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Abstract

Cloud computing has emerged as a promising platform
that grants users with direct yet shared access to computing
resources and services without worrying about the internal
complex infrastructure. Unlike traditionalbatch service
model, cloud service model adopts apay-as-you-goform,
which demandsexplicit and preciseresource control. In
this paper, we present SigLM, a novelSignature-driven
LoadManagement system to achieve quality-aware service
delivery in shared cloud computing infrastructures. SigLM
dynamically captures fine-grained signatures of different
application tasks and cloud nodes using time series pat-
terns, and performs precise resource metering and alloca-
tion based on the extracted signatures. SigLM employs
dynamic time warping algorithm and multi-dimensional
time series indexing to achieve efficient signature pattern
matching. Our experiments using real load traces collected
on the PlanetLab show that SigLM can improve resource
provisioning performance by 30-80% compared to existing
approaches. SigLM is scalable and efficient, which imposes
less than 1% overhead to the system and can perform signa-
ture matching within tens of milliseconds.

1 Introduction

Cloud computing has been envisioned as the next-
generation Internet service provisioning platform, whichal-
lows users to access computing resources and services from
the Internet without worrying about the internal complex
infrastructure that supports them. Different from traditional
Internet service infrastructures such as Grid [9] that support
batchservice model, cloud computing systems (e.g., Ama-
zon’s EC2 [1]) support a newpay-as-you-goservice model.
The batch service model allows users to submit their jobs
to a batch queue system that is responsible for executing
the user’s jobs, typically using a certain space partitioning
scheduling algorithm [12]. In contrast, cloud systems grant
users withdirect yet sharedaccesses to system resources
and charge users for theexactresources and services they

use (e.g., in terms of service usage time). Thus, unlike
batch systems, cloud computing systems demandexplicit
and precise resource control. From the cloud service
providers’ stand point, through more precise monitoring
and matching among available resources and application
requests, they can improve the overall system utilization
and better exploit potential opportunities for hardware and
energy saving, both leading to better profit. From the cloud
users’ stand point, fine-grained resource control allows their
computing requests to be better accommodated and enables
them to obtain better quality-of-service (QoS) in their jobs’
execution.

The key challenges in performing explicit resource con-
trol in cloud systems comes from handling the variabil-
ity and heterogeneity of both application requirements and
system resources. Previous work has proposed a range of
resource discovery and load management solutions under
different distributed computing context. Resource discov-
ery systems (e.g., [17, 4, 7, 20]) are mainly concerned about
discovering a subset of candidate nodes satisfying user’s
resource requirements. Load management systems (e.g.,
[5]) aim at achieving balanced resource usages among dif-
ferent distributed nodes. However, existing solutions cannot
capture the detailed patterns of application workloads and
system resources. Thus, the load management systems
are forced to use coarse-grained information (e.g., mean,
min, max) to either over-provisioningor under-provisioning
system resources. Resource under-provisioning affects the
QoS perceived by cloud service users while resource over-
provisioning hurts the system resource utilization.

In this paper, we present the design and implementation
of SigLM, a novelsignature-driven load management sys-
temto achieve QoS-aware service delivery in cloud comput-
ing infrastructures. SigLM dynamically captures the pre-
cise patterns, namelysignatures, of application workloads
and available system resources using fine-grained time se-
ries of different metrics. The system then performs effi-
cient matching between system resources and application
workloads based on the dynamically maintained signature
patterns. Cloud systems are often used to executelong-
running computing jobs (e.g, MapReduce [2], stream an-



alytics [10, 13, 11]), which are amenable for the system
to observe workload patterns and perform signature-driven
load management. SigLM is fully decentralized, which
leverages structured peer-to-peer systems [19, 22, 18] to
achieve scalable storage and lookup of signature patterns
in large-scale cloud systems. To the best of our knowledge,
our work makes the first step in applying time series anal-
ysis techniques to dynamic load management in large-scale
distributed systems.

We need to address a set of new challenges to achieve
efficient and scalable signature-driven load management.
First, it is more complicated to perform similarity match-
ing between fine-grained time series pattern than between
coarse-grained resource specifications. For example, two
similar time series may appear very different if one of them
is warped or shifted along the time axis. Second, though
time series matching pairs resources with workloads more
precisely, it is much more time consuming to process a par-
ticular load pattern query in a large-scale cloud computing
infrastructure that may include tens of thousands of nodes.
Third, the signature matching problem is further compli-
cated by the need of multi-dimensional resource require-
ment, which calls for multiple pattern searches to satisfy
simultaneous resource specifications, e.g., regarding CPU
and memory. Hence, we need to support multi-dimensional
signature pattern matching, which further complicates the
signature-driven load management.

To address the challenge, we first develop robust sig-
nature pattern matching scheme using the dynamic time
warping (DTW) [15] technique. Our scheme can find good
matching between two signature patterns even if one of
them is shifted or warped in the time dimension, which
is particularly important for matching resource and load
patterns in distributed computing environments. To achieve
efficient signature pattern matching, we develop multi-
dimensional signature indexing scheme to achieve fast sig-
nature matching in large-scale distributed systems and to
support multi-attribute resource-load matching. The signa-
ture index provides a fast pre-filtering step to eliminate the
majority of dissimilar signatures, which allows the system
to execute the DTW algorithm only on those potentially
matching signatures. Unlike DTW, which has quadratic
complexity, the signature index comparison only takes lin-
ear time.

We have implemented a prototype of the SigLM system
and deployed it on the Planetlab [16]. We conducted ex-
tensive experiments using real-world system resources and
application workload traces. Our experiments reveal several
interesting findings. First, we observe that our signature-
based load management scheme can greatly improve the
system resource utilization (i.e., satisfying more requests)
than existing coarse-grained information based approaches
or statistical resource management approaches. In our ex-
periments, SigLM can improve the system resource uti-
lization by 30% to 80% compared to existing solutions.
Given the same set of requests and system resources, SigLM

can achieve a much higher resource satisfaction probability
and a lower resource violation degree. In addition, the
signature indexing scheme can greatly reduce the signature
matching time while maintaining the load management ef-
ficiency. Our prototype implementation shows that SigLM
is feasible for wide-area distributed systems. Using our un-
optimized prototype, SigLM can finish signature indexing
within several milliseconds and signature matching within
tens of milliseconds.

The rest of the paper is organized as follows. Section 2
presents the system model. Section 3 presents the design
and algorithms of SigLM system. Section 4 presents the
experimental results. Section 5 compares our work with
related work. Finally, the paper concludes in Section 6.

2 System Model

We consider a cloud computing system that hasN nodes
{v1, ...vN} and runs a set of application tasks{t1, ...tM}.
Each node is associated with a set of resource attributes
(e.g., available CPU, free memory, disk space) that are
denoted byR = {r1, ..., rk}. Each attributeri, 1 ≤ i ≤ k
is denoted by a name (e.g., CPU load) and a value (e.g.,
10%)1. Correspondingly, each application taskti running in
the cloud system is associated with a set of load attributes
(e.g., CPU consumption2, memory consumption, and disk
requirements) that are denoted byL = {l1, ..., lk}. Typi-
cally, running an application task needs to satisfy multiple
resource metrics such as CPU and memory. Thus, SigLM
supports multi-dimensional resource-load matching. We
useL � R to denote that a task loadL is matched by a
node resourceR, which is defined as follows3,

L � R ⇔ li ≤ ri, 1 ≤ i ≤ k (1)

To achieve fine-grained explicit resource control for
cloud systems, we need to characterize both resource pat-
terns of cloud nodes and load patterns of application tasks.
On each node, we deploy a monitoring daemon that periodi-
cally samples the attribute values of the monitored node and
all application tasks running on that node. We use a moving
window of time seriesSigR = {R1, ..., R|W |} to represent
the currentsignatureof the monitored node, where|W |
denotes the size of the moving window. Similarly, we use
a moving window of time seriesSigL = {L1, ..., L|W |} to
represent the current signature of the monitored application
task. We define asatisfaction probabilityPrs between
a node resource signatureSigR and a task load signature

1Unless specified otherwise, we useri to represent both name and
value of the attribute.

2To match a task with different nodes, we assume that the CPU
consumption value is properly scaled according to the processor speed
difference.

3For simplicity, we assume that for all metrics, larger valuemeans more
capacity. We can perform some simple transformation on those metrics
that do not follow the assumption.
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Figure 1. Matching host/task signa-
tures.
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Figure 2. Mismatching host/task sig-
natures.

SigL as follows,

Prs(SigR, SigL) =
# of j, Lj � Rj , 1 ≤ j ≤ |W |

|W |
(2)

The satisfaction probability can better reflect how well
the node resources satisfy the task load requirements than
coarse-grained information such as mean or current re-
source values. To illustrate the idea, we use real-word re-
source and load traces collected on the Planetlab, shown by
Figure 1 and Figure 2. If we only consider the mean value,
both nodes are considered to satisfy the load requirement.
However, the real situation is that hostA can accommodate
the load most of the time while hostB can only satisfy
the application resource requirements about 50% of time.
By tracking fine-grained resource and load patterns, SigLM
can achieve more precise explicit resource control, which is
highly desired by the cloud computing infrastructure. For
example, given a dynamic application task, we would like
to employ a node whose resource patterns match the task
load patterns instead of over-allocating resources to meet
the task’s peak workload requirements. Table 1 summarizes
the notations used in this paper.

Compared to traditional coarse-grained load manage-
ment approach, our signature-driven fine-grained resource
control needs to address a set of new challenges: 1) how
to identify similar signature patterns without requiring syn-
chronized global clock? 2) how to quickly find matching
signature patterns in a large-scale cloud computing infras-
tructure? and 3) how to support multi-dimensional signa-
ture pattern matching? To address the first challenge, we
leverage the dynamic time warping (DTW) algorithm to
measure the similarity between two time series signature

notation meaning
N total number of cloud system nodes
vi cloud system node
ti application task
ri thei′th node resource attribute

R = [r1, ..., rk] node resource
Rj node resource atj′th moving window slot
li thei′th task load attribute

L = [l1, ..., lk] task load
Lj task load atj′th moving window slot
W moving window of time series

SigR node resource signature in time series
SigL task load signature in time series

Table 1. Notations.

Figure 3. Signature matching using DTW.

patterns that may vary in time or speed. Although DTW
is shown to be effective to find an optimal match between
two given time series, it has high computation complexity.
Thus, to address the second challenge, we employ signature
indexing scheme to reduce the candidate set of similar
signature patterns on which we need to perform DTW. To
address the third challenge, we leverage the R-tree data
structure to perform multi-dimensional signature indexing
for achieving multi-dimensional signature similarity search.
Finally, we leverage P2P distributed hash table (DHT) sys-
tem [19, 22, 18] to achieve scalable storage and lookup of
signature patterns in large-scale cloud systems.

3 System Design

In this section, we present the design details of the
SigLM system. We first describe our signature similarity
matching algorithm to find optimal cloud node for an ap-
plication task based on their signature patterns. We then
present our multi-dimensional signature indexing scheme
that allows SigLM to perform multi-attribute resource
matching and speedup signature matching process.

3.1 Signature Pattern Matching

To achieve precise resource control, SigLM captures the
signatures of cloud nodes and application workloads using
fine-grained time series patterns. Given the load signature



of an application task, the system needs to find a cloud node
whose resource signature best matches the load signature4.

If the signature is represented by coarse-grained infor-
mation (e.g., mean, min, max), the signature pattern match-
ing can be performed in a straight-forward way. However,
if the signature pattern is characterized by time series, the
similarity matching becomes much more challenging. To
determine the similarity between two time series, we need
to define a distance measurement between two time series.
A common approach is to use Euclidean distance that is
simply the sum of the squared distances from then′th
point in one time series to then′th point in the other.
However, one fundamental challenge is that we cannot as-
sume a synchronized global clock in distributed computing
environments. For example, if the signature of a nodevi

and the signature of tasktj are identical, but one is shifted
slightly along the time axis, a simple distance measurement
may consider them to be very different from each other,
illustrated by Figure 3 (a). However,vi can in fact be a
perfect match for runningti since we can align the two time
series by startingti at the right phase onvi.

Dynamic time warping (DTW) [15] is a well-known
technique for finding the optimal alignment between two
time series if one time series may be “warped” or shifted
along the time dimension, illustrated by Figure 3 (b). DTW
has been widely used in speech recognition, robotics, man-
ufacturing, and medicine. To the best of our knowledge, our
work makes the first attempt to apply DTW to fine-grained
resource control in distributed systems.

To measure the similarity between a resource time series
Sigri

= {ri,1, ..., ri,|W |} and a load time seriesSigli =
{li,1, ..., li,|W |}, we construct a|W |-by-|W | matrix where
the (k′th,m′th) element of the matrix denotes the distance
d(ri,k, li,m) between the two pointsri,k and li,m (e.g.,
d(ri,k, li,m) = (ri,k − li,m)2). A warping pathWP is a
contiguous set of matrix elements that define a mapping
betweenSigri

and Sigli . The q′th element ofWP is
defined aswpq = (k, m)q. So we have

WP = wp1, ..., wpq, ...wpQ, |W | ≤ Q < 2|W | − 1 (3)

The warping path has to satisfy a set of constraints including
boundary conditions, continuity, and monotonicity [14].
There are exponentially many warping path that can satisfy
those constraints. The goal of DTW is to find the warping
path that minimizes the warping cost.

DTW (Sigri
, Sigli) = min

√

√

√

√

Q
∑

q=1

wpq (4)

We can use dynamic programming to find the minimum cost
warping path. More details about the DTW algorithm can
be found in [15]. DTW has time and space complexity of

4In this paper, we use the best-fit load matching policy to explain our
algorithm. Our approach can be readily applied to other loadmatching
policy.

Figure 4. Signature indexing and pre-filtering.

O(|W |2), where|W | is the number of points included in
the time series (i.e., the size of the moving window).

3.2 Multi-Atttribute Signature Indexing

Although DTW provides excellent time series similarity
matching performance, it can become bottleneck in our
system when we need to perform signature matching be-
tween a large number of cloud nodes and application tasks.
Moreover, DTW has been used so far for one-dimensional
time series. However, in practice, load management needs
us to match multiple resource metrics at the same time.
To address the problem, we leverage multi-dimensional
time series indexing [23] to speedup the signature matching
process and support multi-attribute signature matching. The
basic idea is to employ a fast pre-filtering step to eliminate
the majority of dissimilar signatures and execute costly
DTW algorithm only on some potentially matching signa-
tures.

We construct the index for a multi-attribute node re-
source signatureSigR as follows, which is illustrated by
Figure 4 (a). For clarity, Figure 4 only gives a one-
dimensional time series example. First, we split the time
series into a sequence of segments based on a pre-defined
segment length (e.g., 10 measurement points). We then
construct aMinimum Bounding Rectangles(MBRs) for
each segment. We form the MBR by taking the lowest and
highest value within the segment as the lower bound and
upper bound of the MBR. Note that if the time series is
multi-dimensional, the corresponding MBR is also multi-
dimensional. We then store the coordinates of those multi-
dimensional MBRs into a R-tree. R-trees are tree data struc-
tures that are similar to B-trees, but are used for indexing
multi-dimensional information.

Index-based Signature Pre-Filtering. Given a load
signatureSigL, we first construct aMinimum Bounding
Envelop(MBE) aroundSigL given a pre-defined range of
possible matching, illustrated by Figure 4 (b). Suppose we
set the matching range as 2%. We then scale-up the time
series by 2% to get the upper-bound of the MBE and then
scale-down the time series by 2% to get the lower-bound
of the MBE. We then split the MBE into a sequence of
segments and construct a set of MBRs for all segments.
In this case, the MBR is formed by taking the lowest and



highest value in the MBE as the lower bound and upper
bound of the MBR, respectively. We then perform pre-
filtering by calculating the MBR intersections with those
node resource signature MBRs stored in the R-trees. We
say that an MBR of the load signatureSigli can be matched
by an MBR of the resource signatureSigri

if the lower-
bound of the load MBR is lower than the upper-bound of the
resource MBR. We define apre-filtering qualifying function
that a resource signatureSigri

is considered asqualifiedif
the MBR matching is larger than a certain threshold (e.g.,
80% MBRs of the resource signature matches the MBRs of
the load signature).

For multi-attribute load matching, we can define quali-
fying functions for different resource attributes (e.g., CPU,
memory, disk) separately. We say that a multi-dimensional
resource signatureSigR is qualified for a multi-dimensional
load signature if the qualifying functions for all dimensions
return positive results. Only on those qualified resource
signatures, we execute the DTW algorithm to find the best
signature match. Note that MBR-based pre-filtering algo-
rithm is much faster than DTW, which has linear time and
space complexity ofO(|W |).

3.3 Dynamic Load Management

SigLM provides dynamic runtime load management for
executing long-running data-intensive computing jobs in
cloud systems. To achieve runtime load management, each
cloud node needs to periodically update its multi-attribute
resource signatures. SigLM performs dynamic matching
between currently running tasks and existing cloud nodes
based on the maintained load and resource signatures. For
each newly arrived task, the system first instantiates the
task on some lightly loaded node to collect the task’s load
signature. Figure 5 shows the pseudo-code of the major
algorithm steps in the SigLM system.

To accommodate large-scale cloud systems, we leverage
P2P distributed hash table (DHT) system [19, 22, 18] to
achieve scalable storage and lookup of cloud node resource
signatures. Each node maintains several sliding windows
of recent measurements for a set of resource metrics as
its resource signatureSigR. The node then constructs the
multi-dimensional indexing forSigR (i.e., R-Tree) using
the algorithm described in the previous section. The node
periodically pushes its resource signature and its index into
the DHT system.

When the system needs to assign a newly arrived task
or migrate an existing task, the system generates a load
matching request by pushing the task load signature into
the DHT system. Upon receiving the matching request
for a load signatureSigL, each DHT node performs pre-
filtering by comparing the index ofSigL with the indexes
of node resource signatures stored locally using the algo-
rithm described in the previous section. Each DHT node
then sends those matching cloud node resource signatures
that pass the pre-fitlering qualifying function back to the

Input:
V = {v1, ..., vn}: nodes in the cloud system
ti: a task that needs to be placed in the cloud system
W : signature sliding window
fi: pre-filtering qualifying function for resource typeri ∈ R
DHT : P2P signature lookup system

UpdateResourceSignature(V , |W |, DHT)
1. for every signature window|W | do
2. for each nodevi in V do
3. for each resource attributerk in R do
4. Construct the resource signatureSigrk

5. Construct the index MBRs forSigrk

6. Insert the MBRs into R-trees
7. PushSigrk

and its index into DHT

MatchTaskSignature(ti, V , DHT)
1. Construct the MBRs for the load signatureSigL of ti
2. Send load matching request to DHT nodes
3. for each DHT nodedo
4. for each cloud node resource signatureSigR do
4. flag = TRUE;
5. for each resource typeSigri

do
6. flag = flag∧ fi(Sigli,Sigri

) /∗ MBR matching∗/
7. if (flag == TRUE)
8. insert the cloud node signature into a DTW list
9. return the DTW list to the initiating node forti
4. merge DTW lists received from all DHT nodes
7. for every node resource in the DTW Listdo
8. Invoke DTW algorithm to get a matching scoreα
9. Sort the DTW List based onα
10. for every nodevj in the sorted DTW listdo
11. Invoke admission control func. betweenti andvj

12. if admission control func. returnsTRUE
13. Allocateti to vj

14. Break

Figure 5. SigLM load management algo-
rithms.

cloud node initiating the load matching request. The cloud
node aggregates the lists of qualified candidate cloud nodes
received from different DHT nodes, and then invokes the
DTW algorithm to calculate matching scores between the
task load and all qualified nodes. The system then picks the
cloud node that has the highest matching score and passes
the admission control function to host the task.

4 Experimental Evaluation

We have implemented the SigLM system and conducted
both extensive trace-driven experiments and prototype eval-
uation on the PlanetLab [16]. In this section, we first



describe our system implementation and experiment setup.
We then present our experiment results.

4.1 Experiment Setup

To perform extensive controlled experiments, we per-
form trace-driven experiments where SigLM node software
is fully implemented but only task load and node resources
are emulated. We have collected real application workload
and node resources on the PlanetLab to drive the trace-
driven experiments. Specifically, we collect a set of re-
source metrics (e.g., CPU, memory) to indicate the available
resources on different PlanetLab nodes. We also collect
application load metrics (e.g., CPU load, memory consump-
tion) of those applications running on the PlanetLab nodes.
In trace-driven experiments, we set the node resources and
task load requirements based on the collected traces. We
also conducted prototype evaluation of the SigLM on the
PlanetLab by running computation-intensive applications
on top of SigLM.

We useDTW andDTW +Indexing to denote the two
variations of our approach. TheDTW means that SigLM
employs the DTW algorithm to perform exhaustive signa-
ture matching between each task and each node without any
indexing assistance. TheDTW + Indexing denotes the
SigLM system with the MBR-based signature index. For
comparison, we also implemented a set of common alter-
native load matching algorithms: 1) “Histogram” denotes
a statistical matching algorithm. We construct histograms
for each metric by counting the frequency of metric value
falling into different value range (i.e., different bins).Given
a load matching request, we calculate matching score be-
tween the resource histograms of different nodes and the
request histogram by computing a weighted sum of the
difference for every bin5. We choose the node that has the
smallest positive matching score as the best-fit cloud node
to execute the request task; 2) “Mean” denotes conven-
tional coarse-grained load matching algorithm that uses the
metric average value as the resource/load signatures; and
3) “Random” denotes a random load matching algorithm
that simply allocates a task to a randomly selected nodes.
Note that for all algorithms, we periodically invoke the load
matching algorithm for every signature window period. For
example, if the signature has 100 measurement points and
each point is sampled every 10 seconds, then we invoke the
load matching algorithm between all running tasks and all
system nodes every 1000 seconds. The arrival of applica-
tion requests to the system follows poisson distribution with
a mean-inter arrival time of ten seconds.

We evaluate different load management algorithms un-
der two different usage scenarios. In the first set of ex-
periments, we perform admission control for each load
matching request. In our experiments, we consider resource

5We assign higher weights to the bins representing larger value range
since the positive difference at larger value range weighs more than the
positive difference at lower range value for resource satisfaction.
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Figure 9. Satisfac-
tion rate under differ-
ent system sizes.
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Figure 10. Violation
degree under differ-
ent system sizes.
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Figure 11. Satisfac-
tion rate under differ-
ent request loads.
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Figure 12. Violation
degree under differ-
ent request loads.

signature values that are not within the 2% of the request
signature as violation. If less than 35% of such violation
were found, we say such a request can be admitted into
the system. The number of requests satisfied is measured
with this admission control. Note that those parameters
can be configured and do not affect the relative merits of
different algorithms, illustrated by Figure 8. In the second
set of experiments, we do not perform admission control
and instantiate all requests. We measure theresource satis-
faction probabilityPrs (equation 2) andresource violation
degreeby comparing the required resources with available
resources at a particular timet. The violation rate and vio-
lation degree are computed by considering the best possible
resource signatures according to the algorithm. For all the
experiments other than the one described in Table 2, the
MBR size is fixed at five samples and signature window
size as 500 samples. Each experiment run is repeated ten
times and the mean of them is reported. In all experiments,
we perform multi-attribute load matching considering both
CPU and memory requirements. The criteria for evaluating
multi-attribute load matching is described in Section 3.2.

4.2 Results and Analysis

We conduct the first set of experiments to compare the
performance of our algorithm with traditional load manage-
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Figure 6. Resource utiliza-
tion under different system
sizes.

400 500 600 700 800 900 1000

300

400

500

600

700

800

Num. of Requests

N
u
m

. 
o
f 
R

e
q
u
e
st

s 
S

a
tis

fie
d

 

 
DTW
DTW+Indexing
Histogram
Mean
Random

Figure 7. Resource utiliza-
tion under different request
loads.
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Figure 8. Resource utiliza-
tion under different admis-
sion control threshold.

ment schemes with admission control. We first fix the num-
ber of application requests at 1000 and gradually increase
the number of nodes from 200 to 500. Figure 6 shows
the number of satisfying requests that can be achieved
by different algorithms. We observe that both DTW and
DTW+Indexing can admit far more requests than previous
algorithms. This shows that fine-grained load management
scheme is effective for real application workloads. We also
observe that the signature indexing did not affect the signa-
ture matching performance, which means the pre-filtering
step only filters out unmatched signatures. Figure 7 shows
the number of satisfying requests that can be achieved by
different algorithms under various number of requests. The
number of nodes is fixed at 300 and the number of requests
is varied from 400 through 1000. Again, we observe that
our algorithms can achieve much better resource utilization
than traditional approaches. In this set of experiments, we
observe that DTW with indexing achieves slightly worse
performance than DTW due to the pre-filtering step.

We also conduct sensitivity study to show that the ad-
vantage of our approach is not affected by the admission
control threshold. In the above experiments, we set the
admission control threshold as 35%, that is a request can be
admitted into the system if less than 35% of multi-attribute
resource violation were found. Figure 8 shows the number
of satisfying requests that can be achieved by different algo-
rithms under different admission control threshold. Higher
admission control threshold means higher violation rate is
allowed by the applications. Thus, more applications will
be admitted into the system. We observe that our algorithm
consistently admits more requests than previous algorithms
given the same set of cloud nodes.

We then repeat the same experiments but remove the
admission control. Figure 9 shows the satisfaction prob-
ability Prs (equation 2) achieved by different algorithms
under different system sizes. We still fix the number of
requests at 1000 and measure the mean satisfaction prob-
ability among all 1000 requests. Different from previous
set of experiments, we don’t perform any admission control

and match each request with the best node based on the
time series or mean value matching algorithm. Note that
such a matching is performed periodically every signature
window |W | for each application task. We also observed
that DTW and DTW + Indexing can achieve much satisfac-
tion probability than the other alternatives. Figure 10 shows
the resource violation degree measured in the same set of
experiment. We also observe that DTW and DTW with
indexing can achieve much lower violation degrees than
other approaches. For example, for 500 nodes and 1000
requests, DTW has 15.472% violation degree compared
to 27.5% for the Histogram algorithm and 33.17% for the
Mean algorithm.

We then fix the number of nodes at 300 and increase the
number of requests from 400 to 1000. Figure 11 shows
the resource satisfaction probabilityPrs compared under
different request numbers. We observe that with increasing
number of requests, the probability that a load request is
satisfied by its host resources decreases. But the extent of
decrease is the least for the DTW and DTW with indexing
techniques as they always try to allocate a best-fit at a
finer granularity. Figure 12 shows the resource violation
degree collected in the same set of experiments. We observe
that with increasing number of requests, the mean violation
degree increases. But the extent of increase is the least for
the DTW and DTW with indexing techniques for the same
reasons discussed earlier.

We now evaluate the performance of our signature in-
dexing algorithm. The length of MBR decides the filtering
effect of the signature indexing. In Table 2, the filtering
ratio is shown for different MBR sizes. We observe that
with increasing MBR size, the filtering ratio reduces as
the granularity level decreases. The reason is that with
bigger MBR size, each rectangle covers more area in the
time series and thus achieve less filtering power. However,
bigger MBR size means fewer MBR comparisons in the
pre-filtering step. Thus, we can adjust the MBR size to
achieve a proper tradeoff between the filtering ratio and
indexing overhead.
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Figure 13. Application execution time compari-
son on the Planetlab.
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As a proof-of-concept, we implemented a simple dis-
tributed sorting application on top of the SigLM system.
We deploy the SigLM system on about 20 PlanetLab nodes
and generate a sequence of sorting application requests.
We generated application tasks by invoking the bubble sort
executable on a set of numbers from1 to n (n generated
at random for every task). We use different algorithms
to map tasks to different PlanetLab nodes and measure
the total completion time for all tasks, shown by Figure
13. We observe that SigLM can achieve lower execution
time compared to other alternatives. We also measured
the overhead of the SigLM system. Figure 14 shows the
cumulative distribution function (CDF) of the processing
time taken to match a resource signature with a load sig-
nature. Additionally, the time spent in indexing the load
and resource signatures are also shown. It can be seen
that, since indexing is a linear algorithm, most fraction of
its time spent is within several milli-seconds. The DTW
matching algorithm takes more time, which needs tens of
milli-seconds. Figure 15 shows the time taken to process
each request by matching the request load signature with
the resource signatures of all the nodes in the system. We
can see that indexing can significantly reduce the request
processing time in our system. Our system also requires
more storage to store those signatures. We need 15KB
to store a two-attribute signature with a window size of
500 data points. We believe such a storage overhead is

MBR size 5 samples 20 samples 100 samples
Filtering ratio 68% 63% 52%

Table 2. The impact of MBR size on index
filtering ratio.

very small compared to the storage capacity of modern
computers. Moreover, we can leverage DHT to distribute
the storage overhead among different distributed nodes.

5 Related Work

Previous research work has proposed different dis-
tributed system resource discovery schemes. For example,
Gangmatching [17] provides a multi-lateral matchmaking
model that employs classified advertisement to describe
entity and policy constraints and preferences. SWORD [4]
is a wide-area resource discovery system that allows re-
source requirements to be defined as range of accepted
values and stricter range of preferred values. SWORD
supports multi-attribute resource discovery by converging
multi-dimensional attributes into a single dimension using
linear clustering. PIRD is a P2P-based intelligent resource
discovery system that weaves multiple attributes into a set
of indices using locality sensitive hashing, and then maps
the indices to a structured P2P system. Different from
the above work, SigLM supports dynamic signature-driven
resource discovery and matchmaking, which can achieve
better resource utilization in cloud computing systems.

Resource Bundles system [7] provides a histogram-
based statistical resource discovery and allocation scheme,
which employs clustering to achieve scalability. How-
ever, resource bundles system does not support multi-
dimensional resource matching and histogram-based ap-
proach cannot achieve precise resource control expected by
the cloud system. In contrast, SigLM supports time-series
signature-based load management and employs R-trees to
achieve scalable signature-driven resource matchmaking.

Recent studies have shown that recognizing system pat-
terns is a promising approach to automatic system manage-
ment [8, 6, 21]. Our work is similar to the above by adopting
a signature pattern driven approach. However, to the best of
our knowledge, our work makes the first attempt to achieve
scalable signature-driven fine-grained load management in
the context of cloud computing.

6 Conclusion

In this paper, we have presented SigLM, a new signature-
driven load management system for large-scale cloud com-
puting infrastructures. Different from traditional coarse-
grained approaches, SigLM can capture detailed patterns of
dynamic system resources and application workloads using
fine-grained, dynamically updated, time series signatures.



Thus, SigLM can perform more efficient resource provi-
sioning based on dynamically maintained signature pat-
terns. SigLM provides robust signature matching algorithm
using dynamic time warping technique and employs multi-
attribute signature index to achieve fast signature matching
in a large-scale distributed system. To the best of our
knowledge, SigLM makes the first attempt to apply time
series analysis techniques to achieve more efficient load
management in large-scale distributed infrastructures. We
have implemented the SigLM system and deployed it on
the PlanetLab testbed.

We have conducted extensive experiments using real
system resource and workload traces collected on the pro-
duction system. We learned the following lessons from
our prototype implementation: 1) Real-world systems do
exhibit significant patterns that can be captured by the
system for more efficient load management; 2) Signature-
driven load management can significantly improve resource
utilization and QoS provisioning compared to traditional
load management schemes. In our experiments, we observe
that SigLM can improve system utilization by 30% to 80%;
3) Signature indexing can significantly speed up the signa-
ture pattern matching performance while maintaining the
efficiency of the load management system; and 4) SigLM is
feasible and efficient for large-scale distributed computing
environments.
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