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Abstract use (e.g., in terms of service usage time). Thus, unlike
batch systems, cloud computing systems denmaglicit

Cloud computing has emerged as a promising platform and precise resource control. From the cloud service
that grants users with direct yet shared access to computingroviders’ stand point, through more precise monitoring
resources and services without worrying about the internaland matching among available resources and application
complex infrastructure. Unlike traditionddatch service requests, they can improve the overall system utilization
model, cloud service model adoptpay-as-you-gdorm, and better exploit potential opportunities for hardward an
which demandsxplicit and preciseresource control. In  energy saving, both leading to better profit. From the cloud
this paper, we present SigLM, a novBlgnature-driven  users’ stand point, fine-grained resource control allows th
LoadManagement system to achieve quality-aware servicecomputing requests to be better accommodated and enables
delivery in shared cloud computing infrastructures. SigLM them to obtain better quality-of-service (QoS) in theirgob
dynamically captures fine-grained signatures of different execution.

application tasks and cloud nodes using time series pat- The key challenges in performing explicit resource con-
terns, and performs precise resource metering and allocatrol in cloud systems comes from handling the variabil-
tion based on the extracted signatures. SigLM employsity and heterogeneity of both application requirements and
dynamic time warping algorithm and multi-dimensional system resources. Previous work has proposed a range of
time series indexing to achieve efficient signature patternresource discovery and load management solutions under
matching. Our experiments using real load traces collectedgitferent distributed computing context. Resource discov
on the PlanetLab show that SigLM can improve resource ery systems (e.g., [17, 4, 7, 20]) are mainly concerned about
provisioning performance by 30-80% compared to existing discovering a subset of candidate nodes satisfying user’s
approaches. SigLM is scalable and efficient, which imposesresource requirements. Load management systems (e.g.,
less than 1% overhead to the system and can perform signafs]) aim at achieving balanced resource usages among dif-
ture matching within tens of milliseconds. ferent distributed nodes. However, existing solutionsoan
capture the detailed patterns of application workloads and
system resources. Thus, the load management systems
1 Introduction are forced to use coarse-grained information (e.g., mean,
min, max) to either over-provisioning or under-provisiogi
Cloud computing has been envisioned as the next-System resources. Resource under-provi.sioning affeets th
generation Internet service provisioning platform, whash ~ QO0S perceived by cloud service users while resource over-
lows users to access computing resources and services froffovisioning hurts the system resource utilization.
the Internet without worrying about the internal complex In this paper, we present the design and implementation
infrastructure that supports them. Different from trazh@l of SigLM, a novelsignature-driven load management sys-
Internet service infrastructures such as Grid [9] that supp  temto achieve QoS-aware service delivery in cloud comput-
batchservice model, cloud computing systems (e.g., Ama- ing infrastructures. SigLM dynamically captures the pre-
zon’s EC2 [1]) support a nepay-as-you-gservice model.  cise patterns, namekignatures of application workloads
The batch service model allows users to submit their jobsand available system resources using fine-grained time se-
to a batch queue system that is responsible for executingies of different metrics. The system then performs effi-
the user’s jobs, typically using a certain space partitigni  cient matching between system resources and application
scheduling algorithm [12]. In contrast, cloud systems gran workloads based on the dynamically maintained signature
users withdirect yet sharedaccesses to system resources patterns. Cloud systems are often used to exeloutg-
and charge users for thexactresources and services they running computing jobs (e.g, MapReduce [2], stream an-



alytics [10, 13, 11]), which are amenable for the system can achieve a much higher resource satisfaction probabilit
to observe workload patterns and perform signature-drivenand a lower resource violation degree. In addition, the
load management. SigLM is fully decentralized, which signature indexing scheme can greatly reduce the signature
leverages structured peer-to-peer systems [19, 22, 18] tanatching time while maintaining the load management ef-
achieve scalable storage and lookup of signature patterndiciency. Our prototype implementation shows that SigLM
in large-scale cloud systems. To the best of our knowledge,is feasible for wide-area distributed systems. Using our un
our work makes the first step in applying time series anal- optimized prototype, SigLM can finish signature indexing
ysis techniques to dynamic load management in large-scalevithin several milliseconds and signature matching within
distributed systems. tens of milliseconds.

We need to address a set of new challenges to achieve The rest of the paper is organized as follows. Section 2
efficient and scalable signature-driven load managementpresents the system model. Section 3 presents the design
First, it is more complicated to perform similarity match- and algorithms of SigLM system. Section 4 presents the
ing between fine-grained time series pattern than betweerexperimental results. Section 5 compares our work with
coarse-grained resource specifications. For example, twoelated work. Finally, the paper concludes in Section 6.
similar time series may appear very different if one of them
is warpgd or sh|ft(_ad along the time axis. Second, though2 System Mode
time series matching pairs resources with workloads more
precisely, it is much more time consuming to process a par-
ticular load pattern query in a large-scale cloud computing ~ We consider a cloud computing system that Nasodes
infrastructure that may include tens of thousands of nodes.{v1,...vx } and runs a set of application tasis, ...ta}.
Third, the signature matching problem is further compli- Each node is associated with a set of resource attributes
cated by the need of multi-dimensional resource require-(€.9., available CPU, free memory, disk space) that are
ment, which calls for multiple pattern searches to satisfy denoted byR = {ri, ..., 7 }. Each attribute;, 1 <i <k
simultaneous resource specifications, e.g., regarding CPUS denoted by a name (e.g., CPU load) and a value (e.g.,
and memory. Hence, we need to support multi-dimensional10%)". Correspondingly, each application taskunning in
signature pattern matching, which further complicates the the cloud system is associated with a set of load attributes
signature-driven load management. (e.g., CPU consumptiGhmemory consumption, and disk

To address the challenge, we first develop robust sig-"equirements) that are denoted by= {iy, ..., x}. Typi-
nature pattern matching scheme using the dynamic timeCally, running an application task needs to satisfy mutipl
warping (DTW) [15] technique. Our scheme can find good "ésource metrics such as CPU and memory. Thqs, SigLM
matching between two signature patterns even if one ofSUPPOrts multi-dimensional resource-load matching. We
them is shifted or warped in the time dimension, which UseL = I to denote that a task loa is matched by a
is particularly important for matching resource and load Node resourc&, which is defined as follow's
patterns in distributed computing environments. To aahiev
efficient signature pattern matching, we develop multi-
dimensional signature indexing scheme to achieve fast sig-

nature matching in large-scale distributed systems and to 10 achieve fine-grained explicit resource control for
support multi-attribute resource-load matching. The aign cloud systems, we need to characterize both resource pat-

ture index provides a fast pre-filtering step to eliminat th terns of cloud nodes and load patterns of application tasks.
majority of dissimilar signatures, which allows the system ©On €ach node, we deploy a monitoring daemon that periodi-
to execute the DTW algorithm only on those potentially cally samples the attribute values of the monitored node and
matching signatures. Unlike DTW, which has quadratic all application tasks running on that node. We use a moving

complexity, the signature index comparison only takes lin- Window of time seriesSigr = {R1, ..., R/} to represent
ear time. the currentsignatureof the monitored node, wherdV|

denotes the size of the moving window. Similarly, we use
a moving window of time serieSigr, = {L1, ..., Ljw} tO
epresent the current signature of the monitored applinati
ask. We define aatisfaction probabilityPr, between

a node resource signatufggr and a task load signature

LR&l;<r,1<i<k (1)

We have implemented a prototype of the SigLM system
and deployed it on the Planetlab [16]. We conducted ex-
tensive experiments using real-world system resources an
application workload traces. Our experiments reveal sdver
interesting findings. First, we observe that our signature-
based load managt_e_ment sc_heme C_an _greatly improve the lUnless specified otherwise, we usgto represent both name and
system resource utilization (i.e., satisfying more retg)es vajue of the attribute.
than existing coarse-grained information based appr@che 2To match a task with different nodes, we assume that the CPU
or statistical resource management approaches. In our exconsumption value is properly scaled according to the msmespeed
periments, SigLM can improve the system resource uti- 9erence: ici hat for all metrics. |
. . % to 80% com ared to existin SO|Uti0nS Fql’ simplicity, we assume that Qra metrics, arggr vailueans mpre
lization by 30% to 0 p g 1S. capacity. We can perform some simple transformation onetostrics
Given the same set of requests and system resources, SigLNhat do not follow the assumption.
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Figure 2. Mismatching host/task sig-
natures.

(b) The resulting alignment given by DTW.

Sigy, as follows,

. . #of j. Ly <R, 1< j<|W| Figure 3. Signature matching using DTW.

Pry(Sigg, Sigr) = i (2) L

(W patterns that may vary in time or speed. Although DTW
is shown to be effective to find an optimal match between
two given time series, it has high computation complexity.
ed inf i h " Fhus, to address the second challenge, we employ signature
coarse-grained Information SUch as mean or curren re'indexing scheme to reduce the candidate set of similar
source values. To illustrate the idea, we use real-word re'signature patterns on which we need to perform DTW. To
source and load traces collected on the Planetlab, shown by, 4 ess the third challenge, we leverage the R—tree.data
Figure 1 and Figure 2. If we only consider the mean value, gi,cqyre to perform multi-dimensional signature indexin
both nodes are cor?3|de.red. to satisfy the load requirement, achieving multi-dimensional signature similarity sefa
However, the real situation is that hosican accommodate Finally, we leverage P2P distributed hash table (DHT) sys-

:Ee Ioaoll_ m?st of the time while hos&f ca:)n Otnglof/atlifi/' tem [19, 22, 18] to achieve scalable storage and lookup of
€ applicalion resource requirements abou 00 Ime‘signature patterns in large-scale cloud systems.

By tracking fine-grained resource and load patterns, SigLM
can achieve more precise explicit resource control, whsch i
highly desired by the cloud computing infrastructure. For 3 System Design
example, given a dynamic application task, we would like

to employ a node whose resource patterns match the task
load patterns instead of over-allocating resources to mee
the task’s peak workload requirements. Table 1 summarize

the notations used in Fh's paper. ) plication task based on their signature patterns. We then
Compared to traditional coarse-grained load manage-present our multi-dimensional signature indexing scheme
ment approach, our signature-driven fine-grained resourcy ¢ gliows SigLM to perform multi-attribute resource

control needs to address a set of new challenges: 1) howyaching and speedup signature matching process.
to identify similar signature patterns without requiringns

chronized global clock? 2) how to quickly find matching . )

signature patterns in a large-scale cloud computing infras 3-1  Signature Pattern Matching

tructure? and 3) how to support multi-dimensional signa-

ture pattern matching? To address the first challenge, we To achieve precise resource control, SigLM captures the
leverage the dynamic time warping (DTW) algorithm to signatures of cloud nodes and application workloads using
measure the similarity between two time series signaturefine-grained time series patterns. Given the load signature

The satisfaction probability can better reflect how well

In this section, we present the design details of the
rSigLM system. We first describe our signature similarity
Smatching algorithm to find optimal cloud node for an ap-



inimu ocunding

of an application task, the system needs to find a cloud node Rec=nai="eis
. . T
whose resource signature best matches the load sighature m
If the signature is represented by coarse-grained infor-

mation (e.g., mean, min, max), the signature pattern match- (2> Sigrnature indexing using MBR.
ing can be performed in a straight-forward way. However,
if the signature pattern is characterized by time series, th M G
similarity matching becomes much more challenging. To (E;;E.)o'pe
determine the similarity between two time series, we need

to define a distance measurement between two time series. (2> Signature Pre-filtering.
A common approach is to use Euclidean distance that is ) ) ) ) o
simply the sum of the squared distances from tHgh Figure 4. Signature indexing and pre-filtering.

point in one time series to the’th point in the other.
However, one fundamental challenge is that we cannot as-o(|17|2), where|W| is the number of points included in
sume a synchronized global clock in distributed computing the time series (i.e., the size of the moving window).
environments. For example, if the signature of a node
and the signature of tagk are identical, but one is shifted g o Nulti-Atttribute Signature Indexing
slightly along the time axis, a simple distance measurement
may consider them to be very different from each other,
illustrated by Figure 3 (a). However; can in fact be a
perfect match for running since we can align the two time
series by starting; at the right phase on.

Dynamic time warping (DTW) [15] is a well-known
technique for finding the optimal alignment between two

Although DTW provides excellent time series similarity
matching performance, it can become bottleneck in our
system when we need to perform signature matching be-
tween a large number of cloud nodes and application tasks.
Moreover, DTW has been used so far for one-dimensional
time series. However, in practice, load management needs

time series_ i one time_ ser_ies may be “w_arped” or shifted ;5 t5 match multiple resource metrics at the same time.
along the time dimension, illustrated by Figure 3 (b). DTW To address the problem, we leverage multi-dimensional

has been widely used in speech recognition, robotics, MaNyime series indexing [23] to speedup the signature matchin
ufacturing, and medicine. To the best of our knowledge, ou g[23] b P g g

. ' . process and support multi-attribute signature matchitg. T
work makes the first attempt to apply DTW to fine-grained 1 5qic jgea is to employ a fast pre-filtering step to eliminate
resource control in distributed systems.

A . ._the majority of dissimilar signatures and execute costly
To measure the similarity between a resource time seriesyy algorithm only on some potentially matching signa-
Sigr, = {ri1,..,ri w|} and a load time serieSig;, =

: tures.
{li,1, .., li,yw}, we construct 8V |-by-|W| matrix where

the G/ thoei ey of tof th rix denotes the dist We construct the index for a multi-attribute node re-
€ ("th,m/th) element of the matrix denotes the dislance g4 )rce signatur&igr as follows, which is illustrated by
d(rik,l; m) between the two points; , and!;,, (e.g.,

) ; Figure 4 (a). For clarity, Figure 4 only gives a one-
d(ri g, lim) = (rix — lim)?). A warping pathW P is a 19u (@) 'y, Tigu y gV

. : , ._dimensional time series example. First, we split the time
contiguous set of matrix elements that define a MappiNgseries into a sequence of segments based on a pre-defined
betweenSig,, and Sig;,. The ¢'th element of WP is

. segment length (e.g., 10 measurement points). We then
defined asup, = (k,m),. So we have construct aMinimum Bounding Rectangle®IBRs) for
_ _ each segment. We form the MBR by taking the lowest and
WP = wps, .. wpg, wpg, W] < @ <2{W[ =1 (3) highest value within the segment as the lower bound and
The warping path has to satisfy a set of constraints inciudin  upper bound of the MBR. Note that if the time series is
boundary conditions, continuity, and monotonicity [14]. multi-dimensional, the corresponding MBR is also multi-
There are exponentially many warping path that can satisfydimensional. We then store the coordinates of those multi-
those constraints. The goal of DTW is to find the warping dimensional MBRs into a R-tree. R-trees are tree data struc-
path that minimizes the warping cost. tures that are similar to B-trees, but are used for indexing
multi-dimensional information.
Index-based Signature Pre-Filtering. Given a load
4) signatureSigr,, we first construct aMinimum Bounding
Envelop(MBE) aroundSig;, given a pre-defined range of
possible matching, illustrated by Figure 4 (b). Suppose we
We can use dynamic programming to find the minimum cost set the matching range as 2%. We then scale-up the time
warping path. More details about the DTW algorithm can series by 2% to get the upper-bound of the MBE and then
be found in [15]. DTW has time and space complexity of scale-down the time series by 2% to get the lower-bound
I . . . . of the MBE. We then split the MBE into a sequence of
a|golrri1tm? %‘Ef ;&foiiﬁ T:nbﬁitrlgg’@j ;;Sﬁgl;n% %?“?r/ fmﬁ?ﬁé segments and construct a set of MBRs for all segments.
policy. In this case, the MBR is formed by taking the lowest and

Q
DTW (Sigy,, Sigi;) = min prq
g=1




highest value in the MBE as the lower bound and upper| |nput:
bound of the MBR, respectively. We then perform pre- | y/ = {4, .. v,}: nodes in the cloud system

filtering by calculating the MBR intersections with those | ¢;: a task that needs to be placed in the cloud system
node resource signature MBRs stored in the R-trees. We 1y: signature sliding window

say that an MBR of the load signatuség;, can be matched | .- pre-filtering qualifying function for resource type € R
by an MBR of the resource signatuf&g,., if the lower- DHT: P2P signature lookup system

bound of the load MBR is lower than the upper-bound of the
resource MBR. We define@e-filtering qualifying function UpdateResourceSignat(vg ||, DHT)

that a resource signatufég,, is considered aqualifiedif 1. for every signature windoWV| do

the MBR matching is larger than a certain threshold (e.g.,| 2. for each node; in V do

80% MBRs of the resource signature matches the MBRs of for each resource attribute in R do

_ 3
the load signature). _ _ _ 4. Construct the resource signatuiy,.,
For multi-attribute load matchingwe can define quali- 5. Construct the index MBRs fdftig,.,

6
7

fying functions for different resource attributes (e.gR\G Insert the MBRs into R-trees
memory, disk) separately. We say that a multi-dimensional PushSig,, and its index into DHT
resource signatur®igr, is qualified for a multi-dimensional g

load signature if the qualifying functions for all dimensg® MatchTaskSignatu(e, V, DHT)
return positive results. Only on those qualified resource| T construct the MBRs for the load signatufy, of ;
signatures, we execute the DTW algorithm to find the best| 5 gend 10ad matching request to DHT nodes
signature match. Note that MBR-based pre-filtering algo- | 3 tor each DHT nodelo
rithm is much faster than DTW, which has linear time and | 4 for each cloud node resource signatsig do
space complexity 0O (|WV]). 4 flag = TRUE;
5. for each resource typgig,, do
3.3 Dynamic Load Management 6 flag = flagh fi(Sigi,,Sigr.) /* MBR matching:/
7 if (flag == TRUE)

SigLM provides dynamic runtime load management for | 8 insert the cloud node signature into a DTW list
executing long-running data-intensive computing jobs in | 9 return the DTW list to the initiating node foy
cloud systems. To achieve runtime load management, each4. merge DTW lists received from all DHT nodes
cloud node needs to periodically update its multi-attgbut | 7. for every node resource in the DTW Lidb

resource signatures. SigLM performs dynamic matching| 8. Invoke DTW algorithm to get a matching scere
between currently running tasks and existing cloud nodes| 9. Sortthe DTW List based on
based on the maintained load and resource signatures. Far10. for every nodey; in the sorted DTW listlo

each newly arrived task, the system first instantiates the| 11. Invoke admission control func. betwegrandv;
task on some lightly loaded node to collect the task’s load| 12.  if admission control func. returdsRUE
signature. Figure 5 shows the pseudo-code of the major 13. Allocatet; to v;

algorithm steps in the SigLM system. 14. Break

To accommodate large-scale cloud systems, we leverage
P2P distributed hash table (DHT) system [19, 22, 18] to
achieve scalable storage and lookup of cloud node resource Figure 5. SigLM load management algo-
signatures. Each node maintains several sliding windows rithms.
of recent measurements for a set of resource metrics as
its resource signatur&igr. The node then constructs the
multi-dimensional indexing folSigr (i.e., R-Tree) using
the algorithm described in the previous section. The node

periodically pushes its resource signature and its indix in received from different DHT nodes, and then invokes the

thev\[/)hi; Stﬁtesms'tem needs to assian a newly arrived tas DTW algorithm to calculate matching scores between the
. ysten 9 y ask load and all qualified nodes. The system then picks the
or migrate an existing task, the system generates a loa

matching request by pushing the task load signature into loud node that has the highest matching score and passes

the DHT system. Upon receiving the matching request the admission control function to host the task.

for a load signature&Sigr,, each DHT node performs pre- . .

filtering by comparing the index ofig; with the indexes 4 Experimental Evaluation

of node resource signatures stored locally using the algo-

rithm described in the previous section. Each DHT node  We have implemented the SigLM system and conducted
then sends those matching cloud node resource signaturelsoth extensive trace-driven experiments and prototyplke eva
that pass the pre-fitlering qualifying function back to the uation on the PlanetLab [16]. In this section, we first

cloud node initiating the load matching request. The cloud
node aggregates the lists of qualified candidate cloud nodes



describe our system implementation and experiment setup .
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and node resources on the PlanetLab to drive the trace- Num. of Nodes Num. of Nodes
driven experiments. Specifically, we collect a set of re- . . ) o
source metrics (e.g., CPU, memory) to indicate the availabl ~ Figure 9. Satisfac- Figure 10. Violation
resources on different PlanetLab nodes. We also collect tionrateunder differ- degree under differ-
application load metrics (e.g., CPU load, memory consump- €Nt systém sizes. ent system sizes.
tion) of those applications running on the PlanetLab nodes.
In trace-driven experiments, we set the node resources ant e o
task load requirements based on the collected traces. Wk ,* D ndeng & 5 oo
also conducted prototype evaluation of the SigLM on the 3" 4R e F
PlanetLab by running computation-intensive applications §Z; g
on top of SigLM. S L

We useDTW andDTW + Indexing to denote the two S 3 i
variations of our approach. THeTW means that Sig,M £, - P
employs the DTW algorithm to perform exhaustive signa- o L 52
tu re matChIng between eaCh taSk and eaCh nOde WIthOUt an‘ 0‘}00 500 600 700 800 900 1000 2400 500 600 700 800 900 1000
indexing assistance. ThBTW + Indexing denotes the Num. of Requests Num. of Requests
SigLM system with the MBR-based signature index. For . . ] o
comparison, we also implemented a set of common alter- Figure 11. Satisfac- Figure 12. Violation
native load matching algorithms: 1ffistogram” denotes tion rateunder differ- degree under differ-
a statistical matching algorithm. We construct histograms ~ €nt request loads. ent request loads.

for each metric by counting the frequency of metric value
falling into different value range (i.e., different bin§iven signature values that are not within the 2% of the request
a load matching request, we calculate matching score be-signature as violation. If less than 35% of such violation
tween the resource histograms of different nodes and thewere found, we say such a request can be admitted into
request histogram by computing a weighted sum of thethe system. The number of requests satisfied is measured
difference for every bin We choose the node that has the with this admission control. Note that those parameters
smallest positive matching score as the best-fit cloud nodecan be configured and do not affect the relative merits of
to execute the request task; 2)fean” denotes conven- different algorithms, illustrated by Figure 8. In the sedon
tional coarse-grained load matching algorithm that uses th set of experiments, we do not perform admission control
metric average value as the resource/load signatures; andnd instantiate all requests. We measured¢iseurce satis-
3) “Random” denotes a random load matching algorithm faction probabilityPrs (equation 2) andesource violation
that simply allocates a task to a randomly selected nodesdegreeby comparing the required resources with available
Note that for all algorithms, we periodically invoke thedba resources at a particular tinie The violation rate and vio-
matching algorithm for every signature window period. For lation degree are computed by considering the best possible
example, if the signature has 100 measurement points andesource signatures according to the algorithm. For all the
each point is sampled every 10 seconds, then we invoke theexperiments other than the one described in Table 2, the
load matching algorithm between all running tasks and all MBR size is fixed at five samples and signature window
system nodes every 1000 seconds. The arrival of applicasize as 500 samples. Each experiment run is repeated ten
tion requests to the system follows poisson distributiciwi  times and the mean of them is reported. In all experiments,
a mean-inter arrival time of ten seconds. we perform multi-attribute load matching considering both
We evaluate different load management algorithms un- CPU and memory requirements. The criteria for evaluating
der two different usage scenarios. In the first set of ex- multi-attribute load matching is described in Section 3.2.
periments, we perform admission control for each load
matching request. In our experiments, we consider resourcet.2 Results and Analysis

5We assign higher weights to the bins representing largerevainge . .
since the positive difference at larger value range weighserthan the We conduct the first set of experiments to compare the

positive difference at lower range value for resource feation. performance of our algorithm with traditional load manage-
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Figure 6. Resource utiliza- Figure 7. Resource utiliza- Figure 8. Resource utiliza-
tion under different system tion under different request tion under different admis-
sizes. loads. sion control threshold.

ment schemes with admission control. We first fix the num- and match each request with the best node based on the
ber of application requests at 1000 and gradually increasetime series or mean value matching algorithm. Note that
the number of nodes from 200 to 500. Figure 6 shows such a matching is performed periodically every signature
the number of satisfying requests that can be achievedwindow |W| for each application task. We also observed
by different algorithms. We observe that both DTW and that DTW and DTW + Indexing can achieve much satisfac-
DTW+Indexing can admit far more requests than previous tion probability than the other alternatives. Figure 10vg$10
algorithms. This shows that fine-grained load managementthe resource violation degree measured in the same set of
scheme is effective for real application workloads. We also experiment. We also observe that DTW and DTW with
observe that the signature indexing did not affect the sigha indexing can achieve much lower violation degrees than
ture matching performance, which means the pre-filtering other approaches. For example, for 500 nodes and 1000
step only filters out unmatched signatures. Figure 7 showsrequests, DTW has 15.472% violation degree compared
the number of satisfying requests that can be achieved byto 27.5% for the Histogram algorithm and 33.17% for the
different algorithms under various number of requests. The Mean algorithm.

number of nodes is fixed at 300 and the number of requests
is varied from 400 through 1000. Again, we observe that
our algorithms can achieve much better resource utilinatio
than traditional approaches. In this set of experiments, we
observe that DTW with indexing achieves slightly worse
performance than DTW due to the pre-filtering step.

We then fix the number of nodes at 300 and increase the
number of requests from 400 to 1000. Figure 11 shows
the resource satisfaction probabiliyr; compared under
different request numbers. We observe that with increasing
number of requests, the probability that a load request is
satisfied by its host resources decreases. But the extent of
We also conduct sensitivity study to show that the ad- decrease is the least for the DTW and DTW with indexing
vantage of our approach is not affected by the admissiontechniques as they always try to allocate a best-fit at a
control threshold. In the above experiments, we set thefiner granularity. Figure 12 shows the resource violation
admission control threshold as 35%, that is a request can balegree collected in the same set of experiments. We observe
admitted into the system if less than 35% of multi-attribute that with increasing number of requests, the mean violation
resource violation were found. Figure 8 shows the numberdegree increases. But the extent of increase is the least for
of satisfying requests that can be achieved by differemt-alg the DTW and DTW with indexing techniques for the same
rithms under different admission control threshold. Highe reasons discussed earlier.
admission control threshold means higher violation rate is
allowed by the applications. Thus, more applications will de
be admitted into the system. We observe that our algorithm
consistently admits more requests than previous algosithm
given the same set of cloud nodes.

We now evaluate the performance of our signature in-
xing algorithm. The length of MBR decides the filtering
effect of the signature indexing. In Table 2, the filtering
ratio is shown for different MBR sizes. We observe that
with increasing MBR size, the filtering ratio reduces as

We then repeat the same experiments but remove thehe granularity level decreases. The reason is that with
admission control. Figure 9 shows the satisfaction prob-bigger MBR size, each rectangle covers more area in the
ability Pr, (equation 2) achieved by different algorithms time series and thus achieve less filtering power. However,
under different system sizes. We still fix the number of bigger MBR size means fewer MBR comparisons in the
requests at 1000 and measure the mean satisfaction protpre-filtering step. Thus, we can adjust the MBR size to
ability among all 1000 requests. Different from previous achieve a proper tradeoff between the filtering ratio and
set of experiments, we don’t perform any admission control indexing overhead.



140 MBR size 5 samples| 20 samples| 100 samples|
3 120] - 3 Filteringratio | 68% 63% 52% |
g | > Table 2. The impact of MBR size on index
£ filtering ratio.
R
A s 1o m very small compared to the storage capacity of modern
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computers. Moreover, we can leverage DHT to distribute

Figure 13. Application execution time compari- the storage overhead among different distributed nodes.

son on the Planetlab.
5 Related Work

Previous research work has proposed different dis-
tributed system resource discovery schemes. For example,
Gangmatching [17] provides a multi-lateral matchmaking

\
\

——DTW
DTW + Indexing

o
o
.
o
o

| ——Node Indexing Time
Request Indexing Time

o
>

=l Ll g — model that employs classified advertisement to describe
50.4% £ o4 entity and policy constraints and preferences. SWORD [4]
ol is a wide-area resource discovery system that allows re-
Al o source requirements to be defined as range of accepted
e et values and stricter range of preferred values. SWORD
Time (ms) Request Execuion Time (ms) supports multi-attribute resource discovery by conveggin
) ! . multi-dimensional attributes into a single dimension gsin
Figure 14. Signa- Figure 15. Total linear clustering. PIRD is a P2P-based intelligent resaurc
ture indexing and request  processing discovery system that weaves multiple attributes into a set
matching time. time. of indices using locality sensitive hashing, and then maps

the indices to a structured P2P system. Different from
the above work, SigLM supports dynamic signature-driven
resource discovery and matchmaking, which can achieve
better resource utilization in cloud computing systems.

Resource Bundles system [7] provides a histogram-

As a proof-of-concept, we implemented a simple dis-
tributed sorting application on top of the SigLM system.

We deploy the SigLM system on ab_out 20 P_IangtLab nOdeSbased statistical resource discovery and allocation sehem
and generate a séquence of sorting apphcatlon requests, hich employs clustering to achieve scalability. How-
We generated application tasks by invoking the bubble Sortever, resource bundles system does not support multi-
e?ecu?ble ]f)n a set Otf nlgmb\%s frdm%_?f (n gtenlerat_(tag dimensional resource matching and histogram-based ap-
? ran otm kor tevzr_])c/f as t).PI etESE |§ren adgorl MS Hroach cannot achieve precise resource control expected by
0 map tasks 1o ditterent FanetLab nodes and measurgyq 1oy system. In contrast, SigLM supports time-series
the total completion time for all task_s, shown by Flgu_re signature-based load management and employs R-trees to
t1'3. We obserget tha:h8|gLRA car;_ aCh'e\Q?/ IOV\l’er execution , -hieve scalable signature-driven resource matchmaking.
tlr:ne corﬂpa:je f tc;1OS'erLaM ern? |ves.F. e alzo rrr:easutrhe Recent studies have shown that recognizing system pat-
€ overnead ot the SigLM system. Figure SNows Neensis a promising approach to automatic system manage-
qumulatwe distribution function ((?DF) of th? Processing - ment [8, 6, 21]. Ourwork is similar to the above by adopting
tmle takir: dg?t_matﬁh athre?purce S|gtn.atu.re dW'Fh at:]oa? S:jg'a signature pattern driven approach. However, to the best of
nature. lhonaily, the ime spent in indexing the load knowledge, our work makes the first attempt to achieve

and resource signatures are also shown. It can pe S€€lcalable signature-driven fine-grained load management in
that, since indexing is a linear algorithm, most fraction of the context of cloud computing

its time spent is within several milli-seconds. The DTW
matching algorithm takes more time, which needs tens of
milli-seconds. Figure 15 shows the time taken to process
each request by matching the request load signature with

the resource signatures of all the nodes in the system. We In this paper, we have presented SigLM, a new signature-
can see that indexing can significantly reduce the requestdriven load management system for large-scale cloud com-
processing time in our system. Our system also requiresputing infrastructures. Different from traditional coess
more storage to store those signatures. We need 15KBgrained approaches, SigLM can capture detailed patterns of
to store a two-attribute signature with a window size of dynamic system resources and application workloads using
500 data points. We believe such a storage overhead ifine-grained, dynamically updated, time series signatures

Conclusion



Thus, SigLM can perform more efficient resource provi-

sioning based on dynamically maintained signature pat-
terns. SigLM provides robust signature matching algorithm
using dynamic time warping technique and employs multi-
attribute signature index to achieve fast signature matrhi

in a large-scale distributed system. To the best of our [10]

knowledge, SigLM makes the first attempt to apply time

series analysis techniques to achieve more efficient Ioad[ll]

management in large-scale distributed infrastructures. W
have implemented the SigLM system and deployed it on

the PlanetLab testbed.

We have conducted extensive experiments using real
system resource and workload traces collected on the pro-
duction system. We learned the following lessons from [
our prototype implementation: 1) Real-world systems do
exhibit significant patterns that can be captured by the
system for more efficient load management; 2) Signature-
driven load management can significantly improve resource
utilization and QoS provisioning compared to traditional [14]
load management schemes. In our experiments, we observe

that SigLM can improve system utilization by 30% to 80%;
3) Signature indexing can significantly speed up the signa-

ture pattern matching performance while maintaining the
efficiency of the load management system; and 4) SigLM is
feasible and efficient for large-scale distributed conmpyti

environments.
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