous work on throughput-optimal scheduling includesigorithm (or the capacity region). Extended versions eféh
the studies in[[R[[IA][BI[12]. In particular, in_[2], Tasdas results for more general interference models are presented
and Ephremides characterized the throughput capacitpmegin [6][9], where in [9] randomized distributed algorithmeea
for multi-hop wireless networks, and developed the GMWNroposed for implementing MM scheduling, being a constant
scheduling as a throughput-optimal scheduling policy.sThiactor away from the optimality. This result has been furthe
result has been further extended to general network madrengthened recently [28] stating that the worst-caseiefity
els with ergodic channel and arrival processes [3]. Due tatio of Greedy Maximal Matching scheduling in geometric
its applicability to general multi-hop networks, the GMWMnetwork graphs under thehop interference model is between
scheduling has been employed, either directly or in a matlifie /6 and1/3. All of the mentioned proposals so far either do
form, as a key component in different setups and many cros®t consider channel variations, or assume the searchisime
layer designs. Examples include control of cooperativayrelrelatively small compared to the length of a timeslot.
networks [12], rate control [13], energy efficiency [14][15 The closest work to ours in this paper[i$ [8], where based on
and congestion control [L6][17]. This scheduling policyshathe linear-complexity algorithm in_[22], the impact of chmah
also inspired pricing strategies maximizing social weffi8], memory on the stability region of a general class of sub-
and fair resource allocation [116]. optimal algorithms is studied. Despite its consideration f
Another example of the throughput optimal control is thehannel variations, this work still does not model the dearc
exponential rule proposed in [11]. In addition to the exponetime, and implicitly assumes it is negligible.
tial rule scheduling, there are other approaches that useequ In this paper, we consider the problem of scheduling from
backlog, either explicitly or implicitly, for schedulindl@] a new perspective. We assume a sub-optimal algorithia
[20][21]. For instance, in[[19], active queue management ggven that can approximate the solution of the GMWM prob-
used that implements CSMA protocol with backlog dependeleim, and whose efficiency naturally improves as the search-
transmission probabilities. It is shown that such an apgroatime increases. We then devise a dynamic control policy whic
can implement a distributed fair buffer. In one other wor@][2 tunes the search-time, as the length of scheduling frames,
an adaptive CSMA algorithm is proposed that iterativelyiatlj according to queue backlog levels in the network, and also
nodes’ aggressiveness based on nodes’ (simulated) queased on channel correlations. As far as we are aware, our
backlog. study is the first that explicitly models the time-efficiency
The GMWM scheduling despite its optimality, in everyof sub-optimal approaches, and uses this concept along with
timeslot, requires the solution of the GMWM problem, whiclthannel correlation in the scheduler design.
can be, in general, NP-hard and Non-Approximable [6]. Thus,
many studies has focused on developing sub-optimal canstan I1l. NETWORK MODEL
factor approximations to the GMWM scheduling. One interest \\e consider a wireless network witN one-hop source-
ing study addressing the complexity issue is the work in [2%estination pairs, where each pair represents a datdl.flow
where sub-optimal algorithms are modeled as randomized
algorithms, and it is shown that throughput-optimality can ! Extension to multi-hop flows is possible using the methodf2]f8].

Il. RELATED WORK



Associated with each data flow, we consider a separate queudsinally, let X(¢) = (X1(¢),..., Xn(¢)) be the vector of
maintained at the source of the flow, that holds packets doeue lengths, whet¥, (¢) is the queue length associated with
be transmitted over a wireless link. Examples of this type tfie i, link (or data flow). Using the preceding definitions, we
network include downlink or uplink of a cellular or a mestsee thatX(¢) evolves according to the following equation
network.

A. Queueing X(t+1)=X(t)+A(t) —D(t) + U(),

We assume the system is time-slotted, and channels haldere U(¢) represents the wasted service vector with non-
their state during a timeslot but may change from one tintesloegative elements; the service is wasted when in a queue the
to another. Let(t) be the matrix of all channels states frornumber of packets waiting for transmission is less than the
any given node to any other nodg in the network at time number that can be transmitted, i.e., whEpn(t) < D;(t).

t. For instance, when the network is the downlink or uplink

of a cellular networks(t) will reduce to the vector of user- B. Channel State Process

base-station channel states, i.g({) = (s1(t),...,sn(t)),
where s;(t) is the state of they, link (corresponding to the
it data flow) at timet. Throughout the chapter, we use bol
face to denote vectors or matrices. L®trepresent the set of
all possible channel state matrices with finite cardinglity.
Let D,(t) denote the rate over thi, link corresponding to
the iy, data flow at timet, and D(¢) be the corresponding
vector of rates, i.eD(t) = (D1 (t),...,Dn(t)). In addition, where 1.,y denotes the indicator function associated with a

let I;(t) represent the amount of resource used by #he Jiven event, and(s) is the steady-state probability of state
link at time ¢, and I(¢) be the corresponding vector, i.e.L€tP: representthe past history of the channel process and be
I(t) = (Ii(t), -~ ,In(t)). The vectorI(t) contains both defined byP; = {s(i);0 < i < t}. The above almost surely
scheduling and resource usage information, and hereafger, cOnvergence implies that for any> 0 and¢ > 0, we can
refer to it simply as the schedule vector. [Etenote the set find a sufficiently largei’c ¢, > 0 such that([29]
containing all possible schedule vectors, with finite caatity ke
1Z]. ‘

Note that the exact specification of the scheduling vector P(k:;(li . ‘E Z L= — 7(s)| > ¢ ‘Pt) <¢ @
I(t) is system dependent. For instance, in CDMA systems, -
it may represent the vector of power levels associated wile assume that the almost surely convergenagnferm in
wireless links; in OFDMA systems, it may represent ththe past history andin the sense that regardlessf andt,
number of sub-channels allocated to each physical link; atieere exists & ¢ such that[{1l) holds with<, ., = K. 8
when interference is modeled as the K-hop interference imode
[6], the vector can be a link activation vector represeningC. Capacity Region
sub-graph in the network. Assuming that transmission rates
are completely characterized given channel states, trezlatd
vector, and the interference model, we have

We assume the channel state process is stationary and
dargodic. In particular, for al € S, ask — oo, we have

B

k—1
Z 15(t4i)=s — 7(s), a.s.,
i=0

i=0

In our context, capacity region, denoted by is defined

as the closure of the set of all input rates that can be
stably supported by the network using any scheduling policy
D(t) = D(s(t),I(t)). including those that use the knowledge of future arrivald an

nnel states. 10 [2][30] and recently under general dom

. . c
We assume that transmission rates are bounded, i.e., forir‘?'TSJ, it has been shown that the capacity regioris given
seSandl €7, by

Di(S,I) < Dmaza 1 S 1 S Nv
I'=> n(s) Convex-HulfD(s, I)|I € Z}.
for some largeD, 4. > 0. scS
Let A;(t) be the number of packets arriving in timeslot
t associated with they, link (or data flow), andA(¢) be
the vector of arrivals, i.e.A(t) = (A1(¢), -+, An(t)). We IV. DYNAMIC CONTROL POLICY
assume arrivals are i.ifiwith mean vector
As mentioned in the introduction, DCP controls and tunes

ElA{M)] =a=(a1,...,an), the search-time given to a sub-optimal algorithm to improve

and bounded above: the stability region. The considered sub-optimal algonigh
are assumed to provide a sub-optimal solution to the GMWM
Ai(t) < Amaz, 1 <1 <N, problem. In the following, we first elaborate on the struetur
of the sub-optimal algorithms, and then, describe the djpera

for some largeA,,qz-
of DCP.

2This assumption is made to simplify the analysis, and ourlt®san be SExamples of this channel model include but are not limitedviarkov
extended to non i.i.d arrivals. chains.



A. Sub-optimal Algorithms Approximating GMWM Problem k — 1y round kg, round

It is well known that the GMWM scheduling is throughput- t<=fk_l—t>:<{k—t>2?::—><—>
optimal in that it stabilizes the network for all input rates
interior to capacity regiorl’. This policy in each timeslot .N3(’7A-—1)=4'. .:.:.:'
uses the schedule vectb(t) that is argmax to the following >
GMWM problem: Netimeslots Tes‘t’lnterval" Update |nterva]
N NQ(tk)frames " PoNs(f) =2 e

. N-
max > X,(t)Dy(s(t), 1), subjecttol € Z.  (2) =5/ Na())frames % No(fy) fiames »

= IIIIIIII I||||||||||||||||||||||||||I

However, as mentioned in Sectidn I, this optimization peoil

can be in general NP-hard. We therefore assume that there " Nl(tk) fimeslots
exists an algorithmA that can provide suboptimal solutions (—‘—Nl(tk)tlmESth\'—) <-—->
to the max-weight problem given ifl(2). To characterize the | TTTTTTTT] I D:D:D

structure of algorithm4, letI*(X, s) be the argmax td{2) by
settingX(t) = X ands(t) = s. Thus,

I"(X,s) = argmax XD(s, I),
Iez

—>
One frame of size N{ (tk) One frame of size N1 (Z1,)

Fig. 1. llustration of scheduling rounds, test intervalpdate intervals, and
whereXD(s, I) is the scalar product of the two vectors, an‘d(agmes 9 P

for ease of notation, we have dropped the transpose symbol

required forD(s, I). In the rest of this paper, we use the same AS for the second model, we may have thist) is such

method to show the scalar products. Associated i{iX, s), that

let D*(X, s) be defined as XD(s, 1) > g(n)XD(s, 1" (X, s)), 4
D*(X,s) = D(s, I (X, s)). (3)  where the functiony(n) is a non-decreasing function of,

Thus,D*(X, s) is the optimal rate, in the sense &f (2), whe@nd less than or equal to one. For instance, if the optinoiaati

the backlog vector i¥X and the channel state is problem can be approximated to a convex problem [31], then

Let I(™ be theoutputschedule vector of algorithmd when g(n) = §(1 — ("), where0 < ¢ <1 and0 < ¢ < 1. Another
it is given an amount of time equal iotimeslots,X(¢) = X, possible form forg(n) is
ands(t) = s. We therefore assume that the time given to n N
algorithmA can be programmed or tuned as desired, or simply, ( - 5—)

Inn
the algorithm can continue or |tere;te towards finding betterhereﬂ is a positive constant. This form gf(n) may stem
solutions over time. We assume thé&d is in general a random
from cases where the optimization problem associated with
vector with dlstnbutlonu . Since the objective function in

(@) is a continuous functlon dX(¢), we naturally assume that@) admits Polynomial-Time Approximation Scheme (PTAS)

. X P ) [e].
algorithm A characterized by the distribution (.if , for all The last model that we consider is a generalization of the
n > 1, and all values oX ands, has the following property:

previous model, where we assume that (4) holds with probabil
ity h(n) as a non-decreasing function of This specification
can model algorithms that use randomized methods to solve
) (@10 =1) — ui) (1™ =1)] =0, @), and without its consideration for the improvement aver

is similar to the ones developed in [22][8].

Assumption 1:For allT € Z, s € S, andn, we have that

asX; — X,. In addition, assuming and keepifigk; — X5 <

C for a givenC > 0, the above convergence also holds wheR. Dynamic Control Policy and Scheduling

[X1|| — oo. Moreover, the convergence becomes equality if The dynamic control policy in this paper interacts with
= Xz, for someg > 0. scheduling component, and through some measures, which

In the following, we discuss concrete models that providgill be defined later, dynamically tunes the time spent by the
further details on the structure of algorith# Note that these scheduler, or more precisely algorith to find a schedule
models serve only as examples, and our results do not depgaetor. In what follows, we describe the joint operation of
on any of these models; what required is only Assumgdiion bCP and the scheduler.

The first model arises from the intuition that the distributi As DCP operates the time axis becomes part|t|oned to
p%. should improve asn mcreases More precisely, wea sequence ofcheduling roundswhere each round might
can define the sequenc{qu . n=1,23,..-} to be an consist of a different number of timeslots. An illustrative
improving sequence if for alh > 1, example is provided in Fidl 1. Leé}, denote the start time of

" . the &y, round. Each round begins withtest intervalfollowed
E[XD(s,I")] = EXD(s, 1""")] = - - = E[XD(s, 1)}, by an update interval In the beginning of the test interval
The first model uses the above and definestral algorithm of each round, @andidatevalue for the number of timeslots
to be the one for which the above inequalities hold for affiven to the algorithmA to solve [2) is selected by DCP.
values ofX ands. Let N7 () denote this candidate value for thg round, and



assumeN{(fk) € N1, whereN; has a finite cardinality. In  Given N{, and a method to use the output of algorithm
the rest, we useV] instead of NJ(i;) where appropriate. A, DCP evaluates scheduling performance resulting from the
The algorithm that chooses the candidate value might bevialue for N{. The performance criterion is the normalized
general a randomized algorithm. Thus, we use the supetrsctime-average of the backlog-rate (scalar) product. To defin
r to make this point clear. We assum¥ takes an optimal the criterion precisely, lep(-,-,-) be defined as

value with probabilityy > 0, where optimality will be defined

’n.gfl nlfl

later by [7) and its following discussion. ot n1,na) = Z Z Xt+jm+iDt+jm+i_
We set the length of the test interval to be = = mnellX
NI'N} = N, = const, If || X¢]| = 0, we setp(t,n1,m2) = 0. Based on the above

. , o ) . definition, the criterion associated with the test inteiathe
a multiple of N7, whereNJ is adjusted accordingly so that the,€th scheduling round, which is computed by DCP, is denoted
test interval has a fixed lengtN.. Therefore, givenVy, the by ¢T(£k) where

test interval becomes partitioned inié; consecutive frames K R . R
of N7 timeslots. In the beginning of each frame, e.g., at time ©"(tr) = o(tr, N1 (tx), Nq (tr)).

t, the cgrrent backlog V(_ecto.K(t) and channel state(t) This quantity is then used to determine the length of frames
are provided to the algorithml. The algorithm then spendsin the update interval of théy, round
t .

. . .
N timeslots to find a schedule vector. Depending on the Update intervals are similar to the test intervals in thayth

properties of a particular instance of algorithin this vector e consisted of a multiple number of fixed-length frames.

: : L . ar
is used by the schgduler to update scheduling decisionin ﬁ/?ore precisely, we assume that the update interval in the
next frame in a variety of methods.

i kt round becomes partitioned inmg(fk)Ng(fk) consecutive
In the first method, the schedule vector found afféf SN g 2 -
. : ' ; o frames of N (t;) timeslots. IntegersV, (¢x) and Na(t;) are
timeslots in the frame starting at timeis used throughout 1) 9 1(t) 2(t)

the next frame ofV] timeslots starting at time+ N7. Thus, such that
the schedule vector used in any frame is obtained by using Ny (fk)Ng(fk) = N.,. (5)
backlog and channel state information at the beginningsof i

previous frame. This method is general and can be appliedL}‘ erefore, the length of thiy, update interval i§V3(£k) times

all types of algorithmA. the length of a test interval. Moreover, we see thatt;) in

. r ~ .
We can apply a second method where algoritbmis :hetl?tht uDdf‘t; interval ttf]\kes the rolfh dgl.(t’“) '?. tdhf k;;llt
capable of outputting schedule vectors in intermediatpsste estinterval. Assuming the same method 1S applied to €s

and not only after the planned” timeslots. Consider thén and update intervals to use the output of algorithinwe can

timeslot of a given frame ofV] timeslots started at time properly defines(tx) as
wherei < Nf. Supposdgﬂ-.is the intgrmediate splution found o(tr) = p(tx + No, Ny(t), Na(te) N3 ().
by the algorithmA after timeslots in the considered frame,_l_ i A oyt
and 1, is the vector found at the end of its previous framé € Quantity o(t;) is similar to o"(#), and measures the

Then, we may assume that with some probability, is used normalized time-average of backlog-rate product in the
if update interval.

DCP , on top of algorithmi, usesso(fk_l) and " (i1,) to
X(t+4)D(s(t +1),If,;) > X(t 4+ i)D(s(t + i), I,), dynamically control the value o, (¢,) and N3 () over time.
Specifically, in theky, round, at theend of the test interval,

otherwisel,, is used in the timeslot following th&, timeslot. . . . .
- . the policy chooses either th¥; used in the previous update
The update rule iri 8] provides an example where two schedlﬁ,tI POTICY ! P b
%I

. . ?erval, Ny (t,—1), or the newly chosen value a¥; in the
vec_tors are cor_‘n_pared, and the best is selected with a w irrent test intervalN7 (¢,.), according to the following update
defined probability.

As for the third method, we may assume algorithin o N R
can accept an initial schedule vector. In this case, we cany, (i, ) — { Ni(te) 0 "(tk) > @(tr) + @
assume that the algorithmd at a given frame accepts the Ni(tg-1) otherwise
schedule vector found in the previous frame as the initiahpo where is a suitably small but otherwise ambitrary positive

to the optimization problem of [2). Note that many graphconstant. At the same time, the value §§(#;), is updated
inspired algorithms do not start from a given initial vectogccording to the following:

(as a sub-graph), but instead, gradually progress towards a Nali R R
particular solution. These algorithfhsherefore, do not belong (7, ) — max(1, 3(%’1)) if ©"(tk) > @(tp—1) + a
to the class of algorithms considered for this method. Ahfort min(Ly,2N3(tx—1)) otherwise,

method can also be considered by mixing the second and the

. . ) s . ereL is a suitably large but otherwise arbitrary positive
third method if algorithmA has the corresponding requwedév nstant. Note thatV,(fy) becomes updated such thal (5)

properties. Our results in this paper extend to these meth% .
. olds. Once the values aV;, Ny, and N3 are updated, in
as long as Properfy 1 and Propely 2 in Secfion| V-B hold. the rest of the scheduling round, which by definition is the

4Adaption of these algorithm to time-varying networks is aeiesting update int?rvalv the pOIiCy proceeqs_ with Computing theetim
problem, and is left for the future research. averagep(t). When theky, round finishes, thé + 1y, round

3



starts with a test interval, and DCP proceeds with selectifi@+ ¢)I" that makes the system unstable, both under the same
N7 (tr41), and applying the update rule at the end ofthely, given policy. Thus, maximal stability determines the |atge
test interval. This completes the description of joint @tien scaledversion ofl" that can be stably supported under a given
of DCP and the scheduling component. policy.

Considering the above description, we see that DCP ke%’.sAuxiliary Functions and Their Properties
trying new values forN;. Once a good candidate is found

for Ny, the update rule with high probability uses this valu .
. : : (t) = X for a givenX, X # 0, and thus X(¢) does not get
for longer periods of time by doubling the length of uIOOlatupdated. In addition, assume th&} has a fixed value over

intervals. In case the performance in terms of the backéwg-r . Considering th i d date in@ival
product degrades, the length of update intervals are hal\}gpej onsidering these assumplions and an upgate intelrva
nfinite number of framés each consisting ofV; timeslots,

to expedite trying new values fal;. Note thata can be ! ; .
arbitrarily small, but should be a positive number. Thisidso we can see that in theteady statethe expected n_ormahzed
fluctuations between different values@f performing closely, backlog-rate product, averaged over one frame, is equal to
thus preventing short update intervals. In addition, ititém (25\21 XD;)

incorrect favoring towards new values df; in the test ¢(X, N1) = Es .4 MX] (6)
intervals, where due to atypical channel conditions, the no

malized backlog-rate product deviates from and goes beyq rg;ree ]r:1) ithlcse ;?:adratzta\./teec;t'(l)'[]'Isnetheetr(]:tgt'nz;s!(s)toograth%\/ega q
its expected value. Finally, note thdt can be arbitrarily ! y - ThIS exp 1on 1S ov $

large, but should be a finite integer. This assumption is h;lainState distribution of channel process, and possibly over th

analysis-inspired but is also motivated by the fact thatrgea ra?:tzgz]i\r/flss m;r(o?\?cegtgg)elsﬂ;}eov?/lsvcgrgm articular choice for
L, can lead to a larger delay. y, (X, N1) P

N performs, in terms of backlog-rate product, when queue-
V. PERFORMANCEANALYSIS length changes are ignored. This is exactly what we need to
In this section, we evaluate the performance of DCP in terratudy since the stability region often depends on the behavi
of its associated stability region. We first introduce sel’/key of scheduling at large queue-lengths, where in a finite windo
definitions and functions, and then state the main theoremadftime the queue-lengths do not change significantly.
the paper. To simplify notation, where appropriate, we uses the
first argument of(-, -); by that we medh

To define the first function, hypothetically suppose fortall

A. Definitions

Since the backlog vector is non-Markovian, we consider the o(t, N1) = (X (t), N1).
following definition for the stability of a process. Having defi X N defineN: (X da(t) b
1) Stability: Suppose there are a bounded closed re@ion aving de |ned¢>~( V1), we definely (X) and¢(t) by
around the origin, and a real-valued functiétf-) > 0 such N1 (X) = argmax ¢(X, Ny), @)
the following holds: For any, ando¢ defined by NieM

and
oc =1inf{i > 0: X;y; € C},

o) = 3(X(1) = (X(1), N1 (X(1)) ).

we have
Finally, for a givenX with ||X]|| # 0, we define
Eloc] < F(X(t))1x(ec- y 9 1X]| #
XD*(X,s)
Then, the system is said to be stable. x(X) = Eg [W]’

This definition implies that wherX(¢) ¢ C, e.g., when

IX(t)| is larger than a threshold, the conditional expectatigi’ereD" (X, s) is defined in[(B), and the expectation is over
of the time required to return t@, e.g., so that|X(t)]| the steady-statalistribution of the channel process.

becomes less than or equal to the threshold, is bounded bf‘ccording to the above definitions, we see that when
a function of onlyX(¢), uniformly in the past history and variations in the backlog vector are ignored after titnend

t. This definition further implies that if the sequengg?) is V1 is confined to have a fixed valug/; (X(¢)) becomes the

stable, then[[32] optimal value forV; in terms of the normalized backlog-rate
product, ands(t) represents the corresponding expected value.
kli_{rgo sup P(|X(t)| > k) =0. In particular, note thalv, (X) is a function ofX and may take

different values for differenX’s. The quantityy(X), on the
other hand, is the expected normalized backlog-rate ptoduc
if for all states we could find the optimal schedule vector.
This quantity, therefore, can serve as a benchmark to measur
performance of sub-optimal approaches.

2) 6-scaled Region and Maximal StabilitySupposed <
0 < 1. Aregion is called)-scaled of the regiof, and denoted
by 0T, if it contains all rates that ar@-scaled of the rates in
T, ie,

T ={a; : a; = fay, for somea, € I'}.
{ ! ! > 2 } 5Here, we assume the channel evolves, and that the algorithis used
_ i i ; ; in the same manner as it is used in an ordinary update interthla finite

Further, thed scaled_ region is calleshaximallystable if for_ _all N.. as discussed in SectiorTV-B.
arrival rate vectors mtenpr tol’, the system can be St_‘ab'“?ed* 6By definition of ¢(-, -), here we hypothetically assume the backlog vector
and for alle > 0 there exists at least one rate vector interior tai(;) for all timest; is equal toX(t).



Note thaty(X) is continuous function oX and does not that when the first or the second method in Secfion 1V-B is
depend on|X]||. Similarly, by Assumptiol]1¢(X, N;) does used, Propertyl2 holds as a result of its preceding disaussio
not depend on|X||, and is expected to have the followinguniform convergence of the channel process, and finiteness
property. of |Z|. Similar to Property11, in the case of the third or the

Property 1: Supposd|X; — Xz|| < C for a givenC > 0. forth method, we assume this property results from the well-
For any givene > 0, there exists a sufficiently largkl/ > 0 structuredness of algorithm.
such that if| X4 || > M, then for allN; € \; As the final step towards the main theorem, we define

several random variables that are indirectly used in thertma
[6(X1, N1) = 6(X2, Ni)| <e. statement. Specifically, lef be a geometric random variable

If the first or the second method in Section 1V-B is used, thiith success probability’, where

property holds since by Assumptidh 1, algorithdnstatisti- 5 = (1 0,)2

cally finds similar schedule vectors when two backlog vector v

are close and large. In case the third or the forth methadhered is defined in Sectioh IV-B. In addition, let, be a
is used, it is possible to consider explicit restrictions fo.v. with the following distribution.

algorithmA such thatp(X, N;) is well-defined and Properfy 1 Pli, = 0) =

holds. However, in this paper, we simply assume that algirit ¢ =V T e
A is well-structured, in terms of the distribution &™), so and

that by the ergodicity of the channel process this property , ok 1 )
also holds for these methods. Plipg=Fk)=(1-0,)" (1-(1-0p)), k=1

Recall that " (t;) is the normalized time-average ofye also define the random sequeraé;(i), i > 1} afl
backlog-rate product over thia;, test interval. If we assume

that the backlog vector is kept fixed Xt(7x), by ergodicity Ly (I<i<is)Vv

of the channel process as explained in Secfion JllI-B, we o (i =1is o+ 1)
expecty” (i) to converge tap(ix, N7 (£1,)). Hence, when the | 1 (i =is + 1) A(ip = 1)
number of frames is large, which is the case wheéns large, N3 (i) = 2 . (i=1s+1)A(ip > 1)
©"(t1,) should be close t@(iy, N7 (fx)) with high probability. min(527, L1)  (is +2 <i <5 + i) A
However, the backlog vector is not fixed and changes over (ip > 1)
time. But by Assumptiofil1, algorithr statistically responds 0 1>+, +1

similgrly to different_ backlog vectors if they are_close "?‘”@Jsing the above sequence, we defifle as
sufficiently large. This can be exactly our case since dgiva o )
and departures are limited, and thus, for a fixdd, the R E[ Y5, Ny(i)]
changeslln the norm of backlog vector are boqndeq over o ]E[Z;‘:;“’“ (1+Né(z’))]’
one test interval. Therefore, by Assumptidn 1/|X(¢)|| is ) . i
sufficiently large, the changes in the backlog have littleact Which plays a key role in theorem statement and its proof.
on the distribution ofy” (). Applying a similar discussion Note that for a fixed) > 0, we have
to o(#) while noting that the length of update intervals is . Ly
bounded byL; N., we expect the following property. 0,—0 14 Ly

Property 2: There existo, > 0 andf, > 0 such that for
any givene > 0, there exists\/ > 0 such that if[| X;, || > M,
then regardless of and the past history, up to and includin
time #;,, with probability at least1 — o)

(8)

As mentioned earlier, we can makg andéd,, arbitrarily small
by choosing a sufficiently large value fav.. We are now
gready to state the theorem.

0" (E) — @ik, N (k)| < 0, + €. C. Main Theorem on Stability of DCP
Similarly, regardless ofi and the past history, up to and We have the following theorem: o
including time#;, + N., with probability at least1 — o,,) Theorem 1:Consider a network as described in Secfioh IlI.

For this network, le) be a constant defined by

lo(tk) — ¢tk + Ney, Ni(ti))| < 0, + €. (6(X) — a — 30,,)

0 = Ry inf

Moreover, IXj=1 Y(X) :
Nlclgloo Op = N{linm 6, =0. In addition, letd, be )
According to the preceding discussion, we can see @bat 0., = inf @
andp, mainly measure how fast the time-averages converge to IXj=1 x(X)
their expected value, andmodels the error due to variations 5y |f 69 < o and2a < inf x 1 (X), then the network
. SO —_— = 1
in the backlog vectoX;, ;. Thus, as stated above, andd, is stable under DCP if the mean arrival rate vectar,

can be made arbitrarily small by assuming a sufficientlydarg
value for V.. In a practical implementation, howeveéY,. is
a limited integer, and thereforé,, > 0 and o, > 0. Note "Here, A and Vv are theand and or operators, respectively.

lies strictly inside the regiofl".



(b) For any input rate strictly insidé..I', there exist a of algorithm A. Even when this knowledge is available, as
sufficiently small value fory, and sufficiently large values the number of users increases, findiNg(X) demands com-
for L; and N, such that the network becomes stabilizedutation over a larger number of dimensions, which becomes
under DCP. In other words, we can expand the sufficieekponentially complex. Hence, we see that DCP dynamically
stability regiondI" arbitrarily close tof..I" by choosing solves a difficult optimization problem, without requiritige
appropriate values for fot, Lq, and N.. knowledge of input rates or the structure of algorithﬁl

(c) There exist instances of networks, as described in Sec2) Comparison with Static Policies, Minmax v.s. Maxmin:
tion[[ll] for which their associated regioh,.I" is maxi- Part (b) of the theorem gives the regiéaI" as the fundamen-
mally stable under DCP. tal lower-bound on the limiting performance of DCP. It also
Proof: The proof is provided in the Appendix. m implicitly states that this lower-bound depends on the timiu
) ) to a minmax problem. To see this, recall that by definition

D. Discussion $(X) is the maximum ofp(X, N;) over all choices forV;.

1) Intuitive Explanation ofg: Theorem[l states that all Thus, we have that

input rates interior t@I" can be stably supported under DCP. . B(X, Ny)

In particular, it implicitly quantifiesd as a function of the O = )1(n§1 nax W

sub-optimality of algorithmA and channel state correlation. IXi=t Meth X

Clearly, the value off is not fixed, and can vary from a NOW, consider astatic policy that assumes a fixed value for

particular network setup to another. As expected, for a fixed V1. This policy partitions the time axis into a set of frames

as algorithm4 finds better schedule vectors in shorter time§ach consisting ofV; timeslots, with theiy, frame starting at
and as the channel states become more correlatat gets time (i — 1)Ni1. The static policy, in the beginning of each
closer toy(X), andé gets closer to one, expanding the regiofiame, e.g., thew, frame, provides algorithmd with vectors

OT to the capacity regiog. X((_z‘—l)Nl) ands((z'—l)N_l). Algorithm A uses these vectors

In addition, Theorerfil1 shows how the stability region is dS input, and after spending, timeslots, returns a schedule
rectly affected by the choices farandL;, and the values for Vector as the output. Th|§ output vector is then used to sdbed

6,, ando,,. The impact ofx on § could be predicted by noting US€rs in the next following frame. _ _

that the update rule use§! in an update interval only when It is not difficult to show that the above static policy

the normalized average backlog-rate product increasesst | Stabilizes the network for all rates interior &, T', where

by . Thus, we expect to see a decrease of the in the #(X, Ny)

- . . . . s - ) 4V1

stability region scaling. The effect 6f, andg,, is less obvious, On, = ||>1<I|1|:1 W

but can be roughly explained as follows. Suppose atithe

round the optimalV; is selected, i.e.N7(f;) = Ny(f;). In  Thus, the best static policy, in terms of the regiq I', is

this case, to have a proper Comparis@ﬁ(fk) and sO(fk—l) the one that maximizeéfvl. Let 05 be the maximum value.

should satisfy their corresponding inequalities in Propg \We have that

Moreover, to make sure tha¥{ (,) or a near optimaiV; is 0° nf »(X, N1)

usge_df;n_tthelth round gfter_thelfth,Iyt\/e_atljleasteéiqg|r$;(tl)f o = Jnax ||>1<ﬁl|:1 X

satisfy its corresponding inequality in Prop . There . . .

there are at least three inequalities of the form in ProﬂﬂrtyTherefore’ the. be?'t static po_hc;y correspondss 10 a maxmin

that should be satisfied, which results in the tedty in the proble.m. Considering t.he _def|n|t|on dho andd;, and that
expression fop. the minmax of a function is always larger than or equal to

The factorR., in a sense measures the least fraction of tiniEe mbaxmlg, ¥vgt_have th;ﬁgf g HT’Fa l_\f/ltore gl;en_erally, usmgh
in update intervals wheneear optimal values forV; is used. € above detinitions and a simple drift analysis, we can show

To better understani, suppose,, is small, and the backlog t_ha_t .the stab_i!ity region of static policies is not largeanfthe
vector is large. Once the optimal value fdf; is found in a I|m3|t|n_gr3_ S;?b'l'ty refoglon OLE;EP'N te that ; d b
round, as long as the inequalities in Propérty 2 hold for th(? ) Tightness ob,, and 8;: Note tha parts (2) and (b)
subsequent roundy; gets updated for only a few times. Byo the theorem do not exclude the possibility of networks

the update rule, this means th gets doubled in most of the being stable under DCP for rates outside@ﬁ‘folr 0T Part
rounds, and is likely equal té,. Thus, the update intervals(c) of the theorem, on the other hand, compliments parts (a)

constitutelflL1 fraction of time. At the same time, in theseand (b), and shows that for some networks the regioi

intervals, near optimal values fd¥; are being used. Thus, we'® indeed the |arges$caledvers_ion ofI' that can be stably
expect to segZ4— as a multiplicative factor irp. supported under DCP. This for instance may happen when the
The above discussion and TheorEin 1 also state that Deﬁmnel state_ IS stat_lstlcally symmetric with respect tersis
successfully adaptd/, in order to keepp(fy, + N, Ni(ix)) as the ones 'T‘.Sec“" Proof of part (c) of the theor(_am
close to &(X(fk T NC))E. Note that for a givenX find- provides (_:ondmons for_ cases that lead to the maximal Isgabl_
< 7 of the regiord.I", and in particular, shows that the symmetric

ing N1(X), or equivalently,¢(X), in general, is a difficult . _ .
problem. Specifically, it requires the exact knowledge af thexamples in Section VI meet such conditions. Note that the

channel state and arrival process statistics, and thetsteuc

9DCP also does not require the exact knowledge of channel statistics.
However, a practical implementation of DCP requir€s to be related to the
8This statement is in fact a direct result of Lemma 4. convergence-rate of channel process to its steady state.



same discussion also applies#f and the stability region the schedule vector is the power allocation vector, e

of static policies. We therefore hade, and§s both as tight P = (p1,p2), with constraint

measures, stating that for some networks, including thes one

in the next section, DCP can increase throughput efficieficy o

static policies by a factor of”e%"?’. where P, is total power budget. Assuming super-position
4) Delay: Note that getting close to the boundaryéfI’ coding is used in the downlink, if; (t) < s2(t), then [33]

increases delay. This follows from part (b) of the theorem p1ls1|?

stating that for input rates close to the bounddry,and N, Dy (s(t), P) = log (1 + f)a

should be large. These choices, as expected, increasaik le palsil* +mo

of test and update intervals, which can potentially be Iar@énd

intervals of sub-optimal transmissions in terms of the galu

used forN;. This in turn makes data wait in queues before

transm|.53|-0n, thus mcreasmg.the delay.. ) . If s1(t) > sa(t), we obtain similar expressions for user rates
5) Distributed ImplementationAssuming algorithmA is by swapping the role of one user for another.

decentralized [[7][SI[6][®], DCP can be implemented in a" ko jjlystration purposes, we assume that algoritHrin
distributed manner with low overhead. This is possible ‘Sin‘évery step, i.e., during each timeslot, reduces the gapeo th
consistent implementation of DCP in all nodes requires UBgyima| backlog-rate product. Specifically, if the initighp
dates of only queue backlog and nodes’ time-average Qfrresponding to the initial power vect®), assumed to be
backlog-rate product, and such updates are needed only QY&5sen randomly, id, then afteri steps the gap is decreased

p1+p2 = B,

Da(s(t), P) = log (1 + M).

no

long time intervals. to A;, where
More specifically, two conditions are required to be met . )
for distributed implementation. First, nodes should gater A; =XD*(X,s) — XD(s, I'")
the same sequence of random candidatesNprover time, _ i N _ 0)y) _ @
which can be met by assuming the same number generator T (XD (X,s) = XD(s,1 )) B

is employed by all nodes. Second, nodes should have
knowledge of backlog-rate product in the test and its prieged

update interval in order to individually and consistentbply Having specified rates and algorithd as the first example,

the update rule. we assume that the channel state is Markovian with two

The second condition can also be met, for instance, B}Sssible state vectors, namely, = (1,5) ands, = (5,1)

requiring each source node perform the following. Everyenoo\Nhere the channel vector in each transition takes a differen

e.g., thein node, records its own backlody;(t), only at gaie yith probabilityp; = 0.3. For this case, we set = 0.06,
the beginning of the test and update intervals. During theﬁg — 12000, L, = 32, B = 1.1, N1 = {N, : 1 < N} < 6}

intervals, theiy, node also computes its owndividual time-
average of backlog-rate produst; D;. Here, we assume the
time-averages in the test intervals are computed up to
last Ny timeslots, whereN; < N.. Then, once an update
interval ends, théy, node has all the duration of a test interval
consisting of NV, timeslots, to send all the other nod&s and
time-average ofX; D; for that update interval. Similarly, when
the last N; timeslots in a test interval are reached, the

node starts sending all the other nodeésand time-average is computed numerically. Considering the growth of average

of X;D; _Of that t?t mtefrval, h(:]nf:e, ha\?'dg‘i t|m(:slotshf0r (ﬂeueue sizes in Fid.] 2, we therefore see that for this example
communication. Since for each interval, data of each Nogp, s indeed an upper bound for capacity region scaling. In

backlog in the beginning of the associated interval and t OZ
time-average, consists of at most a few bytes, we see thatlt

overhead can be made arbitrarily small by choosit@ndNa  As for the second example, we increase the number of states

large. At the same time, we can make the rafiosufficiently gy corresponding to the following state vectors:
small, by choosingV. large, to ensure that not consideration

Wﬁereﬁ > 1. This case corresponds tgn) = (1 — ¢*) with
(= % whereg(n) is introduced in Sectiof TV-A.

o = 10, and p, = 50. To study the stability region, we

onsider the rate vecter = (2.4181,2.4181) which belongs

Fthe boundary of* corresponding to this example. We then
assume the arrival vector iga, where~ is the load factor,
and varies from0.84 to 0.92. Fig. [2 depicts the resulting
average queue sizes. For loads larger thaa, the queue sizes
increase with time implying network instability. The range
selected fory is motivated by noting that,, = 0.9447, which

t, part (c) of Theorerhl1 applies to this example, and any
fe of the formf.+¢)a, € > 0, makes the network unstable.

of the lastN,; timeslots in the test intervals has little impact s1 = (1,5), s2=(51),
on the stability region. ss = (1,2), s4=1(2,1),
VI. CASE STUDIES s5 = (2,5), s6=(5,2),

In this section, we present two examples that provide furthgnd having the following symmetric transition matrix:
insight into our analytical results and the performance 6D 03 01 02 01 02 01
To be able to compare the simulation results with analytical 0'1 0'3 0'1 0'2 0'1 0'2
ones, we consider a small network consisting of two data flows  p  _ ' ' ) (9)
in the downlink of a wireless LAN or a cellular network. In : : : o
this cases(¢) is the vector of channel gains, and we assume 01 0.2 0.1 0.2 0.1 03
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18000 800 have considered this time, based on which we modeled the

song |~ s e o] ® = et mone 1 time-efficiency of sub-optimal algorithms. Inspired by sthi
g 1000 600 : modeling, we have proposed a dynamic control policy that
2 12000 500 dynamically but in a large time-scale tunes the time given to
3 e : an available sub-optimal algorithm according to queue loack
5" "o and channel correlation. Remarkably, this policy does not
g o require knowledge of input rates or the structure of avéglab
o - $ sub-optimal algorithms, nor it requires exact statisti€she
" | ee® channel process. We have shown that this policy can be
o8 0%s o 088 O o 0Tt 076 implemented in a distributed manner with low overhead. In
addition, we have analyzed the throughput stability region
Fig. 2. Average queue size as a function of load factor. of the proposed policy and shown that its throughput region
o TWo-state model  Six-state model is at least as large as the one for any other, including the
U'M ' optimal, static policy. We believe that study and design of
' ore A similar policies opens a new dimension in the design of
0@, scheduling policies, and in parallel to the efforts to immro
. % the performance of sub-optimal algorithms, can help bduest t
‘\q throughput performance to the capacity limit.
o [ *[Fe=sm \‘ APPENDIX
O I k%) Y ki AT PROOF OFTHEOREMI]
o 3N14 o 3N14 o Proof of part (a):

The proof of part (a) consists of two main parts. First, using
Fig. 3. Comparison of capacity region scaling for DCP anticstaolicies. several lemmas, we obtain a negative drift with a random
number of steps. In the second part, we use the negative drift
For this case, we keep the sarive, L, and i, but assume analysis to show that the return time to a bounded region
a = 002, 8 = 1.5, ng = 50, andp; = 10. Similar to has a finite expected value, and conforms to the properties
the previous example, to vary arrival rate vector, we caersidrequired for network stability, according to the definitiginen
the rate vectora = (0.6952,0.6952) which belongs to the in Section V-A1.
boundary ofl" associated with this example. Then, the arrival We start by noting tha# < 1, and sincea is strictly inside
vector is assumed to ben, where the load factoy varies from g1, there must be some non-negative constahats with the
0.67 t0 0.76. The resulting average queue sizes are also shopitbperty that for alks € S
in Fig.[d. In this case, for load factors larger tham6, the
gueue sizes increase with time, suggesting network irlgyabi Z Psx<b <1,
This result is consistent with our analytical results sitice Te1
numerically computed value éf, is 0.7762. Note that part (¢c) such that
of TheorentIL also applies to this example, and any rate of the
form (6. + €)a, e > 0, makes the network unstable. a= ZW(S) ZBS*IDSVI' (11)
Finally, in Fig.[3, for the two examples, we have shown
6%, as a function ofN7, and also shown the value 6, Considering[(I0), we can define positiyeas
for DCP. As expected and the figure suggests, since DCP ¢ = G—maxZB .
adapts N; according to queue backlog, it outperforms the ' s€s s
best static policy. We also see that the optimal stationary
policy for the first example is the one with; = 3 and Since¢’ > 0, by the definition off, for [ X.[| # 0, we have
05 = 0.9122, and for the second example is the one witkhat
N =2 andf; = 0.7511. Note that characterization of the best Roo((l;(t) —a—30,)
static policy requires computation @{X), which, as briefly Y(Xy)
discussed in Sectidn V-1, can be computationally intensiv
From the figure, we also observe that the performance of alo proceed with the proof, associated with a given time
suboptimal static policy can be substantially less than GfCPwe define a sequence of random variabfes}° ,, where

(10)

seS IeZ

IeZ

_ !
Igeag;ﬁs,l > >0 (12)

the static policy does not assume a proper valueNor 7_1 andry denote the number of timeslots to the last timeslot
VIl C of the previous and the current scheduling round, respasgtiv
- ©ONCLUSION andr;, ¢ > 1, is the number of timeslots to the last timeslot of

In this paper, to improve the stable throughput region e iy, subsequent scheduling round. L%t denote the past
practical network setups, we have considered the problemmtory of the system up to and including timeThus, given
scheduling in time-varying networks from a new perspectivg/,, the value ofX; is known. Letf(-) be defined as
Specifically, in contrast to previous research which assume )
the search-time to find schedule vectors is negligible, we X =X,
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Considering aryx + 1-step drift with functionf(-), we can Similarly, e; can assume any given positive value. To see
write this, first note that sinca € 0", we havea € I". Thus, for

B any user, e.g. théy, user, for whicha; > 0, there has to be a
Alrie +1) = Blf Ririerr) — f(Xa)[He] states and a schedul& satisfying

TK
=B f(Xepr1) — f(Kegr)[He] 7(s)D(s,I); > 0,
k=0
TK whereD(s, I); is theiy, element of vectoD (s, I). Otherwise,
= E[Z(Xt+k+l + Xitk) (Xeskt1 — Xeyn)[He]. a; should be zero, contradicting the assumption. Therefore,
k=0 assuminga # 0, we can define positive as
Using the fact that arrivals and departures are boundeat, aft .
: - v =minmaxn(s)D(s,I); > 0.
performing some preliminary steps, we can show that iEN s8I
At +1) Thus,
* v
<E {(TK +1)C + (1 +1)2C, E[X:D"(X¢,s)] 2 vmax X(t); > \/—NIIXtH- (15)
TK .. .
This implies that for all nonzerX € RY
+ 2Z(XtAt+k — X 4xDitr) ‘Ht ; 'S Impi z
_ v
| k=0 _ X(X) 2 o= (16)
for appropriate constants; and Cs. Since X ;D4 > 0, N
we have On the other hand, since departure rates are bounded above
) by D,ne., We have
A(TK—FI) SE|:(TK+1)01+(TK+1) Csy
X(X) < VND,as. (17)
TK
+ 2Z(XtAt+k - X;a) Now consider any positives, and supposés is sufficiently
k=0 large such that for largéX;|| we have
TK
+ QZ(Xta — X¢4£Dfy ) 8¢ < 8V Ne <&
kTiO X(Xt) v 3
+2 Z X +xDf ik where the first inequality follows froni (16). This upper-inois
=0 the third term ine;. Since for anyK, and in particular, the
TK chosen one, we havee +1 < (K + 1)(1 + L1)N,, we see
-2 Z XitkDitk ’Ht ) that if || X,|| is appropriately large, the first and second terms
k=70+1 in €, can also be less tha#. Thus, for any given positive,,
whereD;, , = D*(X(t + k),s(t + k)). In the following, we We can find an appropria_ltely largé such that for sufficiently
derive an upper bound foh(7x + 1). large [|X[|, (13) holds withe; < e».

As mentioned in Sectiof IIIZA, arrivals are i.i.d with mean Supposek’ is sufficiently large, and|X,|| > My for
vector a. We can therefore apply the same method used agpropriately largeM such thate; < &'. We can use[(13)
prove Lemmall to obtain and [12) to show that

B[S0 Avps — (i + Dl 1] < eB[(rie + D[], A(ri +1) < ~B[¢ IXul (i + DX(X0) [1]-

k=0 This inequality and[(16) further imply that
wheree > 0, and can be made arbitrarily small by choosing
a sufficiently largek . Atk +1) < —E[ﬁ(TK + DX |’Ht}a (18)

Using the above inequality, Lemma 2, Lemrpa 3, and

— v ! H
Lemmal4, all with the same choice ferwe can show that whereﬁ - Wé >_O' We, the_refore, have obtained the
negative drift expression, completing the first part of theop.

Altg +1) < E[(TK + DIX f|x(Xy) Note that in abovex is a random variable, and in fact, is
Ro(3(1) — a — 36,) a s_topping time with respect to the fiItraFiGm = {Ht_}g‘io. _

(61 + Q(maXZﬁs,I = hd )) ‘Ht}, This means that we have obtained a drift expression that is
s€S ez X(X¢) based on a random number of steps. Proofs of stability in the

(13) literature, however, are often based on a negative drith it
where fixed number of steps. This contrast has motivated us to adopt

1 o Colrie +1) an interesting method recently developed_inl [10]. This roéth
€ = ( 1o, =2 LS +85). (14) is general since it can be applied in both cases, and also

X(Xe) VX (X

leads to an intuitive notation of stability. However, it Hasen
Note that according to the lemmas,can take any given originally developed for Markov chains. Therefore, as well
positive real number i and || X;| are sufficiently large. as using less technical notations, in what follows, we apply
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minor modifications to the method so that it is appropriate iwe definen® as
our context. o1
We now, in the second part of the proof, use the negative n©® =0, n® = Zm_ (21)
drift, and prove that the expected value of the return time to =
some bounded region is finite in a manner that renders network

stable. LetC denote the bounded region, and be defined aswe also defines as

_ : . 4+(®)
C:{XERN,”XHSMK}. V—lnf{ZZO.tK Zt—FO'(j}, (22)
Associated withC, we definese to be the number timeslots Which is a stopping ti?g)e with respect (8. Intuitively,
after which the proces&X,,}>, entersc, i.e., v marks the first timet,” at or before which the process
o {Xi44i}52, entersC. We finish the chain of definitions by
oc =inf{i > 0:Xyy; €C}. introducing the sequendgZ; }2°,,, where
Similarly, we letr: be Zi = f(X) + @, (23)
e =inf{i > 1: Xy, € C} Fori < v, using [21), we have
Therefore,r¢, in contrastoc, characterizes the first time that ElZ:. 1 |H —ElH(X (3)
i | = i + 1| H, | +
the proces{X;,}5°, returnsto C. [Zit1] t(K)] [{( H)} il tiﬂ g
Back to the drift expression i {IL8), lef be a random < fX)+0? =z, (24)

variable defined by where the first equality follows from the fact that” is

n==~&(tk + 1)||X¢|- completely determined giverH,.), and the inequality is
We obtain, forK sufficiently large simply an immediate result OE]LI@) and the assumpiienwv.
’ ' To simplify the notation, let’ A i denote

E[f(xt+n<+1) + 77|Ht] < f(Xt)v (19)

provided that||X,|| > Mg. Letny = n, and g, = 7k, ) -

wherer and 7 are random variables defined by considerinfj "oW follows directly from [2%) that the sequenté, . 172,

time £. We now consider time%) — t 4+ 70 + 1. For this 'S anH™-supermartingale. Sincg(-) is non-negative, we have

particular _time, we can define another pajf; andn; and E[n*) | Hy] < B[ Zyns| M.

such that if| X, || > M, then
K

Ef(X,w e ) FmH o] < F(X,w),

v At =min(v,1).

But H; = H,w), and{Z, i}, is a supermartingale. Hence,
K

E[Z,ni|He) = E[Zum”‘lty(»]

where 7 ; is the number of timeslots from timép to the < 7o = £(X))
last timeslot of theKy, subsequent scheduling round, and =20~ e

Considering the last two inequalities, we obtain
m = &(rica + DX - J q

Note that the definition ofrx; and n; is independent of E[n(”“)mt] < f(Xa). (25)
whether the previous inequality holds. In addition, using the definition af(” andr; while assuming
We can continue this process by considering the drift caiterps, > 1, it is easy to see that
for time t(I? = t({D + Tk,i—1 + 1, and defining random i1 o1
variablesr ; andn,. The random variablesy ; andn; have (vAi) _ 1. ) ,
a similar definitioz asri,1 andu;, respectively, exZept that n - J;"Jl(xu) > 5;(71(,] + D1
they are associated with tinté?. Using these definitions, we e (wnd) 26
can definetf,? more precisely by =&tx b (26)
0) Applying the monotone convergence theorem| [29], we can
b =1 . take the limit in [25) and((26) as— oo yielding
19D =0 (g 4+ 1) =t Z(TK,J‘ +1). Bty — tH,] < €71 f(Xy).
j=0

But by definition in [22),0¢ < t%’) —t. Thus, forX; ¢ C

Note thatt!? is a stopping time with respect #. Using t(i),
K E[UCW‘H < f_lf(Xt)-

we set
X, = X, 0, >0, (20) If X, € C, we havese; = 0. Hence, we have that
K -1
and definel{™ as the filtration given by{™ = {#,» }32,. In Bloc[H:] < &7 F(Xi)Txge,
addition, associated with;, which is given by showing that the expected: is bounded by a function aX,

uniformly in the past history and as required. This completes

=&+ DIX o, the proof of part (a) of the theorem. n
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Proof of part (b): Part (b) follows directly from part (a) Now suppose the following conditions hold:

of the theorem as a corollary by noting ti#at and o, can be Cl) Xpmin = MDXmin) = 72D*(Xpin), for some
made arbitrarily small by assuming a sufficiently laiyg, as 1,72 > 0.

stated in Propertyl2. This allows us to select arbitrarilabm c2) For anyN, ; € A} and N, » € N with Ny 1 # Ny o,
values fora. In addition, we can chose a sufficiently large e haved(Xnim, Ni1) # ¢(Xmins Ni2). ’

value for L, such that for sufficiently small values fé, and  c3) For anys, > 0 and 3, > 0, there exists a sufficiently
04+ Roo is arbitrarily close to one. Considering these choices, ~ smalle > 0 such that ifX € R(X,nin, €), then
we see that we can makearbitrarily close tdd,, as required.
- _ _ _

Proof of part (c): Since part (c) of the theorem only D(X) = D(Xonin) = MDXrmin) + A2
concerns existence of such networks for which the regigh
is maximally stable under DCP, for simplicity of expositjon
we consider a network consisting of two users, i.e., two dat, %' X c NV f
flows. Note that our approach can be extended to more geneﬁ'ﬁ) oranya € , for somet
networks with N data flows. Here, we adopt a direct method P(X,
and show that with positive probability norm of the backlog
vector approaches infinity. Therefore, the expected vditleeo  Condition C1 may be met by assuming a statistically sym-
return time to any bounded region becomes infinity, implyingetric channel states as the ones in Secfidn VI. Condition C2
network instability. We start by introducing several deforis  simply requires the function(X,,.;», N1) to be a one-to-one
followed by four conditions sufficient for network instabjl  function of N; at X,,;,,. Condition C3 intuitively states that

X

T~ Xmln)v
X

for some)\; and )\, satisfying|A;| < 51 and0 < Ay <

=X) > 0.

Let D andD* be defined by the average departure rates should w®atinuousfunctiort]
n—1 of X aroundX,,;,, and in particular, wheX deviates from
D(X) = E[ lim 1 Z(DW ~U.y) \Xm =X.,i> o}, Xin, these rates should deviate frdd(X,,.;,) in a similar
oo n iy manner. This is in fact expected as increasing the backlog
and vector in one dimension should increase the expected depart
B rate in that dimension, which can be considered as a result of
D*(X) = E[D*(X,s)], the approximation to the GMWM problem through the use of

whereD*(X,s) is defined in[(B). In addition, IeX,,; béld algorithmA. Note that in C3 where appropriate the vecXors
’ N L normalized by its norm sincB(X) does not depend ofiX||.

X, — arginf o(X) Finally, C4 simply requires the proce$X,} to be able to
X = X(X) reach all vectors iflN", although what we need for the proof
is a relaxed version of this assumption. Using the numerical

results for (X, nin, N1) and D*(X,.;n), and the symmetry
'of channel states, it is easy to verify that the conditions C2
C4 also hold for the examples in Section VI. Therefore, there
are examples for which the conditions C1-C4 hold. Next, we
show that these conditions are sufficient for network ingtgb
completing the proof of part (c).
First, note thatD*(X,,;,) € I', which directly follows
om the definition of D*(X,,;,) and I'. Second, the rate
Definition 1: For a givenX and a givene > 0, the e- D (Xm.i") belongs to the t_)OL_mdary or, o_thng|se we

. ) : could find another vectoD inside I' and within a small
neighborhod ofX is defined by neighborhood oD*(X.,,.;,,) with larger backlog-rate product,

N(X,e) ={X1: | X1 = X]|| <€} in contradiction with the definition oD*(X,,;,). Hence, we

see that the raté..D*(X,,:») belongs to the boundary of
0-.I'. Third, we can see that by the definition@f andX,,,;,

R(X,€) = {Xy : | X[ #0, Hm -xX|| <uixi=o}. o= R 2 T

Definition 3: Consider a regiofR and a vectoX insideR. This is because DCP may use sub-optimal valuesNor
We define{(X, R) as thesupremunof the angular deviation which by C2 makeX,,;,D less than&(Xmm) when N, is

Note that in the definition aD, we hypothetically assume that
the backlog vector after timeis fixed and does not change
This is similar to the method used to defip€X, N;) except
that here we do not assume a fixed value Agr and instead,
assume DCP adapi$,; as if the backlog vector was changing
In addition, note that by the ergodicity of the channel pesce
D does not depend o) and moreover, by Propeffy D) does
not depend orj|X]||. To simplify the subsequent analysis, we,
also consider the following definitions:

Definition 2: For a givenX with ||X|| = 1, and a given
e > 0, thenormalizingregion R(X, ¢) is defined by

X,

of the vectors inR from X, i.e., large. Using C1 and the above inequality, we have
XY =
¢(X,R) = sup arccos | ——=— |- (ID (Xin)||
OXR) = gp weeees ey gy b >

= ID (X[

10Note that here infimum can be achieved since the functipf) and
x(X) are continuous functions &, and the infimum is taken over a closed 1!As opposed to traditional definitions which usually Ugé¢X, ¢) to define
interval. continuity, here, the regiofR (X, ¢) is used to characterize continuity.
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Fig. 4. lllustration of regionsR(Xin, €), R1, andRa.

which implies that

. N . . i
where the inequality is component-wise. Without of loss cg

generality, we assume that

D(Xnin) = 000 D*(X). (27)
Let the input rate be
a= (0 +<)D*(X), (28)

for somes > 0, which is clearly outside of the regiah,I".
Let A, ,, be the drift vector defined by

n—1

n—1
1 1
Ay = - ; Ay — - ;(Dtﬂ —Ugy).
In addition, let
AX =a— D(X)

Note thatAx does not depend ofiX|| sinceD(X) has the

14

N,

/.
-’ Lo
- g
- .
id B

__-_";’;r-':‘"\\ g(AXmm’ N(Axrnhy,’ €2 )‘)

s : X I

. ~~L;,€2 X2 .- :. nAX3 SN ",

X = MXpin, eeg=—in X s 2
it ,

Boundary of R V3 (Amas + Dima)

Fig. 5. Examples wherX;,; € R2 explaining cases whetd; | ,,; » = 0
as in the pointsX, X, and X2, and the cases whetd;,; , = 1 as in
the pointXs. In this figure, the regiorR» is rotated clockwise.

The above equality is obtained by using condition C3, etyali
(Z7), and considering that the input rate is given [oy (28). In
particular, we have that

S a
O +<
ncee, can be made arbitrarily small by choosing sufficiently
rgen and M.,, we assume that for aK € R,

X X Xmina R Xminv €
§(Ax, N(Ax, e2)) < d 2( ))-

Hence, according td (29) and (31), f&t; € Ry, with proba-
bility larger than(1 — ¢) the drift A, is close toAx, with
a supremum angular deviation that is half of the supremum
angular deviation oX’s in R(Xnin, €) from X, .

To continue, let the regioR, be defined as

Ax

min

(31)

Ro ={X: X = MXnin € R(Xpnin, €)}, (32)

for some M > M,,. This region is a shifted version of
R(Xmin, €) with the origin shifted talM/ X,,;,,, and therefore,
R2 C R;. Fig.[4 provides a graphical demonstration of regions
R(Xmin, €), R1, andRz. In the figure, the vectoX,,;, is
shown by a unit arrow-vector. Now we are in a position to

same property as pointed out earlier. Suppose for a giv@pow that starting aX; = MX,, for some appropriately
€1, the values forg; and 3, are chosen such that by c3chosenM, with positive probability{X;;, i > 0} stays in

if X; € R(Xmin,€), for appropriately smalle, then the
following holds

|Ax, — Ax

|<€1.

min

Using Assumption]1, condition C2, channel ergodicity as
stated in Section IlI-B, and that arrivals are i.i.d, it istno

hard to see thaf whene is sufficiently small, for any positive
€2 and0 < ¢ < 1, we can first chose: large and thenV/,,
sufficiently large, and define the regi®, as

Ri={X:||X|| > M,,X € R(Xmin,€)}

such that
P(”At,n_AXtH <€2|Htaxt ERI) > (1_<)1 (29)
where in above
< (¢ — Abs) X
Ax, = ——""a— do(— — X,in)- 30
x = gy o ey~ Xme) @0

12/ similar discussion similar to the one for Propefy 2 appliere.

Ro with ever growing norm.

Consider the sequendX;n;}2, with X; = MX,,in.
Recall that: is chosen sufficiently large according to the value
of ez. Let A¢ynin be ar.v. defined by

1 if HAtJrni.,n - AXt+m‘
0 otherwise

< €
»AtJrni,n - { ’

Provided thatX;,,; € R2, whereRs C R, and assuming
a smalle; and a sufficiently largeV/, it is not hard to see
that if A;1,; » = 1, then the following hold as a result of
(30) and [(31). FirstX, ,(;+1) € R2. Second, the distance of
the vectorX, ;1) from the boundary ofR, becomes the
distance ofX;,,; plus at leastd 4. Third,

X tgnirn)ll = [ Xitnill + 104,

whered 4 is an appropriately small positive constant. Fig. 5
shows the regiofR, rotated clockwise, and provides examples
for the case whered,,;, = 1. Specifically, whenX;_,;
equals one of the poiniX, X, andXs,, the figure assumes the
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drift vector A4 ,; », is within thee,-neighborhood Oﬁxt+ni- Starting atM X,,,in, let 7z, be the first time that the ratio

For pointsX; andXs, the figure also shows the increases in,, does not satisfy[ (34). Consider the sequence

their distance from the boundary &>, and denotes them b

d, and ds, respectively. These )\//alues, as mentioned abgve, {Attnmn, 0<m < TR, — 2} (35)

are lower-bounded by.d4 as a result of[(30) and_(B1). ToFor 0 < m < 7, — 1, the discussion leading t¢ (33) and

see this note that, as shown in the figure and suggested(@®) implies thatX,,.,.,, € R,. Furthermore, this discussion

(30), whenX, ,; deviation fromX,,;,, i.e., when it deviates shows that the sequence can be considered as a truncated

from the central line in the figure, the vectdrx, .. gets a Bernoulli process with success probability—¢). An intuitive

component towards the central line. This and the assumptigst important observation is that for an infinite sequence of

that the angular deviations in th®-neighborhoods are lessBernoulli trials {B;,i > 0} with success probabilityl — ¢),

than half of the one defining regioR, as assumed in_(81), for any givene, > 0, with positive probability the ratio

ensure that aften steps the backlog vector remains Ry, of failures never reaches¢ + ¢,. This is the key to prove

and that the distance from the boundaryaf increases when TR, = 00, Or equivalently,[34) holds for altln > 1, with

Aitnin = 1. Using a similar argument, it is easy to see thajositive probability. Let the notatiom,, be re-used as the

whene; is small, an event of the typd;,.;, = 1 increases failure ratio for the infinite Bernoulli process, i.e.,

the norm of backlog vector more thai 4. On the other hand, m

if Aitnin = 0 with at most probability¢, both the distance oy =1— i ZBZ‘

of Xy in@+1) from Ry and [ Xyq,, 41|/, compared to the m =

distance ofX;,,; and||X;;||, respectively, decrease at mos

by 7v2(Amaz + Dimaz). In Fig.[8, the pointXs is an example

of this case, where the vectdy, ,,; , can be anywhere inside P(rm —C>eq) <p™, (36)

the outer circle, centered &3, but outside the inner circle

defining thee,-neighborhood of the vectaX; + nAx,. where
In the rest of the proof, as the worst case, we assume that p=inf Mz (s) <1,

for X¢1ni € Ra, @ > 0, the event{ A¢1,;, = 1} occurs with 5>0

probability (1 — ¢). Note thatR, C R, and whenX;,,; € whereZ; =1— B; —(—e4, andMz_(s) is the characteristic

R, the inequality [(2B) holds regardless of the past histofynction of Z.. The above inequality indicates that with

Hiini- Let the event thatd,,,, , = 1 be a success. Basedprobability at least(l1 — p™), the ratio of failures aftemn

on the previous assumption, f&;.,; € R., this success trials is less than or equal ©©+ ;4.

event occurs with probabilityl — ¢) regardless of the past. To further studyr,,, we consider the infinite Bernoulli

Now consider the sequend&;,:;}, 0 <i <m —1, and let process in a sequence of stages. In the first and second,stages

m1—¢) be the number successes of the typé,, .., = 1} we considerm Bernoulli trials. However, after the second

out of them associated trials. The above observations impBtage, for the,;, stage, we consider the next subseq@éntm

EJsing large deviation results [34], we have

that if X;y,; € Ro, for0<i<m—1, and if trials. Since trials are independent, with probability— ¢)™,
we can have only successes for the firstrials, and thus, the
(m —ma—¢))V2(Amaz + Dimaz) < Ma—)0.4; ratio r,,, never goes beyond zero, i.e.,
thenX;inm € Ro, and r; =0, 1<j<m.
[Xttnmll > [|Xel| +ma_cynda For the second stage with the next trials, using [(36), we
—(m— m(lfg))n\/i(Amam + Dipag). see that with probability at lea$t — ¢)™ (1 — p™)
Using the above, we see that a sufficient condition for the max 7; < O+ mlC+es) < 2(C+ e),
sequencd Xy nm,m > 1} to stay withinR,, and 0<j<2m m +m(C + €q)

where the first inequality refers to the worst case whereén th

[ Xenmll = 1 Xe]| +mm €3(04 + \/5(’4"“” + Dinaz)); second stage af: trials, the failures happen in the beginning
(33)  of the stage, i.e., when then + 1)m, (m + 2)m,..., and(m +

for somees with m(¢ + e3))wm trials are all failures. Inductively, considering
the (I + 2)i, Sstage, we see that with probability at le@st—

5A l 2P
€3 < OmMIL,_o(1 = p*™)
’ \/i(Amar + Diaz) + 6.4 po ( I+1 ymy( )
. 27— 1)m(C + €4
is that for allm > 1, P < <2 , (37
m > 15j15112%z)«(+1>m (T 2m(C + ) (C+es), (37)
m—
rm 21— % where the numerator is the total number of failures up to the
54 end of (I 4+ 2)y, stage, and the denominator corresponds to the
< — €3. (34)  worst case where the failures in thlet 2)i stage all occur in

V2(Amaz + Dimaz) + 6.4 the beginning of the stage. Therefore, with probabilityestst
In what follows, we show that with positive probability the R 0P,
above inequality holds for at > 1. pe= (1= (1—p"")
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the ratior,,, m > 1, always stays below®({ + e4). But we can find a sufficiently largé’ . . independent of the past
myoo m history #; ands such that[[20
pe > (1- QIR (1— (7)), YT ]

. . 1 ,
This and Lemma4l5 indicate that P( sup |m(s) — Z Logriny=s| > € |He) < C.
E>K s T+ 1=

pe > 0. (41)

The above discussion implies that with a positive probabU;iven H
ity, not less tharp, the ratior,, associated with the sequence b
in (39) stays below2(¢ + ¢4). Hence, if¢ ande, are chosen P
such that 1 K ,

sup |m(s) — p—— Z Tg(t4m)=s| > €.

( _ 53), (38) K>K . K P
2 \/i(Amaz + Dmam) + 6A

then starting aXK; = M X,,.;,, the inequality in[(34) holds for By (1), we have that
all m > 1 with positive probability. Since this latter statement P(Ay M) <. (42)
can be generalized to the case wh&ree R», we have that e

P(vYm >0, Xyinm € R2 and [33) holdgX; € Ry) > 0
(39) LS

if (88) holds. But [38) can be satisfied since the choice for a A= E[(TK +1)m(s) - kz Lserhy=s ’Ht]
positive ¢4 is arbitrary, and as mentioned in the discussion . ) .
leading to [(2D),¢ can be chosen arbitrarily small. HencelSing conditional expectations and the definitionf , .,
for an appropriate choice of parameteis.] (39) holds, whigmnd considering the fact that< n(s) < 1 andrx > 0, we
suggests that with positive probabili; ., stays inR,, can show that
and its norm increases (at least) linearly with Since by /

A<Pw¢ AKE/ C,e/)E[E (T +1) lwé AKE/

let Ay, . denote the set of all € Q with the
roperty that

1 0
C+es< = A

Supposek > K - and let

He

C4 with positive probabilityX; € R. for somet, and o€
arrivals and departures are bounded implyingfor j < n, + p(w € Ay g)E[(TK +1) jw e Ag 6,,%} (43)
1 Xttmn_jll > IXirnm| — C, for someC > 0, we see that e e
(39) indicates that with positive probability Similarly, we obtain
Aim [ X¢4i]| = oo. E[(rx + 1)[H]
This shows that when the input rate is given byl (28), and thus, — Plw¢ AKSIYC,e’)E[(TK 1) |wé AKE’@&"HJ
when it is outside the regiofI', for any bounded regio6, +PweAy, NE[(tk+1)|weAg, o He]
with positive probability the procesX, ; never returns to < <
C, and hencelE[r¢] = oo, implying network instability. This Sincerx > 0, the above implies that
completes the proof of part (c) of the theorem.
. Plo¢ A, B[k +1) ¢ Ay, o Hi]
< E[(tk + 1)[H] (44)
APPENDIX
LEMMAS In addition, w.p.17x +1 < (K+1)(1+L1)N,. It thus follows
Lemma 1:For anye > 0, regardless of the past histoky;, from (42), [43), and[{44) that
there exists a sufficiently largk. such that for alk € S and A < E/E[(TK +1)|He] + C(K +1)(1+ Ly)N.
K> K, N
rx Noting the fact thatx > 2K N, we obtain
‘E[(TK + 1)7‘1’(5) — Z 1s(t+k):s’Ht} ‘ <elE {(TK + 1)|'Ht} , (K +1)(1 + L1)N,
k=0 A < E[(tk + 1)|H] (6 +¢ E[(rx 1 D[7] )
Proof: Since ;.1 — 7, > 2N, it is easy to verify ) (K +1)(1 + LN,
that 7x — oo, a.s, as K — oo. This almost surely < E[(tk + 1)[H] (e +¢ N ! C)
convergence and the ergodicity of channel process, agistate 2KN:+1
in Section1II-B, imply that ask” — oo = eB[(tx + 1)[H4],
1 X where
1 —s — , a.S. 40
TK+1kZ:O (t+k) m(s), a.s (40) E:E,+<(K+1)(1+L1)NC

Moreover, since the channel convergence in SedfionlllI-B is 2KN: +1

uniform in the past history and, and since the number ofcan be ma/de arbitrarily small by choosing sufficiently small
channel states is finite, we see that the above convergenceaiies fore and¢. A similar discussion holds for-A with
uniform in ¢, ., ands. Thus, for anye > 0 and¢ > 0, the sames, completing the proof. u
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Lemma 2:For any givene > 0, there exists a sufficiently Using LemmaL, foe; > 0 and sufficiently largek;, we have
large constanf, > 0 such that for allK > K., we can find that for K > K;
a properM. i such that if| X;|| > M, k, the following holds

TK

E[ Y Xia— X kD4 H:]

E[ g Xia — X1 Di | He k=0
kgo e < E[(TK + 1)2ND72naz|Ht] + E{(TK + 1)Xta
< B[ (mic+ DIXel (e = (1- Teaééﬁs=l)x<xt>) %] (7 + DX, YD (Xs)(n(s) — 1) [He]

seS

Proof: To prove the lemma, we first note that by the = E[(tx +1)>ND}, . |[H:]
definition of D*(X,,s), and the assumption that departures +aE[(rx + 1)||Xt|\|3|\/NDmaz}’Ht]
are bounded byD,,,..., we have
n E[(TK 1) (Xta — B [X,D*(X,, s)}) \”Ht] . (48)
X xDY L, = max Xy 1 D(sppr, I
PRk T e R (St I Combining [4Y) and[(48), we obtain the inequality in lemma
X,D(se1, 1) (kiD D( I)) Wi

> max X;D(s¢yx, 1) — max t+iD (St 1k,

1€z 1€z 1)ND?

—0 _ Tk + YNDyoy + €1|S|VNDyas

> max X;D(si+r,1) - kNDEW (45) a X
€
_ The choice for a positiveis arbitrary since one can first select
Using [11), we also observe that K. > K, such that for allK > K., ¢, is sufficiently small.
. After selectingK, because w.p.2x +1 < (K+1)(1+L1)N,,
Xia — Es[X;D*(Xy, 8)] one can chos@/, x such that fof| X;|| > M, x the first term
=X Y 7w(s) Y BarD(s,I) = Y 7(s)X;D*(Xy,8) in € is also sufficiently small, completing the proof.
seS ez seS u
. Lemma 3:For any givene > 0, there exists a sufficiently
=Y 7(s) < Zﬁs,I(XtD(S,I) - X;D*(Xq, S)) large constanf, > 0 such that for allK > K., we can find
s€S Iez a properM. x such that if| X;|| > M, , the following holds
( 1—Zﬁsl X:D* (X, ))) (46) i
IeT E[Z Xt+iD:+i|Ht}
=0

Since by definition for alll € 7
< B(ri + 11Xl ((X0) + € [He]
XtD*(Xta S) Z XtD(sa 1)7 . ..
Proof: Using the definition oD*(X,s), for the LHS of

we have the inequality in the lemma we can show that
* TK i—1
Xta - E [XtD (Xta )] LHS = E[Z max ( Xt + Z AtJrj DtJrj + UtJrj))
< - Z 1—Zﬁsl X, D*(Xy,s) 3=0
seS IeZ D(St+i7 I)) |Ht:| )
< - (1 — max Z ﬁsjl) Z 7(s)X;D* (X, s)
5€° ez seS Since arrivals and departures are boundedRy,, andD, .,
= —|X¢](1 — max IZ; Bax)X(X1), (47) respectively, we have that
S

LHS < E| th (Xi,8t44) [He)

where the last equality follows from the definition 9fX,). =

Back to the inequality in the lemma, usirig{45), we have TK TK
E iN Az Dimaz iN D? . (49
- + |: ; ? + ; ? max ‘Ht:| ( )
E[Y  Xia— X xDjy | He] < E[(ri + 1)°ND2,,, | Hy] _ _ .
k=0 Let ¥ be the first term of the RHS of the above inequality.

TK We have

+E |: Z (Xta - Xt Z ]-s(t-Hc):sD*(Xtv S)) ‘Ht}
k=0 s€S {Z Z XD (X¢,8)1g(t4i)=s ’Ht:|

=E[(tk +1)°ND2, .| H:] i=0 seS
TK TK
+E[tha—thD*(Xt,S)Zl t+k ‘Ht:| = XtZD*(Xta [le(tJr’L |Ht}
k=0 scS k=0 scS
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Using LemmadlL, for any positive, we can find a sufficiently =~ Statement 1Fort < t; <t + 7k, t <ty < t+ 7K, and

large K; such that forK > K; any N; € NV,
£ <X, ) D*(X,, S)E{(TK +1)((s) + e1) ]Ht] 6(Xt,, N1) = ¢(Xe,, N1)| < 1. (53)
s€s Statement 2:For any7;, with 0 < ¢ < K, and anyN; €
= E[(TK +1) Z 7(s)X,D*(Xy,s) N, with probability (1 — ¢, ), and regardless afand the past
seS history at timet + 7; + 1, H¢4,+1, We have
+ ISIVNIX | D (72 +1) [ 1] o (i 1)
— E[(TK F1)[IX|| (X(Xt) + 61\/N|3|D,m) |Ht}, Gt + T+ LN (t+ 7 +1)] <O, +e1. (54)

(50)  Similarly, with probability (1 — o), and regardless of and

where the last equality follows from the definition 9fX,). the past history at time-+7; + 1+ Ne, Hiyr. 114w, We have

Considering inequalitie$ (#9) and {50), we obtain lo(t +7; +1)—
LHSS]E|:(TK+1)HXt||(X(Xt)+62)‘Ht}, (51) Pt+7+1+Ne, Ni(t+7,+1))| <0, +¢e1. (55)
Remark 1:Property ? states inequalities in Stateniént 2 may

where hold in general withdifferent probabilities all not less than
AmazDmas + D2,y (1 — p,). However, to consider thevorst caseanalysis, in
[1X |l : Statemenf2, we have assumed these inequalities, with the

. ) given conditions, hold with theameprobability (1 — g,,) for
To complete the proof, it remains to show thatcan be made )| ; where0 <i < K.

arbitrarily small. Consider any positive We first chooséex, Remark 2: Consider thé+ 1y, and thej+ 1, rounds, where
such that fork > K. the value ofe; is sufficiently small <i,j < K andi # j. Since inequalities(54) an@ (55) in
to make the first term ire; less thang. Sincer; + 1 < gstatemeni]2 may hold in thé+ 1, round with probability
(K +1)(1 4 L1)Ne, we see that for a giveR with K > Kc | _ ,  regardless 04+, 41 andHy 114, respectively,

if || Xy[| > Mc x for a sufficiently largel r, then the second siatemerifl2 implies that the event tHafl (54) or the one &t (5
term ine; can also be less thap Therefore, for any positive po|gs in the; + 1y, round is independent of the inequalify{54)
e if K > Kcand||X,;|| > M. g, for appropriate values of o1 (58) holding in thej + 1y round. In addition, the event that
K. and M k, then the inequity[(31) holds with, < e. But  ©2) nolds in thei + 1y, round is independent of (55) holding
this means the inequality also holds fgras required. B i, the same round.

Lemma 4:Supposeif, < a, and lete be a positive real  Before going to the main part of the proof, we first derive
number. For any given, there exists a constaif. such that o key inequalities. To obtain the first one, note that foy an
if K> K., then for|X:| > M, x the following holds two time instantst; andty, with ¢t < ¢; < t + 7 andt <

_— ts <t + 7k, using [53B), we have that
B[ D XuDuwlt] 600, 1K) — bl (K )| <1 (66)

1=10+1

> E[(TK + D)X (Roo (6(2) — o — 36,,) — €) \Ht}, and

€2 = €1|S|VNDpaz + (76 + 1)N

where M, x is a sufficiently large constant depending en @82, N1(Xs,)) = @t2, N1(Xe,))| < €1

and K, and R is defined in[(B). By the definition ofN; (X) and the inequality if{36), we have
Proof: The essence of the proof in this lemma is finding - -

a lower-bound for the percentage of time tmegtar optimal Mtl,Nl(th))N_ ¢’(t2’N1(Xt2))N

values forN; are used by DCP. We prove that this percentage <@(t1, N1(Xy,)) — o(t2, N1(Xy,)) < 1

is close to R.. First, we place a requirement ofiX,|| . N . L
for a given K. Later in the proof, we find an appropriaté/r\:;gan obtain the other direction of the inequality simijlarl

lower-bound K. for K according to the value of. Note

that w.p.1, for any givenk, Tx g_(K + 1)(1 + Lq)N.. |p(t1, N1(Xy,)) — d(ta, N1(Xy,))| < €. (57)
Therefore, since departures and arrivals are bounddd, by, o _

andA, .., respectively, we can easily see thatfog i < 7r, This inequality shows that when backlog vector has a large
X — Xe| < C}(, where C}( is an appropriate constant@bsolute value, the optimal does not vary significantly in
depending onk. Having this inequality, we can find an@ limited time horizon. In particular, the variation apprbas

appropriate constant/,, depending ork’, such that if zero when|| X, || approachesc. -
) To derive the second key inequality, first note that based
IXel| > My, (52) on the definition ofr; given in the proof of part(a) of the

) . theorem, the + 1y round after timef begins at +7; + 1, and
then the following statements hold according to PropBity ihe time interval betweeh+ 7, + 1 and + 75 + 1 consists

and Property]2, respectively, with < 5(§ — 0,.). of K scheduling rounds. To simplify the notation, 8% be
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the optimal value ofiV; for the first round after time, i.e., Similarly, since by assumptioWV (j —1) = Ni, we can use
N1 = N1(Xt4r,+1). In addition, let N7 (j) be the candidate (53) and [5b) to show that
value for N; in the j + 14, round, and letV; (j) be the value

% /
of N; used in the update interval of the+ 1y round, i.e., ot +7j—1 +1) = ¢t + 7 + 1, N[ <€

Ni(j) = N{(t+ 7 +1), andN1(j) = Ni(t +7; + 1). Considering this inequality anf{57), we obtain
Now, consider the + 1t, round,: > 0, and suppose the op- - ,
timal N, is selected at this round, i.6V] (i) = Ny (X; 1, 11)- plt+71+1) >t +70+1,N)—€¢ —e.  (63)

Let Ny = Ni(Xy4r,41). Then the inequality in[{34) and theFinaIIy, considering[(81)[(82), an@(63), we obtain
preceding inequality imply that with probabilifl — o) N
dt+70+1,N1) +€ >

l"(t+ 7 +1) =t + 70+ 1, N1)| <26 +0,.  (58) S+t 1N — ¢ — e +a

Let which implies thate’ + e; > a. This is in cor]tradiction with
¢ =2¢ +6,. (59) (60) stating thate’ < o Therefore N (j) = Ny fori < j <
_ _ K — 1, proving the claim.
Based on the assumptidit,, < « imposed by the Lemma A byproduct of the above discussion is that after the
and thate; < $(% — 6,), we have round, o(t + 7; + 1) stays close tas(t + 7o + 1, N1). More
recisely, sinceV,(j) = Ny fori < j < K — 1, we have
0 < 6€ < 6((= —0,)+0,) = o ©0) " Y 19) =M :
6 lp(t + 75 +1) — ¢t + 75 + 1, N1))| < 0, + €1
The inequality [[5B) is the second key inequality required fo
the rest of the proof. Moreover, from[(5B) we have
We are now in a position to explain the essence (_)f thg proof, lo(t +7;+1,N1) — p(t + 7 + 1,N1)| < €.
where we find a lower-bound for the fraction of time in the ) N o
horizon of K rounds in which near optimal values fof;, are USing the last two inequalities and {57) , fox j < K — 1,
used. Towards this end, we first assume that the inequaltitiedve obtain
(54) and [(5b) hold with probability one for alk' scheduling bt 1) — bttt 1N < € 4 e 64
rounds, thus assuming, = 0 in Statemenifl2. We then extend (e 471 = oli 7o+ 1, M) b (~ )
our discussion to realistic cases whete> 0. which shows how close ig(t + 7; + 1) to ¢(t + 70 + 1, N1).
Discussion assuming g, = 0 : Suppose at theé + 1 Case 2:In this case, we assumg'(t + 7 + 1) < ¢(t +
round, i > 1, the optimalN; corresponding toX;,,, 1 is Ti—1+1)+a. Taking similar steps as in Case 1, we can show
selected, i.e.NT(i) = Ny = N1(X;4r,+1)- Considering the that
scheduling policy, with respect to the update/df in i + 14, ~ / "
. . — < )
scheduling round, there are two possible cases: Pt+m+1N)—e < (t+m+l)
and
Case 1:In this case, we assumg (t+7;+1) > p(t+71i-1+ . ,
1)+a. Thus, according to the update ruf§; gets updated at plt+ri1+1) <ot +70+1, Ni(i = 1)) + ¢,
the i + 1in round, and takes the valu¥, (i) = Ny (i) = N1.  Hence, using the assumption, we obtain
However, it remains unchanged until the the+ 1y, round. . . _
We can prove this statement by induction. To see this, assumé(t + 70 + 1, N1) — 26’ —a < ¢(t + 70 + 1, N1(i — 1)).

that N; remains fixed after the + 1y, but changes for the (65)
first time in theji, + 1 round, wherej > i. Therefore, by the \we next show thatV; gets updated at most once in the rest of
update rule, we must have K —(i+1) rounds. Let thej, + 14 round, fori < j; < K —1,
r . ‘ be the first round after the+ 1y round thatV; gets updated.
Pt 1) >t +1)+a (61) Using similar arguments as the ones in Case 1, we have
Since (475 + 1) < Bt + 70+ LN (1) + €.
[¢(t + 75+ 1,N{(j)) — ¢(t + 70 + L, N7 ()] < e, and
and Pt +75-1+1) > ¢t +70+1,Ni(i — 1)) = ¢,
le"(t+ 7 +1) —d(t + 75+ 1,N{(j))| <0y + e, where in the above we have used the assumptionXhatoes

not change before thg + 1 round, and thus have st (j; —

1) = N1(¢ — 1). Since N; gets updated at thg, + 1y, we
have N1 (j) = N7 (j). Using this, the update rule, and the last
O (t+71+1) <Pt + 710+ 1,N{(4)) +2€1 + 0, two inequalities, we have

<(t+70+1,N1) +¢, (62) pt+710+1,Ni(i—1)—€ +a
where the last inequality follows from the definition &F. <ot + 70 +1,N1(j1)) + ¢

which follow from (53) and[(54), respectively, and the asptm
tion that o, = 0, we have
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This inequality and[{85) yield thei + 1y, round,i > 1. Suppose this event happens at 11,
- , ) round,i > 1. If Case 1 happens, we can partition the time
Ot +710+1,N1) —4e < od(t+ 70+ 1,N1(j1)). (66) interval between + 9+ 1 and¢ + 7 + 1 into three sets. The
Similarly, if there existg; < jo < K—1, such thatat+r;,+ first set consists of all test intervals. The second set stasi
1, N, becomes updated for the second time, we can show tiedtthe update intervals before thiet- 1., round. Finally, the
third set consists of the update intervals after theround.

. /
¢t +70+1,Ni(j1)) —€ +a Considering these sets in sequence, we can express the total

<Ot + 70+ 1, N1(f2)) + € number of timeslots betweent 7 + 1 andt + 7x + 1 by
In other words, i
ot +70+ 1, N1(j1)) + a — 2¢ KNC"’J_;ONCNs(J')
< ¢(t + 70+ 1, N1(j2)). K | N1
Therefore, every time thaV;, becomes updated, the algorithm T ; Ne min(max(1, T)W ,L1), (70)

finds a better estimate f@n(t+ 7+ 1, Nl). More specifically,
after each update, the gap betwegn+ 7, + 1, N1(jx)) and whereNs(j) = N3(t+7;+1). To obtain the above expression,
#(t + 10 + 1, Ny) is decreased bya — 2¢/) > 2a. However, we have used the fact that when Case 1 happens, according
(65) shows that the initial gap is + 2¢/, which is less than to the update rule, at the+ 1y, round Ns(i) becomes half
or equal to%a. Therefore,N; can be updated at most onceof the previous value fotVs, but keeps doubling for each
in the rest of K — i — 1 scheduling rounds. following round. Recalling tha{((68) holds after thg round,

In this case, similar to what we observed in Case{,+ andNs(j) < L, we can use (10) to show that féf > i+ 1,
7j + 1) stays close t@(t + 7 + 1, N1). To see this, consider w.p.1,
a scheduling round, e.gj,+ 1 for i« < 57 < K — 1 round, K—im1 . oi 1
where N, (i — 1) is used. By[(5B) and(55), we have Ry > 2430 min(2, L) (71)

T K 4iLi+2+ 3 min(20-1 Ly)

lp(t + 75 +1) — ¢t + 70 + 1, N1 (i — 1)) <€’

For a given fixedi, the above fraction approach(-i-élL—1
_ as K approachesx. Therefore, for any given positive,
lp(t +7;4+1) — ot + 710+ 1, N1)| < a + 3€'. (67) we can chooséx sufficiently large such that for all with
1 < i < imae, the above fraction is larger thapflTl — €.

Considering the above inequality and](65), we obtain

In the same manner, if instead &% (i — 1) an updated version . o ,
of V; is used in an scheduling round, we can use the inequali plying a similar argument to the second case, we can find a

in (88) to show that the above inequality still holds. Hencé fficiently largeK such that the fraction of time over which

the inequality in[(6) holds for all with i < j < K —1 since, thded_r:_ear optimal sollutl'on IS USﬁdﬂ:stl?rger thaly- — E‘i In
as proved earlierN; becomes updated at most once. addition, we can seleal,q, such that for a given positivg,

Combining the inequality[{84) associated with Case 1 imaz ‘
and the inequality[{87) associated with Case 2, we see that Z(l —0)e>1-¢.
regardless of which case happens, the following holds for i=1
1<j<K-1 Hence, if K is sufficiently large, with probability larger than

ot + 75 +1) = $(t + 70 +1,87)| < 7, (68) 1~ we have
Ly

h > —€3). 72

where RK_(1+L1 €2) (72)
v=a+3€. (69)

This is an interesting observation. Since the choices:for

Inspired by the above inequality, we now define a ne@nd(: are arbitrary, this observation implies that in the limit of
random variableRx as the percentage of time that “nealarge backlog vectors, the policy keeps the network opegati
optimal” solution is used in the time horizon consistingfof at near optimal points for at leagfs— fraction of time. Hence,
rounds. By near optimal in a scheduling round, e.g. jthdy, in the limit, at most only the time for selecting new values fo
round, we mean a choice o, that ensures(t +7; + 1) is N1 and observing their performance veasted which con-
close top(t + 79 + 1, ]\71) in the sense of (88). Intuitively, astituesﬁ fraction of total time. Rgcall thf:\t near optimality
larger Rx results in a larger scaling factor, and thus, a bettés defined in[(€B), an@(t + 7 + 1, N1) = ¢(Xpirg+1), We
throughput performance. In the following, using the praécgd therefore, as a result of the preceding inequality, expeet t
discussions provided in Case 1 and Case 2, we find a lowieniting scaling factor of the capacity region to be a fupati
bound for R. of ¢(X), and be proportional tg4—.

As explained in Sectiof 1VAB, in the beginning of each Note that to obtain the above results, in particular those
round, e.g., thej + 1y, round, the optimalV;, correspond- mentioned in Case 1 and Case 2, we assume that the inequal-
ing to X;4,4+1, is chosen independently with probabilidy ities in (54) and[(55) hold for all{ scheduling rounds after
Therefore, we see that with probability — 6)i~10, after the time t. Therefore, the above discussion #f holds only for
first round, the optimal solution is selected for the firsteim the limiting case ofg, = 0. In the following, we extend the
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preceding discussions for a realistic situation whege> 0, theis; 44, jm round in thejy period. This indicates that the
and obtain a general lower bound f&r . Jjin period consists ofs ; + i, ; + 1 rounds, and thus by the

Discussion assuming o, > 0 :We start by assuming that definition of is ; andi,, ;, its length is always less thaC'

" / Having introduced periods, we now define the sequence
1Xell > Mic > M, (73) {p;}320, with po = 0, as a subset of indices such that,
for a sufficiently largeM; such that for a giver’, C' > 1, 4 > 1, is the number of timeslots form time to the last
Statemenit]1 holds for all times andt, greater thai—1 and timeslot in the jy period. By definition, therefore, the,
less thart 4 7k 12y +1, and Statemeid 2 holds for alwith  period,;j > 1, starts att + Tp,., +1and ends at + 7, + 1.
0 <i < (K 4+ 2)C. We partition the time between+ 7o +1 Let ix be number of periods that are completely contained in
andt + 7k 42)c + 1 into a set ofperiods where each period the K rounds after time, i.e.,
consists of several scheduling rounds. For the simplicfty o
discussion, we assume that the first period always starts at ig =max{j:p; <K,j >0} (80)
t+ 7+ 1.

Corresponding to each period, e.g. theperiod, we define
apositiver.v. is ;. This r.v. takes valug, i > 0, if the following
conditions are met. First, in thet 1y, round of thejy, period,
for the first time in that period the optimal value faf, is
selected. Second, the inequality](54) holds6rat thei + 1y,
round as well as[(35) fop at theiy, round, both in thejy
period. Third,i equalsC — 1 if the last two conditions do not lo(t + Tp, 1 4im1 + 1) — g,(t +10+1)| <. (81)
hold for any of the second to th&' — 2) rounds in thejy
period. Recall that the optimaV; is chosen independently inNote thatt + 7, , ;1 + 1 is the start point of they round
each round with probability. Thus, using RemairK 2 wittx  in the ji, period, and we have set conditipn ; +i—1 < K
replaced with(K +2)C, we see that; ; becomes a truncatedto consider only the firsk” rounds after time.
geometric r.v. with success probability We now focus on finding a lower bound f@ty. Towards

, 5 that goal, we use r.v.ss ; andi; ; to define a new sequence
0" =(1-0p)%, (74) of N3 denoted byNé according to the following:
and with the property that

By virtue of the definitions for a scheduling period,;, and

i,.;, We can see that for all rounds aftéy;n and before

the last round in thegjy, period, all conditions to apply the
discussions in Case 1 and Case 2 are met. Hence, considering
@9), forl1 < j < ix +1andis; < i < is; + ip,; with

pj—1 +1—1 < K we have that

Ny(k =pj_1 +i—1) = Ny(j, i)

Cc—2
Plis;=C-1)=1-Y_§1-8)"". (75 Ly (I<i< Zéu‘()i v )
=1 ;!
1 (i=is;+1)A(ip;=1)

Similarly, corresponding to thgy, period, we define aon- - . .
negativer.v. denoted byi,, ; that is zero ifis ; = C — 1, and 2 g (Z. = 1oyt 1.) A ,(Z*"’j -~ 1)
otherwise, is the number of consecutive rounds immediately min(g75, L) (i +2 <6 <) A (ip; > 1)
following theis ;m round in thejy, period for all of which the
inequalities in[(5K) and (55) hold. Similar ig;, we limit i, ;
to be upper-bounded iy —1. We do so by letting, ; = C—1 i =155+ ip -
if for all C'—1 rounds after thé; ;i round [54) and(55) hold. . = . .
Using this definition ofi,, ;, and Remarkl2 withi replaced Note that a round after timecan be specified uniquely either

where

with (K +2)C, it is easy to see that as theky, round after timet, or as theiy round in thejp
, _ period. We thus in the above have defingglas a function of
Plipj=0lis; =C—1)=1, (76)  the round numbek after timet, and also as a function of the
P(iy,; =0lis; #C —1) = 0, (77) pair (j,7). Similarly, N3 can be considered as a function of
and either K or (4,4). In addition, note that the above definition
of N, is mainly motivated by the method used to obtain| (71).
P(i,; =klis; #C —1) To simplify the analysis, we slightly modify the definition
= (1=, M1 - (1-gp)"), 1<k<C—2, Of Rx suchthat
‘ (78) R — 2;1 Zi:iwﬂ NeN3(jy i)
and by the boundedness %f ;, K= TH — To :
Plip;=C—1lis; # C — 1) Hence,Ry concerns only the rounds that are within the first
Cc—2 1x periods, and for which {81) holds. Considering the above
=1- Z P(iy ;= klisj #C —1) definition, we can use a simple inspection to show that the
k=0 above choices foV; ensure that w.p.1
= (1 - Q‘P)Q(Cil)il' (79) ZiK )\C( )
/ ) — T .7
To complete the characterization of periods, we define the Rk > Ri = =T (82)

i i immed i TETAG)
last round in thejy, period to be the one immediately following j=1 U
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where defines a reward renewal process. For this renewal process,

i1 A¢(4) is the length of thejy, inter-renewal interval\¢ (5)
AC () = Z (1+ Ny(j,4)) is the accumujat_ed reward collected at the engﬂpfenewal
Pt interval, andR is the average accumulated reward prior to
=i+ 1+ (is; + 1)Ly end ofix + 1y inter-renewal interval.

io—2 Consider the extended sequence, andilgtfor anyk > 0,

c i be defined similar toR’.. Applying the strong law for the
1 = 2 2 L1)1; . 83 K
L= + 2 Z min(2', L)1, ;1)) (83) renewal process, and noting that— oo, a.s., ask — oo, we

1=0 .
q obtain
an
. EYQ
ij RS 2 lim R, = M7
M@= Y NG o> B
" = s Hence, by the almost surely convergence, for any giverr 0
o ., andor > 0, there exists a sufficiently IargefR,gR such that
R [29]
Lo, =1 + (24 ) min(2', L)1, ;> . o €R
i=0 P( sup |R,—Ry|< 7) > (1 - 9r). (86)
(84) k>nl. .

As expected)\C (j) denotes the minimum contribution of theBut sincelime o RS, = Ro, We can chose a sufficiently
jin period to the raticR . The term\(j) is the total length large C' such that
of the ji, period that could potentially minimize the ratioy . €R
In addition, note that the inequality_(82) in general holdsre 27
when Remark]l does not hold, and thus, when the distributi@onsidering[(86) for this value af/, we have that
of i5; andi,_ ; is not given by [(7W)E(79). However, as stated ,
in Remar[{, we consider the worst case which enables us to P(k>ilclp By, = Roo| <€r) > (1 - ¢r). (87)
find a lower-bound forRy that holds with high probability. TR _ .
We next show that the random varialg, is a function of ~ he above inequality and_(B2) imply that there exists a
i.i.d pairs, and in fact, is the average accumulated reward fufficiently large K, ,, such that fork” > K, ,, and
a renewal process. [ Xel| > M

First, _note t_hat by_ definiti(_)m(;,j > 0, and hence, a P(Rg > Roo — €r|Higror1) > (1 — 0R). (88)
scheduling period, which consists @f; + i, ; + 1 rounds, at . .
least contains of two rounds. This implies that tierounds ere, we have stated the probability conditioned?on -, +1
under consideration consitute at mc@éjj complete periods. since all of the previous dlsguSS|ons are vallq regardlé_s; 0]
ConsequentIyR’K is a function of at most p = L%J 11 Hit1ro+1. The above inequality states that with probability

periods, and thus, is completely characterized by close 10 one_,R_K Is close FOR"O n _the sense thaftx -
R, — er. This is a generalized version of the result obtained

{(ié,j,iap,j), 1<j< KP}- (85) in (@), as desired.
We are finally in a position to derive a lower bound for the
We know that by definition a period consists of at m26t—1 LHS of the inequality in the lemma, denoted By First, note
rounds. Therefore, considering Remiark 2 wifhreplaced with that

|Rgo - ROO| <

Kp(2C — 1), we see that the above set is consisted of i.i.d TK

pairs, with distribution given by {74J=(79), if Stateméhh@ds ¥ =E| Z Xi4iDypi|He

for all ¢ with 0 < ¢ < Kp(2C — 1). Recall that we started i=ro+1

by assuming||X;|| > Mj; such that Statemefi 2 holds for Pig Tk —=Th—1—Ne

0 <i< (K +2)C. But this means that Statemént 2 holds for > E[> > Xipr N riDerr i no4ilHe|s
all i with 0 <7 < Kp(2C—1) sinceKp(2C—-1) < (K+2)C. k=1 i=1

Therefore, we have that the pairs In}(85) are Edd. (89)

Next, observe that since the pdix¢ (j), A% (j)) depends where we have simply used the fact that the produat; D, ;
only on (is j, i, ;), the sequencé(A{ (j), A9 (j)) : 1 <j < is positive, and neglected the contributions due to the test
Kp} also consists of i.i.d. pairs. This sequence is defined fortervals, and also the ones due to the rounds of the last
1 < j < Kp, but can be defined fof > Kp by defining partially covered period.
the pair (\{ (), AY(5)), for j > Kp, as an i.i.d. version of  To simplify the notation, let;;; denote the start ofy,
(A9(1),A¢(1)). The resulting expanded sequence timeslot of thei,;, round in thej,;, period, i.e.,

{ASG),AEG) 5> 1} tjig =t+Tp, i1 + 1

) . In addition, letd;; denote the length of th&; round in the
BNote that ifC = oo, is; Or i, ; may take any finite value. Hence, a . ’

proper definition ofis ; ori,_; with distributions given by[{4)-(79) requires Jth period, i.e.,
StatemenER hold for all > 0, which cannot be true by assumifi&;|| > - - ..
My, for any finite value ofM 7. 0ji = Tpj—14i — Tpj_a+i—1 = Ne(1+ N3(j,4)),
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where considering the discussions feg ande,, we see that we can
. makeeg, €4, ande; all sufficiently small by choosing’ > K,

N3(j,i) = Na(t + 7p,_y+iz1 +1). for sufficiently large k.. Having selecteds, we can find a
Considering the partition generated by the scheduling pefpwer boundM. x > My > M. for [|X;[| such thate, and

ods, and the above definitions, we can (sé (89) to show thatare also sufficiently small. Hencegcan be arbitrarily small,

N completing the proof of the lemma. [ ]
i 8ji c
Lemma 5:Let 0 < § < 1. We have
[Z Z Z th’ich+lDtj,i,Nc+l|Ht:| a
j=li=is;j+1 I[=1 e . ) (52

11— - 0.
= o Ha=on=eo (- a=5 * a=spa=-s >
(Xl .
j=1i=is ;+1 (=1 Proof: First note that by Taylor’s theorem, we have
||Xt"N+1|| 7 62
o htNet T t+ +1)— H , 90 _ _
where the last inequality follows froni(B1). Using157) aneaking 1, and therexp of the product term in the lemma, and

assuming using the above inequality, we can ea5|ly show that
Hth i, Ne+1 H 0o
S > (1 - 63)7
1-— 61 > 5t
=] [0 -0z e (- 20+ 3 55
we obtain i=1 :
ij  6;:—Nc _exp(—((lié)—i-(1_5)2(1_52)))>0,
B[S S K- @)@ - a - )ik
j=li=is;+1 I=1 proving the lemma. ]
= E[IX)|(3(t) - &1 =)
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